
B Technical appendix: Analysis of the enforce-

ment of N > 2 agents

In the main text we restrict attention to the case in which the enforcement agency

oversees two agents, and has the resources to investigate just one of them. In Section

5 we discuss how our results would change if instead the enforcement agency oversaw

N > 2 agents, while still possessing the resources to investigate just one agent. In

this Appendix we establish several results (omitted from the main text) that are

required for this generalization. These results also cover the case in which N = 2 but

assumption (2) does not hold.

Most of our analysis is conducted in terms of the investigation probability function

q. As we discussed in the main text, this function can be defined for N agents also.

With N agents, the function q is still increasing, and has the same comparative statics

with respect to precision h. The only other properties of q used in the analysis are

that (A) when N = 2, it satisfies relation (1), and (B) it is convex over negative values

and concave over positive values (see Lemma 4). To summarize, with respect to (A)

we show that for N > 2 the equality (1) becomes an analogous inequality, which is

still sufficient to imply the existence of a pure-strategy symmetric equilibrium; and

with respect to (B), our main results all hold even when q does not possess these

curvature properties, provided that aM is close to 1/2.

B.1 Generalizing equality (1)

On a formal level, our analysis makes repeated use of Lemma 1. This result relies in

turn on the inequality

p (1, aM) − p (1, 1) ≥ p (aM , aM) − p (aM , 1) . (B-1)
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When N = 2, equation (1) implies that inequality (B-1) holds with equality for any

investigation policy.

When N > 2 more work is needed to establish that (B-1) is satisfied. Now,

an investigation policy defines a function p : [0, 1]
N

→ [0, 1], giving the probability

that agent 1 is investigated as a function of an N -vector of action choices. Exactly

as in the case of N = 2, it can be shown that the investigation policy “investigate

the highest signal” maximizes p (a, 0, . . . , 0) and minimizes p (a, 1, . . . , 1). The proof

of this result closely parallels that of Lemma 3 in the current paper, but requires

considerable extra notation. The proof is included in an earlier working version of

our paper, a copy of which is available upon request.

As such, “investigate the highest signal” is the investigation policy that maximizes

the probability that no crime is an equilibrium, and minimizes the probability that

severe crime is an equilibrium. Under this policy, for any pair of action choices a

and a′ the value p (a′, a, . . . , a) depends only on the difference between a′ and a. As

before, we define a function q by q (a′ − a) = p (a′, a, . . . , a). In terms of q, inequality

(B-1) is

q (1 − aM) − q (0) ≥ q (0) − q (aM − 1) . (B-2)

Lemma B-1 For any N ≥ 2, inequality (B-2) holds.

Given Lemma B-1, the equilibrium characterization is exactly as in the main text.

B.2 Dispensing with the curvature properties of q

In the main text we show that when N = 2 and assumption (2) holds, marginal

penalties deliver an initial benefit under the crime wave selection rule, and an initial

cost under the no crime wave selection rule when (4) holds. Below, we show that

provided aM is in the neighborhood of 1/2, this result extends to the general case in

which N ≥ 2 and assumption (2) is not required to hold.
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Crime wave selection rule

From Proposition 4 and Figure 2, the conclusion that marginal benefits initially help

under the crime wave selection rule requires

S >
SaMq (0)

(1 − aM) q (0) + q (aM − 1) aM

.

Clearly this inequality is satisfied for all aM that are not too much greater than 1/2.24

No crime wave selection rule

It is useful to rewrite each of the constraints (IC0-1), (IC0-M) and (ICM-1) as upper

bounds on the taste-for-crime parameter λ:

λ ≤ Sq (1) (IC0-1)

λ ≤
sMq (aM )

aM

(IC0-M)

λ ≤
Sq (1 − aM) − sMq (0)

1 − aM

(ICM-1)

Conditions (IC0-M) and (ICM-1) are equivalent if and only if sM = SaM q(1−aM )
(1−aM )q(aM )+aMq(0)

.

For higher values of sM , condition (ICM-1) implies (IC0-M).

Likewise, conditions (IC0-1) and (IC0-M) are equivalent if and only if sM =

SaM q(1)
q(aM )

. For higher values of sM , condition (IC0-1) implies (IC0-M), while for lower

values (IC0-M) implies (IC0-1).

Observe that after substituting in for λNCW = Sq (1), the condition for marginal

penalties to have an initial cost in the N = 2 case under the no crime wave selection

rule — condition (4) — is equivalent to

SaMq (1 − aM)

(1 − aM) q (aM ) + aMq (0)
<

SaMq (1)

q (aM)
.

24For the case of assumption (2) and N = 2, the inequality holds for all values of aM : by footnote

13, SaM q(0)
q(aM−1) < S, and from the main text, SaMq(0)

(1−aM )q(0)+q(aM−1)aM

lies below SaM q(0)
q(aM−1) .
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Finally, we show that this condition implies that marginal penalties have an initial

cost in the general N case under the no crime wave selection rule — exactly as in the

N = 2 case.

First, observe that at sM = SaMq(1)
q(aM)

, condition (ICM-1) implies (IC0-1). Conse-

quently, the same is true for higher sM values. Hence when sM > SaM q(1)
q(aM )

, either

(IC0-1) is satisfied, in which case (IC0-M) is also and no crime is the equilibrium

outcome; or else (IC0-1) fails, in which case (ICM-1) fails also, implying that severe

crime is the unique equilibrium outcome.

Second, consider any sM above SaM q(1−aM)
(1−aM)q(aM)+aM q(0)

but below SaM q(1)
q(aM)

. If (IC0-M)

holds then (IC0-1) holds also, implying that no crime is the equilibrium outcome. If

instead (IC0-M) fails then (ICM-1) fails also, implying that severe crime is the unique

equilibrium outcome.

Provided that SaM q(1−aM)
(1−aM)q(aM)+aM q(0)

< S, it follows that, as claimed, the adoption of

marginal penalties has an initial cost whenever condition (4) holds. This inequality

trivially holds in the neighborhood of aM = 1/2.25

B.3 The effect of changing N

Finally, in Section 5 we claim that the ratio qN (x) /qN (0) is decreasing (respectively,

increasing) in the number of agents N if x < 0 (respectively, x > 0). That is, as N

increases the probability of investigation decreases faster for an agent who commits a

lesser crime, holding the actions of other agents fixed. Here, we establish this result:

Lemma B-2 Suppose that the noise term ε is either normally distributed, or has

a density function f such that f(ε)
f(x+ε)

is bounded. Then q (x) /q (0) is a decreasing

(increasing) function N when x < 0 (x > 0).

25For the case of assumption (2) and N = 2, the inequality holds for all values of aM : by footnote

14, q (0) > aMq (1 − aM ), and so the denominator (1 − aM ) q (aM )+aMq (0) exceeds aMq (1 − aM).
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B.4 Mathematical proofs

Proof of Lemma B-1: Let ξ be the highest realization of the N − 1 signals

ε2, . . . , εN . Let G and g denote the distribution and density function of ξ. Thus for

any a,

q (a) =

∫

Pr

(

a +
ε

h
≥

ξ

h

)

f (ε) dε =

∫

G (ha + ε) f (ε) dε,

and so

q′ (a) = h

∫

g (ha + ε) f (ε) dε = h

∫

g (ε) f (ε− ha) dε.

To establish (B-2) it suffices to show that q′ (a) ≥ q′ (−a). For this, it suffices to

show that

g (ε) f (ε− ha) ≥ g (ε − ha) f (ε) ,

for which in turn it suffices to show that

(ln g)′ ≥ (ln f)′ .

In general, G (x) = F (x)N−1 and so g (x) = (N − 1) F (x)N−2 f (x). Since certainly

(lnF )′ > 0, the result follows.

Proof of Lemma B-2: For expositional ease we prove the result for h = 1. The

general case is identical. Clearly q (0) = 1/N , while for any x ∈ <

q (x) =

∫

∞

−∞

F (x + ε)N−1 f (ε) dε.

Thus
q (x)

q (0)
=

∫

∞

−∞

NF (x + ε)N−1 f (x + ε)
f (ε)

f (x + ε)
dε.

Integration by parts gives

q (x)

q (0)
=

[

F (x + ε)
N f (ε)

f (x + ε)

]

∞

−∞

−

∫

∞

−∞

F (x + ε)
N ∂

∂ε

(

f (ε)

f (x + ε)

)

dε.

5



For x < 0 the likelihood ratio f(ε)
f(x+ε)

is decreasing in ε. To evaluate the first term in

the expression above, we need to evaluate

lim
ε→−∞

F (x + ε)N f (ε)

f (x + ε)
.

If f(ε)
f(x+ε)

is bounded above, this term is clearly zero. Otherwise, further conditions

are required. L’Hôpital’s rule gives

lim
ε→−∞

F (x + ε)N f (ε)

f (x + ε)
= lim

ε→−∞

f (x + ε)NF (x + ε)N−1

∂
∂ε

(

f(x+ε)
f(ε)

) ,

provided the righthand side exists. When the noise term is distributed normally,

f (x + ε)

∂
∂ε

(

f(x+ε)
f(ε)

) =
exp

(

− 1
2σ2 (x + ε)2)

∂
∂ε

exp
(

− 1
2σ2 (x2 + 2xε)

) =
exp

(

− 1
2σ2

(

(x + ε)2
− (x2 + 2xε)

))

− x
σ2

→ 0 as ε → −∞.

So provided either f(ε)
f(x+ε)

is bounded above, or limε→−∞

f(x+ε)
∂
∂ε(

f(x+ε)
f(ε) )

= 0,

q (x)

q (0)
= lim

ε→∞

f (ε)

f (x + ε)
−

∫

∞

−∞

F (x + ε)N ∂

∂ε

(

f (ε)

f (x + ε)

)

dε.

For x < 0 the term ∂
∂ε

(

f(ε)
f(x+ε)

)

is everywhere negative, since f is log concave and so

ln f (ε)− ln f (x + ε) is a decreasing function of ε. It follows that the ratio q (x) /q (0)

is decreasing in N for x < 0.
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