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Abstract

We examine voluntary disclosure in a setting where the would-be discloser
(“sender”) is risk-averse and faces uncertainty about the audience’s (“receiver’s”)
preference ordering over different sender-types. We show that some senders ab-
stain from disclosing in equilibrium, in contrast to classic “unravelling” results.
In such equilibria, senders with extreme types do not disclose, while senders
with intermediate types disclose. Non-disclosure reduces the sensitivity of a
sender’s payoff to the receiver’s preference ordering, which is attractive to risk-
averse senders. Increased sender risk-aversion reduces equilibrium disclosure by
sender-types who bear a higher risk under disclosure than non-disclosure. In
contrast, non-disclosure exposes receivers to risk by reducing their ability to
differentiate between sender types, and consequently, increased receiver risk-
aversion increases equilibrium disclosure. The model accommodates many ap-
plications in finance and economics.
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1 Introduction

An important and long-standing question in the economics of information is whether
voluntary disclosure leads to full disclosure. A compelling and intuitive argument,
often described as the “unravelling” argument, suggests yes.1 In brief, the argument is
that the firm, or more generally the “sender,” with the most favorable information will
voluntarily disclose. So the audience for the disclosure—the “receiver”—will interpret
non-disclosure as indicating that the firm does not have the most favorable informa-
tion. But given this, the firm with the second most favorable piece of information
will disclose, and so on. All the firms thus disclose in the end.

Despite the force of the unravelling argument, the prediction of full disclosure
appears too strong. There are many cases in which valuable information that is po-
tentially disclosable is not disclosed. Firms do not voluntarily reveal all value-relevant
information. In legal proceedings, defendants frequently opt for silence. Politicians
do not always voluntarily reveal past tax returns. In such cases, potential disclosers
believe that non-disclosure is in their best interests, even though audiences often
interpret non-disclosure with skepticism.

In this paper, we give a simple explanation for non-disclosure, which captures
the idea that non-disclosure is the safest option available. Our explanation has two
key ingredients. The first ingredient is that the sender is unsure of the receiver’s
preferences. For example, a firm selling financial securities may be unsure whether
the buyers of its securities desire higher or lower cash flow variance. Even if the firm’s
private information is about the first rather than second moment of cash flows, the
firm’s disclosure preferences will differ depending on whether the “buyer” of the firm’s
securities is an investor or a tax authority (or regulator, or union). A politician who
is considering disclosing past tax returns may be unsure whether voters wish to see
high income (thereby indicating that he is rich and successful) or low income (thereby
excusing the low taxes he is known to have paid).

By itself, however, sender uncertainty about receiver preferences is not enough to
generate non-disclosure. The reason is that the expected payoff from disclosure can
still be ordered, so that one can still identify senders with the highest incentive to
disclose, and the unravelling argument still applies. Thus, the second key ingredient

1See Viscusi (1978), Grossman and Hart (1980), Milgrom (1981), Grossman (1981), and Milgrom
and Roberts (1986). Dranove and Jin (2010) provide a recent survey of the literature.
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for our explanation is sender risk-aversion, so that senders care about the risk of
payoffs induced by disclosure relative to non-disclosure, in addition to simply the
expected payoff. We show that non-disclosure arises precisely when it is safer than
disclosure, in the sense of leading to lower risk in payoffs.

In a little more detail, consider, for example, a firm with private information about
its cash flow variance represented by x ∈ [0, 1], which it can voluntarily disclose. The
firm is selling securities. It knows that some investors would prefer high-variance
cash flows (high x), while other investors would prefer low-variance cash flows (low
x), but does not know which type of investor it is dealing with. Thus, a disclosing
firm faces a lottery over different prices that it may receive for its securities, where
the prices depend on the corresponding investor’s preferences over cash-flow variance.
Firms with extreme values of cash flow variance—i.e., either very high or very low
variance—face a particularly high-risk lottery over prices, because in these cases the
valuation of an investor who likes high-variance cash flows diverges widely from the
valuation of an investor who dislikes cash flow variance.

In a non-disclosure equilibrium, firms with extreme information stay silent and do
not disclose, while firms with intermediate information disclose. Investors correctly
interpret non-disclosure as indicating extreme information—in this example, either
very low or very high cash flow variance. So the price they are willing to pay is based
on an average of these extremes. In particular, this means that the price paid if
investors want high variance is close to the price paid if investors want low variance.
So non-disclosure generates a lower-risk lottery over prices for firms with extreme
information, relative to the alternative of disclosing.

Given the economic forces underlying equilibrium non-disclosure and the failure
of unravelling, it is natural to conjecture that non-disclosure becomes more likely
as sender risk-aversion increases. Our analysis makes this intuition precise. Simi-
larly, non-disclosure exposes receivers to risk by reducing their ability to differentiate
between different sender types. Consequently, non-disclosure becomes less likely as
receiver risk-aversion increases.

Previous research has identified other possible reasons for why full unravelling may
not occur, and some senders choose to remain silent instead of disclosing. Perhaps
the most widely applicable existing explanations are that full unravelling does not
occur if disclosure is costly (Grossman and Hart, 1980, Jovanovic, 1982); and that
full unravelling does not occur if there is some probability that the sender is unable
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to disclose (Dye, 1985).
While the assumptions of costly disclosure and unobservably impossible disclosure

are certainly satisfied in some settings, there are also many settings in which disclosure
is costless, and there is no uncertainty as to whether the sender is able to disclose,
but voluntary disclosure does not generate full disclosure. For example, disclosure of
tax returns by a politician is both costless, and known to be feasible with complete
certainty. Hence, our paper can explain non-disclosure in settings where previous
explanations cannot. Moreover, it captures precisely the idea that staying silent and
not disclosing is the “safest” course of action.

Unravelling results have been generalized to wider classes of economies by papers
such as Okuno-Fujiwara, Postlewaite and Suzumura (1990) and Seidmann and Winter
(1997).2 Okuno-Fujiwara, et. al. (1990) stress the importance of sender payoff mono-
tonicity, and exhibit examples in which a failure of monotonicity blocks unravelling
and leads to complete non-disclosure. However, we show that payoff non-monotonicity
alone is not sufficient to block unravelling. Our paper can be viewed as identifying
a set of economically relevant conditions under which partial non-disclosure emerges
as an equilibrium outcome in a natural setting.

The literature on disclosure is large, and has suggested a number of other alter-
native explanations of non-disclosure as surveyed in Dranove and Jin (2010). Among
them, some share our focus on receiver heterogeneity, though rely on very different
economic forces. For example, Fishman and Hagerty (2003) show that non-disclosure
arises if some receivers are unable to process the information content of disclosure.
Harbaugh and To (2017) consider a setting in which the sender’s type is drawn from
the interval [0, 1], but disclosures are restricted to specifying which element of a fi-
nite partition of [0, 1] the type belongs to. Moreover, the receiver is endowed with a
private signal about the sender’s type. Consequently, the best senders in a partition
element may prefer to remain silent in order to avoid mixing with mediocre senders
in the same partition element, and thus the unraveling argument breaks down.

In the accounting literature, Dutta and Trueman (2002) and Suijs (2007) analyze
relatively special situations in which the sender is unsure how the receiver will respond

2Giovannoni and Seidmann (2007) study a setting similar to Seidmann and Winter (1997), and
characterize conditions under which no disclosure occurs. Differently from our paper, the sender
knows the receiver’s preferences. Instead, non-disclosure in Giovannoni and Seidmann arises because
the sender’s “ideal action exceeds the informed [r]eceiver’s ideal action if and only if the [s]ender’s
type is low.”
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to a disclosure. However, Dutta and Trueman (2002) assume that there is a strictly
positive probability that the sender has nothing to disclose, and state that this is
critical for their results. In Suijs (2007)’s environment (unlike ours), there is a direct
gain to non-disclosure.3

2 Model

Consider a firm—henceforth, the sender—that sells an item with characteristic x to a
buyer—henceforth, the receiver. The sender has type x ∈ X, where X is an interval of
the real line. The prior distribution of x is continuous over X, with full support and a
strictly positive density function, which we denote by f . We normalize inf X = 0 and
supX = 1. We make no assumption as to whether X is open, closed, or half-closed.

The sender’s type is private information to the sender. The sender can, at zero
cost, credibly disclose his type x to the receiver, or not disclose any information. The
sender’s payoff is determined by the receiver’s type, and the receiver’s beliefs about
the sender’s type, as described below.

The receiver can be of n ≥ 2 types, denoted i ∈ N ≡ {1, 2, . . . , n}. The probability
of type i is qi. The preferences of a receiver of type i are given by ui (gi(x)− pi),
where pi is the price receiver type i pays to the sender, and ui is continuous, strictly
increasing and weakly concave, capturing the receiver’s risk-aversion, and gi is also
continuous, differentiable, and weakly concave. Note that we impose no assumption
on the relationship between different gi’s or as to whether gi is monotone or not.

If the receiver is type i, the price pi is determined by the competitive condition

Ex [ui (gi(x)− pi) |I] = ui (0) , (1)

where I is the receiver’s information (i.e., either the particular x the sender discloses,
or nothing). Note that, for clarity, we typically write Ex to make clear the expectation
is being taken over sender types x, and correspondingly write Ei when the expectation
is taken over receiver types i ∈ N .

3To be specific, in Suijs’s model, disclosure gives a payoff of either U (0) or U (1), with probabilities
1− p (φ) and p (φ) respectively, where φ is the sender’s type. Non-disclosure gives payoffs of U

(
1
2

)
and something at least U (0), with corresponding probabilities, and regardless of receiver inferences
about what non-disclosure means. So if the type space is such that 1− p (φ) is sufficiently high for
all types, non-disclosure is an equilibrium.
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Consequently, any disclosure decision by the sender leads to a lottery over prices
(pi)i∈N , where pi is received with probability qi. The sender’s expected utility from
this lottery is

Ei [pi] =
∑
i∈N

qiv (pi) ,

where v is strictly increasing. As we will establish, whether the sender’s utility func-
tion v is concave or convex is an important driver of equilibrium disclosure outcomes.

For use throughout, we denote the expected utility of sender disclosing x by
V D (x). This quantity is straightforward to calculate, since in this case the price
the sender gets from a sender of type i is simply pi = gi (x), and thus

V D (x) ≡
∑
i∈N

qiv (gi (x)) = Ei [v (gi (x))] .

We say an equilibrium features full disclosure if the probability that the sender
discloses is 1. We say an equilibrium features non-disclosure if the probability that
the sender discloses is strictly less than 1.

Throughout, we write
(
pNDi

)
i∈N

for the prices received from the different receiver
types following non-disclosure. Note that these prices are endogenous, and are deter-
mined in equilibrium.

We make the following mild regularity assumptions. First, no receiver has flat
preferences over the sender’s type:

Assumption 1 For any i ∈ N , ∂
∂x
gi(x) = 0 holds for at most one value of x.

Second, we rule out the non-generic case in which the expected payoff (as opposed
to utility) from disclosure is constant across sender types. When the sender is risk
neutral, this non-generic case can generate economically uninteresting outcomes in
which all senders are indifferent between disclosure and non-disclosure. (Note that
we nonetheless allow this non-generic case when the sender is strictly risk-averse, since
it allows for a simple illustrative example that we use below.)

Assumption 2 Either the sender is strictly risk-averse (v is strictly concave), or
else ∂

∂x
Ei [gi (x)] = 0 holds for at most one value of x.
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2.1 A preliminary result

Before proceeding, we note the following straightforward result, which is directly
implied by the receiver’s (weak) risk-aversion, and which we use repeatedly:

Lemma 1 For i ∈ N,

pi ≤ Ex [gi(x)|I] ≤ gi (Ex [x|I]) , (2)

where the first inequality is strict if ui is strictly concave and the posterior of x given
information I is non-degenerate.

3 Model applications

Our model is general enough to accommodate many economically relevant applica-
tions. We have described the baseline model setting in terms of the sender being
a firm that sells an item with characteristic x to buyers (the receivers). The seller
discloses some feature of the item. Different buyers have different preferences over the
characteristic x. To give a few examples, before a potential disclosure, a start-up firm
selling equity may be unsure about the risk-return preferences of potential investors;
a financial advisor may be unsure about clients’ preferences; and a target firm may be
unsure as to whether the bidding firms’ technology is a complement or a substitute
to its own technology.

Below, we expand on four applications of our model that are perhaps less obvious:

3.1 Conflict between debt and equity

A leading case of distinct investor preferences in financial economics is that between
equity- and bond-holders, where different preferences stem from the different structure
of these securities.

A firm anticipates that it will need to raise funding in the future. With probability
q1 it will prefer to issue equity, but with probability q2 it will prefer to issue debt, where
for simplicity we take the firm’s preference between debt and equity as exogenous.

The firm’s cash flow y is a random variable. The firm does not know its future
cash flow realization, but it does know its type, x, which determines the distribution
of y. For example, x may represent the firm’s choice of projects, which affect both
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the mean and variance of cash flows. Investors do not directly observe y. The firm
can disclose x.

The firm has some outstanding debt. The value of its existing equity, debt, and
total value is given by E (x), D (x), V (x), respectively, where as usual, V (x) =

E (x) +D (x). For simplicity, we assume that the firm’s future issue of debt or equity
is sufficiently small that the new issue does not affect prices. Hence if κ1 and κ2 denote
the small amount of equity and debt that the firm will issue, then g1 (x) = κ1E (x) and
g2 (x) = κ2D (x). Provided that E (x) is strictly monotone in x, and V

(
E−1

(
Ẽ
))

is
concave in Ẽ, this falls in our framework. In particular, if firm value V is constant,
and x captures cash flow variance, then E is increasing in x and D is decreasing in
x, and both E and D are weakly concave in x.

3.2 Investors and regulators (or tax authority, or bargaining

employees)

A distinct application in corporate finance is that of a firm disclosing, but being
unsure whether its disclosure will be received by investors, or by a regulator. This
application has the feature that if the receiver is a regulator then the sender’s payoff
does not stem from an explicit price paid by the regulator.

To fix ideas, consider a firm disclosing its expected cash flow. Let type-1 receivers
be investors, and the type-2 receiver be a regulator. For simplicity, consider the case
of a firm deciding whether or not to disclose its cash flow x. Also for simplicity, we
focus on an all equity firm, and assume that the firm benefits from a higher share price
(either because it intends to issue more equity, or because of managerial compensation
contracts).

In this case, g1 (x) = x, so that when the receiver is an investor (who we continue
to assume is risk-neutral), the share price is E [x|I]. When the receiver is a regulator,
in contrast, the regulator may take some action that affects the firm, based on its
belief about the firm’s cash flow. So by setting u2 to be linear, and assuming the firm’s
share price is E [x] if investors do not pay attention to the disclosure/non-disclosure,
the firm’s expected payoff is

q1v (E [x|I]) + q2v (E [x] + E [g2 (x) |I]) .

In particular, g2 may be a decreasing function of x, representing the idea that a
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regulator will treat a firm more harshly if it believes the firm cash flow is high.
By relabeling, this structure also covers cases in which the type-2 receiver is instead

a tax authority, or a group of employees bargaining with the firm.
Moreover, one can also consider cases in which both investors and a regulator

receive the disclosure. For example, suppose investors receive the disclosure with
probability q̃1 > 0, and a regulator receives the disclosure with probability q̃2 > 0,
and these events are independent. Then the firm’s payoff is

q̃1q̃2v (E [x|I] + E [g2 (x) |I]) + q̃1 (1− q̃2) v (E [x|I])

+ (1− q̃1) q̃2v (E [x] + E [g2 (x) |I]) + (1− q̃1) (1− q̃2) v (E [x]) .

In particular, if either q̃1 < 1 or q̃2 < 1 then this falls within our framework. Note
that if both q̃1 < 1 and q̃2 < 1, then there are effectively three receiver types, which
also fits in our framework.4

3.3 Political elections

We next consider a second important case in which the sender’s payoffs do not stem
from prices paid by buyers, that is, political elections. This case also illustrates that
the concavity of sender’s preference function v need not stem from fundamental risk
preferences. We present a very stripped down model of elections, though (as with
elsewhere) it could be straightforwardly enriched.

Consider a political candidate facing a pool of voters. The candidate has an
attribute (either innate, or a policy position) x ∈ (0, 1). For example, x may represent
the strength of a candidate’s links to some industry; or his stance on trade agreements;
or his personal income. The candidate does not know how voters respond to this
attribute. In particular, with probability q1, voters are of type 1 in the sense that they
may like this attribute, and respond positively to higher values of x. In contrast, with
probability q2, voters are of type 2 in the sense that they may dislike this attribute,
and respond negatively.

In addition, and regardless of whether the pool of voters is type 1 or 2, voters
also weight other factors when deciding whether to vote the candidate. These other
factors are represented by δ, which is uniformly distributed over [0, 1]. Specifically, if

4More precisely, the three receiver types are given by g1(x) = x, g2(x) as previously defined (may
differ by a constant E[x]), and g3(x) = x+ g2(x).
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the pool of voters is type i, the candidate wins the election if

log (Ex [gi(x)|I] + κa) + log δ ≥ log κb,

where κa and κb are parameters capturing details of the political process, and the
characteristics of the candidate’s opponent(s). Consequently, the candidate wins the
election if δ ≥ κb

E[gi(x)|I]+κa , and so has a winning probability of

1− κb
Ex [gi(x)|I] + κa

.

Normalizing the candidate’s winning payoff to 1, and defining v (p) = 1 − κb
p+κa

, the
candidate’s expected payoff is hence

∑
i=1,2

qiv (Ex [gi(x)|I]) ,

which falls within our framework. Note that v is strictly increasing, and concave.

3.4 Differences in assessments of signal accuracy

Finally, we consider a case in which the sender discloses a signal x of some underlying
attribute y. All receivers agree that higher values of y are desirable. In this case,
differences in the receivers stem from differences in their assessment of the accuracy
of the signal x.

A variety of applications fit this specific framework. To give just one concrete
example, consider the case of restaurants considering whether to disclose food safety
ratings, which are subject to a concern of rating inflation.

To illustrate the mechanism, we give a tightly parameterized example of how this
case can arise. But the general idea is that the posterior expectation E [y|x] may be
non-monotone with respect to the signal x. This general point is well understood; in
particular, Dawid (1973) gives conditions under which E [y|x]→ E [y] as x→∞.

In more detail: the sender has an underlying attribute, denoted y, and receives
a rating, denoted x (“type”). Neither the sender nor receivers can observe y. The
receiver observes the rating x, and must decide whether or not to disclose it.

The rating x is either completely accurate (i.e., x = y), or is pure noise (distributed
independently from y). A receiver of type i ∈ N attaches probability pi to the rating
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being accurate, where pi differs across receiver types. The attribute y is distributed
over [0, 1] according to the density function hy (y) = 2 (1− y), so that E [y] = 1

3
.

When the rating is noise, it is distributed over [0, 1] according to density hx (x) = 2x.
That is, the true type y is drawn from a distribution weighted towards low values,
while the rating is drawn from a distribution weighted towards high values.

A receiver’s expectation of attribute y conditional on the rating being x is

E [y|x] = Pr (accurate|x)E [y|x, accurate] + Pr (inaccurate|x)E [y|x, inaccurate]

= Pr (accurate|x)x+ Pr (inaccurate|x)E [y]

= Pr (accurate|x) (x− E [y]) + E [y] .

Moreover, by Bayes’ rule,

Pr (accurate|x) =
Pr (accurate) Pr (x|accurate)

Pr (accurate) Pr (x|accurate) + Pr (inaccurate) Pr (x|inaccurate)

=
pihy (x)

pihy (x) + (1− pi)hx (x)

=
pi (1− x)

pi (1− x) + (1− pi)x
.

In particular, a receiver’s belief that the rating is accurate is a decreasing function of
the rating.

It follows that

E [y|x] =
pi (1− x)

(
x− 1

3

)
pi (1− x) + (1− pi)x

+
1

3
. (3)

Straightforward though tedious calculation (see appendix) establishes that E [y|x] is
strictly concave as a function of x, and obtains it maximum in the interior of (0, 1),

at
√

1−p2i−pi√
3(1−2pi)

if pi 6= 1
2
, and at x = 2

3
if pi = 1

2
.

Consequently, by setting ui linear, and gi (x) equal to (3), this fits within our
framework.

4 Equilibria with non-disclosure

We start by showing how equilibria with non-disclosure can emerge in our setting. It
is useful to start by considering the following simple example, which illustrates the
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main features that deliver non-disclosure in equilibrium:

Example: There are two receiver types (n = 2), both of whom are risk-neutral (ui
is linear for i = 1, 2) and their preferences over sender types are linear and symmetric
(g1(x) = x and g2(x) = 1−x); the sender is strictly risk-averse (v is strictly concave);
there is an equal probability of each receiver type (q1 = q2 = 1

2
); and the unconditional

mean E [x] of the sender’s type is 1
2
.

Under these conditions, there is an equilibrium with no disclosure at all, as follows.
In such an equilibrium, non-disclosure results in prices

pND1 = E [x] =
1

2

pND2 = E [1− x] =
1

2
,

and so the sender’s expected utility from non-disclosure is simply v
(
1
2

)
.

On the other hand, if a sender of type x discloses, he faces a lottery over prices
x and 1 − x, with a probability 1

2
of each outcome. This lottery has an expected

payoff of 1
2
. So, since the sender is risk-averse, he strictly prefers non-disclosure to

disclosure.5

Note that the Example also illustrates that our setting regularly has multiple equi-
libria. Full-disclosure can always be supported as an equilibrium, simply by assigning
off-equilibrium beliefs on non-disclosure that load on the type with the lowest utility
from disclosure. Accordingly, our main results are concerned with characterizing non-
disclosure equilibria when they exist, and with comparative statics on non-disclosure
equilibria.

As the Example makes clear, the three key properties driving equilibrium non-
disclosure are (I) different preferences of different receivers, which gives rise to a
lottery over prices; (II) the preferences deliver different orderings over sender types, at
least over some range; and (III) sender risk-aversion. We next establish the necessity
of these three properties.

5A sender with type x = 1
2 is indifferent.
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4.1 Necessary conditions for non-disclosure

First, non-disclosure can only arise if the sender’s expected utility from disclosure,
V D, is non-monotone:

Proposition 1 If the disclosure payoff V D is either strictly increasing or strictly
decreasing over X, then disclosure occurs with probability 1.

Second, non-disclosure can only arise if types differ in the sense that there must
exist at least two receiver types gi and gj, i 6= j, who have different preference
orderings:

Proposition 2 If there is no uncertainty over receiver preference orderings, i.e.,
gi is ordinally equivalent to gj in the sense that gi (x) < (≤) gi (x̃) if and only if
gj (x) < (≤) gj (x̃) for any x, x̃ ∈ X and for all i, j ∈ N , then disclosure occurs with
probability 1.

We highlight that Proposition 2 is true even if gi is non-monotone, suggesting that
non-monotone receiver preferences (and hence non-monotone sender payoffs) alone are
not sufficient to generate non-disclosure in equilibrium.

Third, non-disclosure can only arise if the sender is strictly risk-averse (v strictly
concave).

Proposition 3 If the sender’s payoff function v is linear or strictly convex then
disclosure occurs with probability 1.

The basic intuition for each of Propositions 1, 2, and 3 is the same. In each case,
one can think of changing variables in the description of a firm’s type, and applying
the standard unravelling argument to the new “type.” The “types” in the three cases
are, respectively, g1 (x), V D (x), and Ei[gi(x)].

4.2 Properties of equilibria with non-disclosure

In light of Proposition 3, for the remainder of the paper we impose:

Assumption 3 The sender’s payoff function v is strictly concave.
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The Example above has no disclosure at all. However, this is an unusual case, in
the sense that it can arise only if

max
x̃

Ei [v (gi (x̃))] ≤ Ei
[
v
(
pNDi

)]
,

which by Lemma 1 implies

max
x̃

Ei [v (gi (x̃))] ≤ Ei
[
v
(
pNDi

)]
≤ Ei [v (gi (Ex [x]))],

which requires the knife-edge condition Ex [x] = arg maxx̃Ei [v (gi (x̃))].
More generally, non-disclosure equilibria entail some sender types disclosing and

other types not disclosing. We define a marginal discloser as a sender type that is
indifferent between disclosing or not in such an equilibrium:

Definition 1 In any equilibrium with non-disclosure, a sender type x is a marginal
discloser if and only if V D(x) = Ei

[
v
(
pNDi

)]
.

An important result is the following:

Proposition 4 Any equilibrium with non-disclosure is of one of the following two
types:

(A) Complete non-disclosure: no sender discloses.
(B) Partial non-disclosure: both high and low extreme sender types do not disclose,

i.e., the set of non-disclosing senders is of the form

X\ [x, x̄]

for some 0 < x < x̄ < 1, where x and x̄ are the two marginal disclosers, and
consequently,

V D (x) = V D (x̄) = Ei
[
v
(
pNDi

)]
. (4)

Figure 1 illustrates a generic partial non-disclosure equilibrium.
The proof of Proposition 4 is intuitive. It relies on the fact that if types x and

x̄ disclose and x < x̄, then any type x ∈ (x, x̄) in the middle must also disclose, as
follows. The fact that x and x̄ disclose implies

min
{
V D (x) , V D (x̄)

}
≥ Ei

[
v
(
pNDi

)]
,
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Figure 1: Illustration of a generic partial non-disclosure equilibrium

and so Assumption 2 in turn implies that, for any x ∈ (x, x̄),

V D (x) > Ei
[
v
(
pNDi

)]
.

The formal proof in the appendix further rules out the cases of x = 0 or x̄ = 1,
that is, it must be both high and low extreme sender types that choose to keep silent.
The intuition is as follows. For specificity, we present the intuition for why the non-
disclosure set cannot be a lower interval of X, of the form {x ∈ X|x ≤ x̄}. There
are two cases. If V D is decreasing at x̄, then senders with type just below x̄ would
gain from deviating and disclosing. If instead V D is increasing at x̄, then since V D is
increasing for all x ≤ x̄, and the unravelling argument operates within {x ∈ X|x ≤ x̄}
(formally, see Proposition 1).

Consistent with this result, Luca and Smith (2015) find that top business schools
are least likely to disclose their rankings, whereas mid-ranked schools are most likely
to disclose. Similarly, Bederson, et. al. (2017) find that the highest-rated restaurants
do not disclose their hygiene ratings, while relatively higher-rated restaurants disclose
to stand out from other lower-rated ones.

Economically, non-disclosure is attractive for extreme sender types because, given
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the equilibrium form of both extreme types not disclosing, receivers interpret non-
disclosure as meaning that the sender must either have a very low or very high type,
and so on average is of an intermediate type. Consequently, non-disclosure allows an
extreme type agent to replace a very risky lottery over prices (gi(x))i∈N with a safer
lottery over more similar prices

(
pNDi

)
i∈N

.

Our next result formalizes the idea that the lottery over
(
pNDi

)
i∈N

is safer for at
least one of the two marginal disclosers. For use both here and below, we state the
following mild condition, which guarantees strictness of some key inequalities:

Condition 1 There is at least one receiver type i for which gi is strictly concave.

Proposition 5 Consider a partial non-disclosure equilibrium in which the non-disclosure
set is [0, x) ∪ (x̄, 1] with 0 < x < x̄ < 1. Then

Ex [x|[0, x) ∪ (x̄, 1]] ∈ [x, x̄] (5)

and moreover, for some marginal discloser x ∈ {x, x̄},

Ei
[
pNDi

]
≤ Ei [gi (x)] , (6)

where the inequality is strict if Condition 1 holds.

Equation (5) in Proposition 5 formalizes the idea that non-disclosure is attractive
because receivers’ equilibrium expectation of the sender’s type given non-disclosure
lies between the marginal discloser types x and x̄. Inequality (6) says that the non-
disclosure lottery is safer than the disclosure lottery of at least one of the marginal
disclosers, in the following sense: since the lotteries provide the same expected utility
to the sender (by the equilibrium condition (4)), a lower expected payoff implies that
the lottery must be safer. In words, “silence is safest.”

4.3 Existence of non-disclosure equilibria

Propositions 4 and 5 characterize non-disclosure equilibria, conditional on such equi-
libria existing. In general, an equilibrium with non-disclosure indeed exists provided
that (I) receivers have different preference orderings over extreme sender types; (II)
the probability of different receiver types is such that extreme sender types dislike
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disclosure sufficiently equally; and (III) receivers are not too risk-averse. Proposition
6 establishes existence under these conditions.

The result requires some mild regularity conditions on the prior density of sender
types at the extremes, and on receiver preferences over extreme sender types. For
clarity, we state these regularity assumptions separately.

Assumption 4 For any constant κ > 0, limx→0
f(x)

f(1−κx) exists and is strictly positive.

Assumption 5 For all i ∈ N , the set v (gi (X)) is bounded, and moreover, there
exist vi > 0 and v̄i <∞ such that ∂

∂x
v (gi (x)) ∈ [vi, v̄i] for all x ∈ (0, 1).

Note that Assumption 5 is required only in cases where the sender’s type space
X is non-compact.

In addition, recall that at this point in the paper we have imposed Assumption 3,
which states that the sender is strictly risk averse.

Proposition 6 Suppose that there are receiver types i, j ∈ N such that gi (0) < gi (1)

and gj (0) > gj (1). Then an equilibrium with non-disclosure exists if the distribution
of receiver types (qi)i∈N is such that

∣∣∣limx→0 V
D (x)− limx→1 V

D (x)
∣∣∣ is sufficiently

small, and all receiver types are sufficiently close to risk-neutral.

The proof of Proposition 6 is based on standard fixed-point arguments, and we
sketch a special case here to illustrate how it works. Let everything be the same as in
the above Example, with the exception that now Ex [x] 6= 1

2
. An important property

of the Example, which considerably simplifies the argument below, is that pND2 =

1 − pND1 , so that the non-disclosure payoff is simply q1v
(
pND1

)
+ q2v

(
1− pND1

)
=

V D
(
pND1

)
.6

To show that an equilibrium exists, we look for a candidate equilibrium in which
types X\ [x, x̄] stay silent and do not to disclose, while types [x, x̄] disclose. From
Proposition 4, we know that any non-disclosure equilibrium is of this type. To this
end, we vary the candidate value of x continuously from argmaxx̃ V

D (x̃) = 1
2
down to

0. The corresponding candidate value of x̄ > 1
2
is determined by the equilibrium condi-

tion V D (x) = V D (x̄). Given candidate values of x, x̄, the corresponding payoffs asso-
ciated with non-disclosure are pND1 = Ex [x|X\ [x, x̄]] and pND2 = Ex [1− x|X\ [x, x̄]].

6The proof in the appendix does not rely on this property.
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On the one hand, at x = x̄ = 1
2
, we know pND1 = Ex [x] 6= 1

2
, so that V D (x) >

V D
(
pND1

)
. That is, the sender x strictly prefers disclosure to non-disclosure, implying

that full non-disclosure is not an equilibrium.
On the other hand, as x approaches 0, x̄ approaches 1. So provided the density

of x behaves similarly at the extremes of [0, 1], it follows that pND1 is bounded away
from both 0 and 1. Consequently, for all x sufficiently close to 0, we know V D (x) <

V D
(
pND1

)
, since V D obtains its minimum value at the extremes x = 0, 1. In words,

the sender x strictly prefers non-disclosure to disclosure as x approaches 0.
By continuity, it follows that there is at least one candidate equilibrium x ∈

(
0, 1

2

)
that satisfies the equilibrium condition V D (x) = V D (x̄) = V D

(
pND1

)
.

Among other things, the above argument highlights the role of the condition in
Proposition 6 that

∣∣∣V D (0)− V D (1)
∣∣∣ needs to be sufficiently small. This condition

ensures that for any candidate specification of a marginal discloser with low type (i.e.,
a small x), it remains possible to find a corresponding marginal discloser with high
type (i.e., a large x̄).

At the same time, it is worth emphasizing that Proposition 6 states just one set of
sufficient conditions for non-disclosure. Non-disclosure equilibria can certainly exist
even when V D (0) and V D (1) are very different.

5 Comparative statics

Given that a key economic force driving equilibrium non-disclosure is that non-
disclosure reduces the risk faced by senders, especially those with extreme types,
it is natural to conjecture that non-disclosure is increasing in sender risk-aversion.
Propositions 7 and 8 make this intuition precise. It is also natural to expect that
non-disclosing is decreasing in receiver risk-aversion because a more risk-averse re-
ceiver is less willing to pay a high price to a non-disclosing sender. This is formalized
in Proposition 9.

5.1 Increasing sender risk-aversion

Proposition 5 says that in a partial non-disclosure equilibrium, non-disclosure reduces
risk for at least one of the marginal disclosing types x and x̄. Given this, a natural
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conjecture is that as seller risk-aversion increases, senders are less likely to disclose,
and more likely to remain silent.

As is widely appreciated, it is relatively hard to produce general comparative
statics of choices between risky lotteries with respect to risk aversion (see, e.g., Ross
(1981) for a discussion of this point), without imposing significant structure on either
the utility function or on the distribution of payoffs. The following result uses a
notion of increased risk aversion related to (though more restrictive than) that used
in Ross (1981). Proposition 8 below instead uses the more general notion of Pratt
(1964), but applies only to the case of two receiver types (n = 2).

Proposition 7 Suppose that Condition 1 holds, and that an equilibrium with both
non-disclosure and disclosure exists when the sender’s preferences are given by v.
If the sender’s preferences change to ṽ, where ṽ is more risk averse than v in the
sense that v (x) = αṽ (x) + x at all x ∈ X for some constant α > 0, then there is a
marginal discloser xm for whom non-disclosure is safer than disclosure in the original
equilibrium, i.e., Ei

[
pNDi

]
< Ei [gi (xm)], and a new non-disclosure equilibrium under

preferences ṽ, such that non-disclosure increases in the neighborhood of xm.

In words, the comparison of risk aversion used in Proposition 7 amounts to saying:
preferences represented by ṽ are more risk averse than preferences represented by v if
v corresponds to a mixture of ṽ and risk neutral preferences. In particular, for mean
variance preferences, this comparison corresponds to a greater dislike of variance.

In the case of just two receiver types (n = 2), we can substantially generalize
Proposition 7. The key reason is that for n = 2, both disclosure and non-disclosure
induce binary lotteries; and moreover (as we show in the proof of Proposition 8 be-
low), for at least one of the marginal disclosers xm ∈ {x, x̄}, it is the case that
pND1 , pND2 ∈ [min {g1 (xm) , g2 (xm)} ,max {g1 (xm) , g2 (xm)}]. This additional struc-
ture on the lotteries associated with disclosure and non-disclosure allows us to apply
Pratt’s (1964) more general ordering of risk preferences:

Proposition 8 Suppose that n = 2, Condition 1 holds, and that an equilibrium with
both non-disclosure and disclosure exists when the sender’s preferences are given by
v. If the sender’s preferences change to ṽ, where ṽ is more risk averse than v in the
sense that there exists an increasing concave function φ such that ṽ(x) = φ(v(x)) at
all x ∈ X, then there is a marginal discloser xm for whom non-disclosure is safer
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than disclosure in the original equilibrium, i.e., Ei
[
pNDi

]
< Ei [gi (xm)], and a new

non-disclosure equilibrium under preferences ṽ, such that non-disclosure increases in
the neighborhood of xm.

5.2 Increasing receiver risk-aversion

Similarly, we consider an increase in risk-aversion by the receiver by applying Prat’s
(1964) general ordering of risk preferences.

Intuitively, while non-disclosure helps risk-averse senders by delivering a safer
lottery, it hurts risk-averse receivers, because it means that they buy an item of
uncertain quality. Consequently, an increase in receiver risk-aversion reduces the
prices paid to a non-disclosing sender. Hence higher risk-aversion of receivers make
non-disclosure less attractive for senders. Hence an increase in receiver risk-aversion
reduces non-disclosure:

Proposition 9 Suppose that Condition 1 holds, and that an equilibrium with both
non-disclosure and disclosure exists when the receivers’ preferences are given by ui.
If receiver i’s preferences changes to ũi, where ũi is more risk averse than ui in the
sense that there exists an increasing concave function φ such that ũi(x) = φ(ui(x)) at
all x ∈ X, then the new equilibrium features more disclosure.

Note that in our setting, disclosure by a sender eliminates all risk for a receiver.
However, the economic force in Proposition 9 continues to hold even in situations
where disclosure reduced the risk faced by receivers, instead of completely eliminating
it.

6 Generalized disclosure

Thus far, we have considered the case in which the sender either discloses that his
type is in the singleton set {x}, or else discloses nothing. In this section, we consider
instead the case in which the sender can disclose any member A of some family of sets
X , provided that x ∈ A. We assume that, at a minimum, X contains all singletons,
all closed subintervals of the interval X, and all binary unions of closed subintervals of
X. To avoid economically uninteresting mathematical complications, we assume that
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all members of X are closed; and moreover (and for this section only) that X itself is
closed, i.e., X = [0, 1]. Note that no-disclosure simply corresponds to disclosing X.

This enlarged set of disclosure possibilities is most likely to be relevant if disclosure
takes the form of a trustworthy auditor reporting a sender’s type x to receivers. If
instead disclosure takes the form of simply displaying some attribute to receivers (e.g.,
a food safety rating, a tax return, etc.), then our analysis so far covers the relevant
case.

Note that this expansion of the sender’s disclosure possibilities does not affect
standard unravelling results. Indeed, it is straightforward to adapt the proofs of
Propositions 2, 1, and 3 to show that, under the conditions stated in these three
results, in any equilibrium a sender discloses {x} with probability one.

Our main result in this section is that, given the expanded set of disclosure pos-
sibilities, an equilibrium with less than full disclosure exists under a very wide range
of circumstances if the key conditions we identify in this paper are satisfied, namely
sender risk aversion, differences in receiver preferences, and receivers who are not
too risk averse. In particular, we are able to establish existence of an equilibrium
with less than full disclosure without imposing the sufficient condition that V D (0) is
sufficiently close to V D (1), which we used to establish Proposition 6.7

Proposition 10 If (A) there exist ξ, ξ̄ ∈ (0, 1) and a pair of receiver types i, j such
that ξ 6= ξ̄, V D

(
ξ
)

= V D
(
ξ̄
)
, and gi (x) 6= gj (x) for x = ξ, ξ̄, and (B) all receiver

types are sufficiently close to risk neutral, then there is an equilibrium with less than
full disclosure, i.e., there is a positive probability of a sender disclosing a signal other
than {x}.

It is worth stressing that the condition (A) is satisfied whenever receivers have
different preferences (gi differs from gj for at least some i, j), and these different
preferences generate non-monotonicity of the expected utility from disclosing {x}, as
given by the function V D.

The proof of Proposition 10 is very close to previous analysis, and we give it here.
We establish the existence of an equilibrium characterized by x, x̄ ∈

(
ξ, ξ̄

)
, in which

senders with x ∈ (x, x̄) and x ∈ X\
[
ξ, ξ̄

]
disclose their exact type {x}; while the

remaining senders with x ∈
[
ξ, x

]
∪
[
x̄, ξ̄

]
disclose simply

[
ξ, x

]
∪
[
x̄, ξ̄

]
.

7We are also able to drop the regularity conditions contained in Assumptions 4 and 5, for reasons
that should be clear below.
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The proof of Proposition 10 builds on the proof of 6. First, if one restricts senders
to disclose either {x} or

[
ξ, x

]
∪
[
x̄, ξ̄

]
, the proof is the same as that of Proposition

10.8

It then remains to ensure that senders do not deviate to other disclosures. The
equilibrium is supported by the following off-equilibrium beliefs: If the sender discloses
A ∈ X , and A 6=

[
ξ, x

]
∪
[
x̄, ξ̄

]
, off-equilibrium beliefs place full mass on the sender’s

type being in arg minx̃∈A V
D (x̃). These off-equilibrium beliefs immediately imply

that senders with x ∈ X\
([
ξ, x

]
∪
[
x̄, ξ̄

])
do not have a profitable deviation. For

senders with x ∈
[
ξ, x

]
∪
[
x̄, ξ̄

]
, note that these off-equilibrium beliefs ensure that

any deviation is at least weakly worse than the deviation of disclosing {x}—which
has already been established to be an unprofitable deviation, by the first step of the
proof.

7 Welfare consequences of mandated disclosure

In many circumstances, regulations and laws mandate disclosure. In cases where the
standard unravelling argument applies, such regulations should have little effect on
equilibrium outcomes and utilities. In contrast, in the cases we have characterized
where the equilibrium outcome is less than full disclosure, such regulations clearly
increase disclosure. This affects welfare differently for senders and receivers.

For senders, mandated disclosure can only lower welfare, since an unregulated
sender always has the option of not-disclosing.

Under the competitive condition (1), receiver utility is always simply ui (0), so
that receiver utility is unaffected by mandated disclosure. But more generally, one
could imagine replacing (1) with alternative assumptions that leave receivers some
surplus. (Such a change would not affect the key economic forces in our analysis.)
In this case, mandated disclosure has the potential to increase receiver welfare, by
reducing the risk to which they are exposed.

8Indeed, the fact that ξ, ξ̄ ∈ (0, 1) means that the proof avoids the complications of what happens
to utility and density functions as x→ 0, 1, which is what allows use to dispense with the regularity
conditions contained in Assumptions 4 and 5, as noted in footnote 7.
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8 Conclusion

There are many settings in which voluntary disclosure is possible, but in which dis-
closure occurs with probabilities below 1, despite classic unravelling arguments. In
this paper we explore a possible explanation, which is new to the literature, namely
that potential disclosers do not know the preference ordering of the people they are
disclosing to, and because of risk-aversion they dislike the risk that this imposes. We
show how these two features together naturally deliver equilibrium non-disclosure.

In contrast to existing leading explanations of non-disclosure, our explanation does
not require disclosure to be either costly, or impossible for some (unobservable) subset
of would-be disclosers. As such, our paper can explain non-disclosure even in settings
where disclosure is costless, and there is no uncertainty about whether disclosure is
possible.

Non-disclosure is attractive because it reduces the risk borne by potential dis-
closers with extreme information. Consequently, disclosure decreases when potential
disclosers grow more risk-averse, in a sense we make precise. On the other hand, non-
disclosure reduces the information available to the audience for disclosures, thereby
increasing the risk borne by the audience. Because of this, potential disclosers bene-
fit more from disclosing when audiences grow more risk averse, leading to increased
equilibrium disclosure.
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Appendix

Throughout the appendix, denote byND the set of sender types which do not disclose.

Results omitted from main text

Lemma A-1 Let Assumptions 1 and 3 hold. If an equilibrium non-disclosure set is
of the form X\ [x, x̄] where x < x̄ then Ex [x|ND] ∈ [x, x̄].

Proof of Lemma A-1: Under Assumptions 1 and 3, V D is strictly concave. Since
V D (x) = V D (x̄), it follows that V D is strictly increasing for x ≤ x and strictly
decreasing for x ≥ x̄. So if Ex [x|ND] < x then

V D (Ex [x|ND]) < V D (x) = Ei
[
v
(
pNDi

)]
,

while if instead Ex [x|ND] > x̄ then

V D (Ex [x|ND]) < V D (x̄) = Ei
[
v
(
pNDi

)]
.

However, Lemma 1 implies that

V D (Ex [x|ND]) ≥ Ei
[
v
(
pNDi

)]
.

The contradiction completes the proof.

Proofs of results stated in main text

Proof of Lemma 1: Concavity of ui and Jensen’s inequality imply

ui (Ex [gi(x)− pi|I]) ≥ Ex [ui (gi(x)− pi) |I] = ui (0)

which in turn implies pi ≤ Ex [gi(x)|I] . The second inequality in (2) is immediately
from Jensen’s inequality, completing the proof.

Details for Subsection 3.4:
Collecting terms in condition (3),

E [y|x] = −pi
1
3
− 4

3
x+ x2

pi + (1− 2pi)x
+

1

3
.
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Hence differentiation yields

∂

∂x
E [y|x] = −pi

(
2x− 4

3

)
(pi + (1− 2pi)x)− (1− 2pi)

(
1
3
− 4

3
x+ x2

)
(pi + (1− 2pi)x)2

= −pi
(1− 2pi)x

2 + 2pix− 1
3
− 2

3
pi

(pi + (1− 2pi)x)2

and

∂2

∂x2
E [y|x]

= −pi
(2 (1− 2pi)x+ 2pi) (pi + (1− 2pi)x)

2 − 2 (1− 2pi) (pi + (1− 2pi)x)
(
(1− 2pi)x

2 + 2pix− 1
3 −

2
3pi
)

(p+ (1− 2p)x)
4

= −2pi
((1− 2pi)x+ pi) (p+ (1− 2pi)x)− (1− 2pi)

(
(1− 2pi)x

2 + 2pix− 1
3 −

2
3pi
)

(pi + (1− 2pi)x)
3

= −2pi
p2i + 1

3 (1− 2pi) (1 + 2pi)

(pi + (1− 2pi)x)
3 = −2p

1
3 −

1
3p

2
i

(pi + (1− 2pi)x)
3 .

Note that ∂2

∂x2
E [y|x] < 0, establishing strict concavity. Moreover, ∂

∂x
E [y|x] > 0

at x = 0 and ∂
∂x
E [y|x] = −2

3
p

1−p < 0 at x = 1, implying that E [y|x] obtains its
maximum in the interior of (0, 1). The expression for the location of the maximum
then follows from the condition ∂

∂x
E [y|x] = 0.

Proof of Proposition 1: We establish the result for the case of V strictly increas-
ing. (The proof of V strictly decreasing is analogous.). Suppose that, contrary to
the claimed result, the probability of non-disclosure is strictly positive. So there ex-
ists some subset ND ⊂ [0, 1] of sender-types who disclose with probability below 1.
Moreover, there must exist some x′ ∈ ND such that x′ > Ex[x|ND]. Since V D is
strictly increasing,

V D(x′) > V D (Ex [x|ND])

= Ei [v (gi (Ex [x|ND]))]

≥ Ei
[
v
(
pNDi

)]
,

where the second inequality follows from Lemma 1. So x′ is strictly better off deviating
and disclosing, which contradicts the equilibrium condition and completes the proof.
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Proof of Proposition 2: The cases of (gi)i∈N all strictly increasing, and all strictly
decreasing, are covered by Proposition 1. So it remains to consider the case in which
(gi)i∈N are all non-monotone. By concavity and Assumption 1, it must be that (gi)i∈N

are all first strictly increasing and then strictly decreasing.
Suppose to the contrary that the probability of non-disclosure is strictly positive.

So there exists some non-zero-measure subset ND ⊂ [0, 1] of sender types who do
not disclose. Let ND be the closure of ND in X. By continuity, the equilibrium
condition implies Ei

[
v
(
pNDi

)]
≥ Ei [v (gi (x))] for all x ∈ ND. From Lemma 1,

pNDi ≤ Ex [gi(x)|ND] = Ex
[
gi(x)|ND

]
. Let x = arg maxx̃∈ND g1(x̃), where we have

used the fact that g1 is strictly increasing then strictly decreasing to ensure that x
is well-defined.9 By ordinal equivalence, x = arg maxx̃∈ND gi(x̃) for all receiver types
i. By Assumption 1, it follows that pNDi < gi(x) for all receiver types i. But then
Ei
[
v
(
pNDi

)]
< Ei [v (gi (x))], and the contradiction completes the proof.

Proof of Proposition 3: Suppose to the contrary that the probability of non-
disclosure is strictly positive. So there exists some non-zero-measure subset ND ⊂
[0, 1] of sender-types who disclose with probability below 1. Since any sender type
x′ ∈ ND prefers non-disclosure to disclosure, Lemma 1 implies

Ei [v (gi (x
′))] ≤ Ei

[
v
(
pNDi

)]
≤ Ei [v (Ex [gi(x)|ND])] .

Since v is weakly convex,

Ei [v (Ex [gi(x)|ND])] ≤ Ei [Ex [v (gi(x)) |ND]] = Ex [Ei [v (gi (x))] |ND] .

Combining these two inequalities implies that, for any x′ ∈ ND,

Ei [v (gi (x
′))] ≤ Ex [Ei [v (gi (x))] |ND] .

If v is linear, this is a contradiction by Assumption 2. If instead v is strictly convex,
the above inequality is strict, which again gives a contradiction, completing the proof.

Proof of Proposition 4: Given the argument in the main text, it remains only
to rule out the cases x = 0 and x̄ = 1. If x = 0 and x̄ < 1 then Ex [x|ND] > x̄,

9Specifically, we need to handle cases such as: X is open at its upper end and supND = 1. In
this case, supND = 1, but 1 /∈ ND. But arg maxx̃∈ND g1(x̃) is still guaranteed to exist since g1 is
strictly decreasing as x approaches 1.
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contradicting to Lemma A-1. Similarly, if x > 0 and x̄ = 1 then Ex [x|ND] < x,
again contradicting to Lemma A-1, and completing the proof.

Proof of Proposition 5: Inequality (5) is established by Lemma A-1. To establish
(6), suppose to the contrary that

Ei
[
pNDi

]
>max {Ei [gi (x)] , Ei [gi (x̄)]} . (A-1)

By Lemma 1, it follows that

Ei [gi (E [x|ND])] > max {Ei [gi (x)] , Ei [gi (x̄)]} .

Given concavity of gi and (5), it follows that Ei [gi (x)] obtains its maximum in the
interval [x, x̄], and hence is weakly increasing over [0, x] and weakly decreasing over
[x̄, 1]. Hence (A-1) implies that

Ei
[
pNDi

]
>Ei [gi (x̃)] for all x̃ ∈ [0, x] ∪ [x̄, 1] .

Another application of Lemma 1 then implies that

Ei [Ex [gi (x) | [0, x] ∪ [x̄, 1]]] > Ei [gi (x̃)] for all x̃ ∈ [0, x] ∪ [x̄, 1] .

The contradiction establishes (6). Finally, an easy adaptation of the above argument
establishes that (6) is strict when at least one gi is strictly concave, completing the
proof.

Proof of Proposition 6: If 0 /∈ X we write V D (0) = limx→0 V
D (x), with V D (1)

treated similarly. Under the stated conditions, there exists some distribution of re-
ceiver types (qi)i∈N such that V D (0) = V D (1). We establish the existence of a
non-disclosure equilibrium for this distribution, and for the case in which all receiver
types are risk neutral (ui linear for all i ∈ N). The general result then follows by
continuity.

Because receivers are risk neutral, non-disclosure prices are simply given by pNDi =

Ex [gi (x) |ND].
Note that Assumptions 1 and 3 imply that V D is strictly concave. Define xmax =

arg maxx̃ V
D (x̃).
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If V D (xmax) ≤ Ei [v (Ex [gi (x)])] then there is an equilibrium in which no sender
discloses, and the proof is complete. So for the remainder of the proof, we consider
the case in which

V D (xmax) > Ei [v (Ex [gi (x)])] . (A-2)

For any x ∈ (0, xmax), define η (x) ∈ (xmax, 1) by V D (η (x)) = V D (x). Note
that η (x) exists and is unique, since V D (0) = V D (1) and V D is strictly concave.
Moreover, η is continuous, with η(x)→ 1 as x→ 0, and

∂

∂x
η (x) =

∂
∂x
V D (x)

∣∣∣
x=x

∂
∂x
V D (x)

∣∣∣
x=η(x)

.

By Assumption 5, ∂
∂x
η (x) remains bounded away from both 0 and −∞ as x → 0.

Assumption 4 and l’Hôpital’s rule then imply that the following limit exists, and is
bounded away from 0:

lim
x→0

´ x
0
f (x) dx´ 1

η(x)
f (x) dx

= − lim
x→0

f (x)

f (η (x)) ∂
∂x
η (x)

.

Strict concavity of v (Assumption 3) and the condition that there are receiver types
i, j ∈ N such that gi (0) < gi (1) and gj (0) > gj (1) then implies that

lim
x→0

Ei [v (Ex [gi (x) |X\ [x, η (x)]])]− Ei [Ex [v (gi (x)) |X\ [x, η (x)]]] > 0. (A-3)

Also note that

Ei [Ex [v (gi (x)) |X\ [x, η (x)]]]

= Ex [Ei [v (gi (x))] |X\ [x, η (x)]]

= Ex
[
V D (x) |X\ [x, η (x)]

]
.

Hence, and using V D (0) = V D (1),

lim
x→0

(
Ei [Ex [v (gi (x)) |X\ [x, η (x)]]]− V D (x)

)
= 0. (A-4)
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It follows by (A-3) that

V D (x)− Ei [v (Ex [gi (x) |X\ [x, η (x)]])] < 0

for all x sufficiently close to 0.
Combined with (A-2), continuity then implies that there exists some x ∈ (0, xmax)

such that
V D (x) = V D (η (x)) = Ei [v (Ex [gi (x) |X\ [x, η (x)]])] .

Hence there is an equilibrium in which senders [x, η (x)] disclose, while sendersX\ [x, η (x)]

remain silent and do not disclose, completing the proof.

Proof of Proposition 7: Given Proposition 4, when the sender’s preferences are
given by v, consider an equilibrium in which senders in [0, x) ∪ (x̄, 1] do not disclose.
By Proposition 5, for some xm ∈ {x, x̄},

Ei
[
pNDi

]
< Ei [gi (xm)] . (A-5)

It follows that
Ei
[
ṽ
(
pNDi

)]
> Ei [ṽ (gi (xm))] , (A-6)

since otherwise (A-5) and the definition that v (x) = αṽ (x) + x at all x ∈ X implies
that

Ei
[
v
(
pNDi

)]
< Ei [v (gi (xm))] ,

contradicting the equilibrium condition when the sender’s preferences are given by v.
Given inequality (A-6), a straightforward modification of the argument in the

proof of equilibrium existence in Proposition 6 implies that, for preferences ṽ, there
exists an equilibrium in which senders [0, x˜) ∪ (x̃, 1] do not disclose, where if xm = x

then x˜ > x, and if xm = x̄ then x̃ < x̄. This completes the proof.

Proof of Proposition 8: Consider any non-disclosure equilibrium, with a non-
disclosure set [0, x) ∪ (x̄, 1].

Claim A: For any receiver type i, pNDi ≤ max{gi(x), gi(x̄)}.
Proof of claim: If gi is monotone over [x, x̄], then

pNDi ≤ Ex[gi(x)|ND] ≤ gi(Ex[x|ND]) ≤ max{gi(x), gi(x̄)} ,
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where the first inequality follows Lemma 1, the second inequality follows Jensen’s
inequality and the concavity of gi, and the last inequality follows Lemma A-1 and the
monotonicity of gi over [x, x̄].

If instead gi is non-monotone over [x, x̄], then by concavity, it is strictly increasing
over [0, x) and strictly decreasing over (x̄, 1]. Hence gi(x) < max{gi(x), gi(x̄)} for all
x ∈ [0, x) ∪ (x̄, 1]. So by Lemma 1,

pNDi ≤ Ex[gi(x)|ND] < max{gi(x), gi(x̄)}.

Claim B: For some x ∈ {x, x̄}, pND1 , pND2 ∈ [min {g1 (x) , g2 (x)} ,max {g1 (x) , g2 (x)}].
Proof of Claim: Now consider any non-disclosure equilibrium in which the non-

disclosure set is [0, x) ∪ (x̄, 1]. The equilibrium condition implies that g1 (x̄)− g1 (x)

and g2 (x̄) − g2 (x) have opposite signs. Without loss, assume g1(x) ≤ g1(x̄) and
g2(x̄) ≤ g2(x). So Claim A implies pND1 ≤ g1(x̄) and pND2 ≤ g2(x). The equilibrium
condition then implies pND2 ≥ g2(x̄) and pND1 ≥ g1 (x), and so pND1 ∈ [g1 (x) , g1(x̄)]

and pND2 ∈ [g2(x̄), g2 (x)].
If the sets [g1 (x) , g1(x̄)] and [g2(x̄), g2 (x)] are ranked by the strong set order

(Veinott, 1989) then the result is straightforward: If [g1 (x) , g1(x̄)] � [g2(x̄), g2 (x)]

under this order, then pND1 , pND2 ∈ [g1 (x) , g2 (x)]; while if instead [g2(x̄), g2 (x)] �
[g1 (x) , g1(x̄)], then pND1 , pND2 ∈ [g2 (x̄) , g1 (x̄)].

Next, consider the cases where the two sets [g1 (x) , g1(x̄)] and [g2(x̄), g2 (x)] are
not ranked by the strong set order. There are two sub-cases. In the first sub-
case, [g1 (x) , g1(x̄)] ⊂ [g2(x̄), g2 (x)], and so either pND2 ∈ [g2 (x̄) , g1 (x̄)] or pND2 ∈
[g1 (x) , g2 (x)] (or both), while both pND1 ∈ [g2 (x̄) , g1 (x̄)] and pND1 ∈ [g1 (x) , g2 (x)].
In the second sub-case, [g2(x̄), g2 (x)] ⊂ [g1 (x) , g1(x̄)], and so either pND1 ∈ [g1 (x) , g2 (x)]

or pND1 ∈ [g2 (x̄) , g1 (x̄)] (or both), while both pND2 ∈ [g1 (x) , g2 (x)] and pND2 ∈
[g2 (x̄) , g1 (x̄)].

Claim C: If xm ∈ {x, x̄} and pND1 , pND2 ∈ [min {g1 (xm) , g2 (xm)} ,max {g1 (xm) , g2 (xm)}]
then Ei

[
pNDi

]
≤ Ei [gi (xm)].

Proof of Claim: If instead Ei
[
pNDi

]
> Ei [gi (xm)] then Theorem 3 of Hammond

(1974) implies that Ei
[
v
(
pNDi

)]
> Ei [v (gi (xm))], contradicting the equilibrium con-

dition.
Completing the proof: From above, for at least one xm ∈ {x, x̄}, we know pND1 , pND2 ∈

[min {g1 (xm) , g2 (xm)} ,max {g1 (xm) , g2 (xm)}] and Ei
[
pNDi

]
≤ Ei

[
gNDi (xm)

]
, along
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with the equilibrium condition Ei
[
v
(
pNDi

)]
= Ei [v (gi (x))]. So for any strictly con-

cave function φ, Theorem 3 of Hammond (1974) implies that Ei
[
φ
(
v
(
pNDi

))]
≥

Ei [φ (v (gi (x)))]. An easy adaption of the argument above establishes a strict in-
equality Ei

[
φ
(
v
(
pNDi

))]
> Ei [φ (v (gi (x)))] when at least one gi is strictly concave.

Proof of Proposition 9: Consider the initial equilibrium with the highest prob-
ability of non-disclosure, which satisfies the equilibrium condition (4). If the risk-
aversion of any receiver-type j increases, by Lemma 1, the corresponding pNDj strictly
decreases. Hence, for both xm ∈ {x, x̄} we have Ei

[
v
(
pNDi

)]
< Ei [v (gi (xm))],

implying that senders in both the neighborhoods of x and x̄ disclose in the new non-
disclosure equilibrium. As a result, the new equilibrium features more disclosure,
completing the proof.
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