
B Raising the penalty Z

Consider Example 1, with evidence production functions specified by

yD (x,G) = yP (x,B) = c−1 (x + c0)

yD (x,B) = yP (x,G) = c−1 (x) (20)

for some convex function c (·) and c0 > 0.

Deterrence provided by a fully rewarded plaintiff

Suppose for now that the plaintiff is fully rewarded, R = Z. Under this specification, it is

straightforward to verify that for all penalties Z sufficiently large, the two parties produce

the same amount of evidence in equilibrium — both after defendant actions B and G. So

in either case, the equilibrium probability that the defendant loses the court case and is

punished is F (0).

The only deterrence effect comes from the difference in the defendant’s equilibrium

expenditures. Again, it is straightforward to show that x∗

DB = x∗

DG + c0: the defendant

spends c0 more on evidence production after he has taken action B than G.

Given this, for all Z sufficiently large we can conclude that the deterrence provided in

this case is simply ζ (Z) = c0. Raising Z does not have any effect of deterrence.

Deterrence provided by an unincentivized plaintiff

From Proposition 3 it is straightforward to show that reducing the plaintiff’s award will

increase the deterrence provided in this case — and so provide a level of deterrence un-

achievable by any punishment Z under full plaintiff awards. In fact, if one moves to the

extreme of a completely unincentivized plaintiff, then the deterrence that can be provided

is in fact unbounded.

To see this, start by noting that for all Z large enough the defendant’s equilibrium
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expenditures must satisfy the FOC
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As the penalty Z grows large the resources the defendant devotes to evidence production

also grow without bound, i.e., x∗

DG → ∞ and x∗

DB → ∞ as Z → ∞. Moreover, the

defendant always devotes more to evidence production when he has the disadvantage of

arguing against the facts. To see this, note that if this were not the case then the FOC

could not both hold at equality since we would have
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The defendant’s chances of winning the case are also higher when he has behaved, i.e.

c−1 (x∗

DG + c0) > c−1 (x∗

DB)− c−1 (c0). To see this, note that if this were not the case then

the FOC could not both hold at equality since we would have
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From the observations immediately above, the defendant’s probability of winning the case

converges to limy→∞ F (y) regardless of his action. Nonetheless, arbitrarily large incentives

can be provided by a making Z large enough. The reason is that provided mild assumptions

on the curvature of c (·) and F (·) are satisfied, the extra amount that the defendant spends

after a = B grows without bound as the punishment Z becomes large, i.e., x∗

DB−x∗

DG → ∞

as Z → ∞.

Proposition 5. (Unbounded deterrence from an unincentivized plaintiff)

Suppose that the marginal cost of evidence production grows without bound (c′ (y) → ∞ as

y → ∞) and that F ′′/F ′ and c′′/c′ are both bounded from above; and if F ′′/F ′ → 0 then it

does so at a slower rate than c′ → ∞. Under these conditions, the deterrence provided by

an unincentivized plaintiff can be made arbitrarily large by making Z arbitrarily large.22

22Example 1 with evidence production functions defined by (1) the signal θ distributed logistically satisfies

the assumptions on c′′/c′ and F ′′/F ′.
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Proof of Proposition 5: From the FOC, for all Z sufficiently large we have
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By the mean-value theorem, there must exist some
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(21)

A second application of the mean-value theorem implies that there exists

ŷ ∈
[
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]

such that
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Substituting into equation (21) and dividing both sides by
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Suppose that contrary the claimed result, there exists some ∆ such that x∗

DB−(x∗

DG + c0) ≤

∆ for all Z, no matter how large. Observe that x∗

DB , x∗

DG → ∞ as Z → ∞.

Since ỹ ≤ c−1 (x∗

DB),
c′′ (ỹ)
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,

and so the right-hand side of equation (22) is bounded above by assumption.

Yet another application of the mean-value theorem implies that there exists y̌ ∈ [x∗

DG + c0, x
∗

DB ]

such that
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1
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.

Consequently, as Z → ∞, the gap between the evidence actually produced in the two states

must approach 0, i.e., c−1 (x∗

DB) − c−1 (x∗

DG + c0) → 0. Since ŷ ≤ c−1 (x∗

DG + c0),
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CASE: F ′′/F ′ is bounded away from 0. It is immediate that the left-hand of (22) is

unbounded. This gives the required contradiction and completes the proof.

CASE: F ′′/F ′ → 0. The limit of the left-hand side of (22) is

− lim
Z→∞
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Since c′
(

c−1 (y̌)
)

≥ c′
(

c−1 (x∗
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)

≥ c′ (ŷ), expression (23) is in turn less than

− lim
Z→∞

∣

∣F ′′ (ŷ) /F ′ (ŷ)
∣

∣ c′ (y̌) c−1 (c0) /∆.

But by assumption this is −∞, giving a contradiction and completing the proof.
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