Supplementary Online Appendix

B. 1 Notes on the definition of Lehmann informativeness

I have defined Lehmann informativeness in terms of the function $I(x, \theta): \mathcal{X}\left(\theta ; \kappa_{2}\right) \rightarrow$ $\mathcal{X}\left(\theta ; \kappa_{1}\right)$, defined by

$$
F\left(I(x, \theta) \mid \theta ; \kappa_{1}\right)=F\left(x \mid \theta ; \kappa_{2}\right)
$$

The condition is:
[L-I] For any $x \in \mathcal{X}\left(\kappa_{2}\right)$, and $\theta_{1}, \theta_{2}>\theta_{1}$ such that $x \in \mathcal{X}\left(\theta_{1} ; \kappa_{2}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{2}\right), I\left(x, \theta_{1}\right) \geq$ $I\left(x, \theta_{2}\right)$.

Typically, the definition is instead stated in terms of the function $J(x, \theta): \mathcal{X}\left(\theta ; \kappa_{1}\right) \rightarrow$ $\mathcal{X}\left(\theta ; \kappa_{2}\right)$, defined by

$$
F\left(x \mid \theta ; \kappa_{1}\right)=F\left(J(x, \theta) \mid \theta ; \kappa_{2}\right) .
$$

The condition is then:
[L-J] For any $x \in \mathcal{X}\left(\kappa_{1}\right)$, and $\theta_{1}, \theta_{2}>\theta_{1}$ such that $x \in \mathcal{X}\left(\theta_{1} ; \kappa_{1}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{1}\right), J\left(x, \theta_{2}\right) \geq$ $J\left(x, \theta_{1}\right)$.

Note that I and J are inverses. Specifically, for any $x \in \mathcal{X}\left(\theta ; \kappa_{1}\right), I(J(x, \theta))=x$, and for any $x \in \mathcal{X}\left(\theta ; \kappa_{2}\right), J(I(x, \theta))=x$. These statements make use of the fact that both I and J are strictly increasing in their first argument (by Property 1).

B.1.1 The advantage of stating the Lehmann informativeness in terms of [L-I]

The two formulations are equivalent under mild regularity conditions. The property actually used in the proof of Proposition 1 is that I is decreasing. Given non-equivalence under "pathological" conditions, it is easiest to simply state the definition in terms of [L-I].

B.1.2 Equivalence under many conditions

When the supports $\mathcal{X}(\theta ; \kappa)$ are well-behaved, in terms of not varying too much in θ, the two definitions are equivalent.

Specifically:
Lemma 2 If $\mathcal{X}\left(\theta_{1} ; \kappa_{1}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{1}\right) \neq \emptyset$ for all $\theta_{1}, \theta_{2} \in \Theta$ then [L-J] implies [L-I].
Lemma 3 If $\mathcal{X}\left(\theta_{1} ; \kappa_{2}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{2}\right) \neq \emptyset$ for all $\theta_{1}, \theta_{2} \in \Theta$ then [L-I] implies [L-J].
Note, moreover, that the global non-empty intersection properties can be considerably weakened to ones that hold only locally. For transparency, I state the proof for the global property.

Proof of Lemma 2: Suppose [L-J] holds, but [L-I] is violated, i.e., for some $x \in \mathcal{X}\left(\kappa_{2}\right)$, and $\theta_{1}, \theta_{2}>\theta_{1}$ such that $x \in \mathcal{X}\left(\theta_{1} ; \kappa_{2}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{2}\right), I\left(x, \theta_{2}\right)>I\left(x, \theta_{1}\right)$.

Certainly $I\left(x, \theta_{1}\right) \in \mathcal{X}\left(\theta_{1} ; \kappa_{1}\right)$ and $I\left(x, \theta_{2}\right) \in \mathcal{X}\left(\theta_{2} ; \kappa_{1}\right)$. Since $\mathcal{X}\left(\theta_{1} ; \kappa_{1}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{1}\right) \neq \emptyset$, it follows from Property 1 that there exists $x_{0} \in \mathcal{X}\left(\theta_{1} ; \kappa_{1}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{1}\right)$ such that

$$
I\left(x, \theta_{2}\right) \geq x_{0} \geq I\left(x, \theta_{1}\right)
$$

with at least one of the two inequalities strict. But then

$$
x=J\left(I\left(x, \theta_{2}\right), \theta_{2}\right) \geq J\left(x_{0}, \theta_{2}\right) \geq J\left(x_{0}, \theta_{1}\right) \geq J\left(I\left(x, \theta_{1}\right), \theta_{1}\right)=x,
$$

with at least one of the first and third inequalities being strict. The contradiction completes the proof.

Proof of Lemma 3: Suppose [L-I] holds, but [L-J] is violated, i.e., for some $x \in \mathcal{X}\left(\kappa_{1}\right)$, and $\theta_{1}, \theta_{2}>\theta_{1}$ such that $x \in \mathcal{X}\left(\theta_{1} ; \kappa_{1}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{1}\right), J\left(x, \theta_{2}\right)<J\left(x, \theta_{1}\right)$.

Certainly $J\left(x, \theta_{1}\right) \in \mathcal{X}\left(\theta_{1} ; \kappa_{2}\right)$ and $J\left(x, \theta_{2}\right) \in \mathcal{X}\left(\theta_{2} ; \kappa_{2}\right)$. Since $\mathcal{X}\left(\theta_{1} ; \kappa_{2}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{2}\right) \neq \emptyset$, it follows from Property 1 that there exists $x_{0} \in \mathcal{X}\left(\theta_{1} ; \kappa_{2}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{2}\right)$ such that

$$
J\left(x, \theta_{2}\right) \leq x_{0} \leq J\left(x, \theta_{1}\right)
$$

with at least one of the two inequalities strict. But then

$$
x=I\left(J\left(x, \theta_{2}\right), \theta_{2}\right) \leq I\left(x_{0}, \theta_{2}\right) \leq I\left(x_{0}, \theta_{1}\right) \leq I\left(J\left(x, \theta_{1}\right), \theta_{1}\right)=x,
$$

with at least one of the first and third inequalities being strict. The contradiction completes the proof.

B.1.3 A simple example in which [L-I] holds but [L-J] is violated

Consider a case in which $\Theta=\left\{\theta_{1}, \theta_{2}\right\}$, with $\theta_{2}>\theta_{1}, \mathcal{X}\left(\theta_{1} ; \kappa_{1}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{1}\right) \neq \emptyset$ but $\mathcal{X}\left(\theta_{1} ; \kappa_{2}\right) \cap$ $\mathcal{X}\left(\theta_{2} ; \kappa_{2}\right)=\emptyset$, and $\mathcal{X}\left(\theta_{2} ; \kappa_{2}\right)<\mathcal{X}\left(\theta_{1} ; \kappa_{2}\right)$. (Since these sets don't intersect, this ordering is unambiguous.)

In this case, [L-I] holds vacuously, while trivially, if $x \in \mathcal{X}\left(\theta_{1} ; \kappa_{1}\right) \cap \mathcal{X}\left(\theta_{2} ; \kappa_{1}\right)$, then $J\left(x, \theta_{2}\right)<J\left(x, \theta_{1}\right)$, so that [L-J] is violated.

Note, moreover, that this simple case is one in which the regime κ_{2} is unambiguously more informative than regime κ_{1}, since in regime κ_{2} the observation of X fully reveals the value of $\theta \in\left\{\theta_{1}, \theta_{2}\right\}$, while this isn't the case in regime κ_{1}.

B. 2 Detailed calculations used in subsection 2.1

(I) Consider $\bar{u}(x ; t)=u(W(t)+\bar{R} x)$ and $\underline{u}(x ; t)=u(W(t)+\underline{R} x)$, where $W^{\prime}(t)<0$, $\underline{R}<0<\bar{R}$, and u features decreasing absolute risk aversion (DARA).

In this case,

$$
\frac{\partial}{\partial t} \ln \left(-\frac{\bar{u}_{x}(x ; t)}{\underline{u}_{x}(x ; t)}\right)=\frac{\partial}{\partial t} \ln \left(-\frac{\bar{R}}{\underline{R}} \frac{u^{\prime}(W(t)+\bar{R} x)}{u^{\prime}(W(t)+\bar{R} x)}\right)=W^{\prime}(t) \frac{u^{\prime \prime}(W(t)+\bar{R} x)}{u^{\prime}(W(t)+\bar{R} x)}-W^{\prime}(t) \frac{u^{\prime \prime}(W(t)+\underline{R} x)}{u^{\prime}(W(t)+\underline{R} x)} .
$$

Hence DARA implies (6). Moreover, DARA further implies that $-\frac{u^{\prime \prime}(W(t)+\bar{R} x)}{u^{\prime}(W(t)+\bar{R} x)}$ is decreasing in x and $-\frac{u^{\prime \prime}(W(t)+\underline{R} x)}{u^{\prime}(W(t)+\underline{R} x)}$ is increasing in x, so that (7) holds.
(II) Consider $\bar{u}(x ; t)=(1-t) u(\bar{W}+\bar{R} x)+t u(\underline{W}+\bar{R} x)$ and $\underline{u}(x ; t)=(1-t) u(\bar{W}+\underline{R} x)+$ $t u(\underline{W}+\underline{R} x)$, where $\underline{W}<\bar{W}, \underline{R}<0<\bar{R}$, and u features DARA. In this case,

$$
\begin{align*}
\frac{\partial}{\partial t} \ln \left(-\frac{\bar{u}_{x}(x ; t)}{\underline{u}_{x}(x ; t)}\right) & =\frac{u^{\prime}(\underline{W}+\bar{R} x)-u^{\prime}(\bar{W}+\overline{\bar{R}} x)}{(1-t) u^{\prime}(\bar{W}+\bar{R} x)+t u^{\prime}(\underline{W}+\bar{R} x)}-\frac{u^{\prime}(\underline{W}+\underline{R} x)-u^{\prime}(\bar{W}+\underline{R} x)}{(1-t) u^{\prime}(\bar{W}+\underline{R} x)+t u^{\prime}(\underline{W}+\underline{R} x)} \\
& =\frac{\frac{u^{\prime}(\underline{W}+\bar{R} x)}{u^{\prime}(\bar{W}+\bar{R} x)}-1}{(1-t)+t \frac{u^{\prime}(\underline{W}+\bar{R} x)}{u^{\prime}(\overline{\bar{W}}+\bar{R} x)}}-\frac{\frac{u^{\prime}(\underline{W}+\underline{R} x)}{u^{\prime}(\overline{\bar{W}}+\underline{R} x)}-1}{(1-t)+t \frac{u^{\prime}(\underline{W}+\underline{R} x)}{u^{\prime}(\bar{W}+\underline{R} x)}} . \tag{29}
\end{align*}
$$

So (6) holds, since the expression $\frac{y-1}{1-t+t y}$ is increasing in y, and $\frac{u^{\prime}(\underline{W}+\bar{R} x)}{u^{\prime}(\bar{W}+\bar{R} x)}<\frac{u^{\prime}(\underline{W}+\underline{R} x)}{u^{\prime}(\overline{\bar{W}}+\underline{R} x)}$ by DARA, since DARA implies that $\frac{u^{\prime}(\underline{W}+y)}{u^{\prime}(\overline{\bar{W}}+y)}$ is decreasing in y. These same observations also imply that the first term in (29) is decreasing in x while the second term is increasing in x, so that (7) holds.

B. 3 Detailed calculations used in subsection 2.2

B.3.1 Demand decreasing in price, $q_{x}<0$

Writing the FOC (11) explicitly gives

$$
\begin{equation*}
(1-\psi)(\bar{R}-x) u^{\prime}(q(\bar{R}-x))+\psi(\underline{R}-x) u^{\prime}(q(\underline{R}-x))=0 . \tag{30}
\end{equation*}
$$

Since $U_{q q}<0$, this has at most one solution in q. The derivative of the RHS of (30) with respect to x is

$$
-\left((1-\psi) u^{\prime}(q(\bar{R}-x))+\psi u^{\prime}(q(\underline{R}-x))\right)
$$

$$
\begin{equation*}
-q\left((1-\psi)(\bar{R}-x) u^{\prime \prime}(q(\bar{R}-x))+\psi(\underline{R}-x) u^{\prime \prime}(q(\underline{R}-x))\right) . \tag{31}
\end{equation*}
$$

The first term is strictly negative. The second term equals

$$
q\left(\left|\frac{u^{\prime \prime}(q(\bar{R}-x))}{u^{\prime}(q(\bar{R}-x))}\right|(1-\psi)(\bar{R}-x) u^{\prime}(q(\bar{R}-x))+\left|\frac{u^{\prime \prime}(q(\underline{R}-x))}{u^{\prime}(q(\underline{R}-x))}\right| \psi(\underline{R}-x) u^{\prime}(q(\underline{R}-x))\right) .
$$

By DARA,

$$
q\left|\frac{u^{\prime \prime}(q(\bar{R}-x))}{u^{\prime}(q(\bar{R}-x))}\right| \leq q\left|\frac{u^{\prime \prime}(q(\underline{R}-x))}{u^{\prime}(q(\underline{R}-x))}\right|,
$$

and so expression (31) is strictly below
$q\left|\frac{u^{\prime \prime}(q(\underline{R}-x))}{u^{\prime}(q(\underline{R}-x))}\right|\left((1-\psi)(\bar{R}-x) u^{\prime}(q(\bar{R}-x))+\psi(\underline{R}-x) u^{\prime}(q(\underline{R}-x))\right)=q\left|\frac{u^{\prime \prime}(q(\underline{R}-x))}{u^{\prime}(q(\underline{R}-x))}\right| U_{q}$,
which is simply 0 at the informed agent's optimal demand $q(x, \theta, \kappa)$. Hence an increase in x must strictly reduce $q(x, \theta, \kappa)$.

B.3.2 Derivation of (14)

By straightforward substitution,

$$
\begin{aligned}
\left.\frac{\partial}{\partial \theta} \ln \left(\frac{q_{x}}{q_{\kappa}}\right)\right|_{x=x(\theta, t, \kappa)} & =\left.\frac{\partial}{\partial \theta} \ln \left(\frac{U_{q x}(q(x, \theta, \kappa), x, \theta, \kappa)}{U_{q \kappa}(q(x, \theta, \kappa), x, \theta, \kappa)}\right)\right|_{x=x(\theta, t, \kappa)} \\
& =\frac{U_{q x \theta}+q_{\theta} U_{q q x}}{U_{q x}}-\frac{U_{q \theta \kappa}+q_{\theta} U_{q q \kappa}}{U_{q \kappa}} \\
& =\frac{U_{q x \theta}-\frac{U_{q \theta}}{U_{q q}} U_{q q x}}{U_{q x}}-\frac{U_{q \theta \kappa}-\frac{U_{q \theta}}{U_{q q}} U_{q q \kappa}}{U_{q \kappa}}
\end{aligned}
$$

Recall that θ and κ enter U only via the function ψ, and moreover, U is linear in ψ. Accordingly, write U_{ψ} etc to denote the derivative of U with respect to ψ. Hence $U_{q \theta}=\psi_{\theta} U_{q \psi}$, $U_{q x \theta}=\psi_{\theta} U_{q x \psi}, U_{q \kappa}=\psi_{\kappa} U_{q \psi}, U_{q q \kappa}=\psi_{\kappa} U_{q q \psi}$, and $U_{q \theta \kappa}=\psi_{\theta} \psi_{\kappa} U_{q \psi \psi}+\psi_{\theta \kappa} U_{q \psi}=\psi_{\theta \kappa} U_{q \psi}$. Hence

$$
\begin{aligned}
\left.\frac{\partial}{\partial \theta} \ln \left(\frac{q_{x}}{q_{\kappa}}\right)\right|_{x=x(\theta, t, \kappa)} & =\frac{\psi_{\theta} U_{q x \psi}-\psi_{\theta} \frac{U_{q \psi}}{U_{q q}} U_{q q x}}{U_{q x}}-\frac{\psi_{\theta \kappa} U_{q \psi}-\psi_{\theta} \psi_{\kappa} \frac{U_{q \psi}}{U_{q q}} U_{q q \psi}}{\psi_{\kappa} U_{q \psi}} \\
& =-\psi_{\theta}\left(\frac{U_{q \psi} U_{q q x}-U_{q q} U_{q x \psi}}{U_{q q} U_{q x}}+\frac{\psi_{\theta \kappa}}{\psi_{\theta} \psi_{\kappa}}-\frac{U_{q q \psi}}{U_{q q}}\right) .
\end{aligned}
$$

To ease notation, define $\bar{u}^{\prime} \equiv u^{\prime}(q(\bar{R}-x))$ and $\underline{u}^{\prime}=u^{\prime}(q(\underline{R}-x))$, with analogous definitions for higher order derivatives. Straightforward differentiation yields

$$
\begin{aligned}
U_{q} & =(1-\psi)(\bar{R}-x) \bar{u}^{\prime}+\psi(\underline{R}-x) \underline{u}^{\prime} \\
U_{q x} & =-(1-\psi) \bar{u}^{\prime}-\psi \underline{u}^{\prime}-(1-\psi)(\bar{R}-x) q \bar{u}^{\prime \prime}-\psi(\underline{R}-x) q \underline{u}^{\prime \prime} \\
U_{q q} & =(1-\psi)(\bar{R}-x)^{2} \bar{u}^{\prime \prime}+\psi(\underline{R}-x)^{2} \underline{u}^{\prime \prime} \\
U_{q \psi} & =-\left((\bar{R}-x) \bar{u}^{\prime}-(\underline{R}-x) \underline{u}^{\prime}\right) \\
U_{q x \psi} & =\bar{u}^{\prime}-\underline{u}^{\prime}+(\bar{R}-x) q \bar{u}^{\prime \prime}-(\underline{R}-x) q \underline{u}^{\prime \prime} \\
U_{q q \psi} & =-\left((\bar{R}-x)^{2} \bar{u}^{\prime \prime}-(\underline{R}-x)^{2} \underline{u}^{\prime \prime}\right) \\
U_{q q x} & =-2(1-\psi)(\bar{R}-x) \bar{u}^{\prime \prime}-2 \psi(\underline{R}-x) \underline{u}^{\prime \prime}-(1-\psi)(\bar{R}-x)^{2} q \bar{u}^{\prime \prime \prime}-\psi(\underline{R}-x)^{2} q \underline{u}^{\prime \prime \prime} .
\end{aligned}
$$

I first establish that

$$
\begin{equation*}
\frac{\psi_{\theta \kappa}}{\psi_{\theta} \psi_{\kappa}}-\frac{U_{q q \psi}}{U_{q q}}>\frac{\psi_{\theta \kappa}}{\psi_{\theta} \psi_{\kappa}}-\frac{1}{\psi} . \tag{32}
\end{equation*}
$$

Evaluating,

$$
\begin{aligned}
-\frac{U_{q q \psi}}{U_{q q}} & =\frac{(\bar{R}-x)^{2} \bar{u}^{\prime \prime}-(\underline{R}-x)^{2} \underline{u}^{\prime \prime}}{(\bar{R}-x)^{2} \bar{u}^{\prime \prime}-\psi\left((\bar{R}-x)^{2} \bar{u}^{\prime \prime}-(\underline{R}-x)^{2} \underline{u}^{\prime \prime}\right)} \\
& =\frac{\frac{(\bar{R}-x)^{2} \bar{u}^{\prime \prime}}{(\underline{R}-x)^{2} \underline{u}^{\prime \prime}}-1}{\frac{(\bar{R}-x)^{2} \bar{u}^{\prime \prime}}{(\underline{R}-x)^{2} \underline{\underline{l}}^{\prime \prime}}-\psi\left(\frac{(\bar{R}-x)^{2} \bar{u}^{\prime \prime}}{(\underline{R}-x)^{2} \underline{\underline{l}}^{\prime \prime}}-1\right)} .
\end{aligned}
$$

Note the function $\frac{y-1}{y-\psi(y-1)}$ is increasing in y, since $y-\psi(y-1)-(y-1)(1-\psi)=1>0$. Hence the function $\frac{y-1}{y-\psi(y-1)}$ varies from $-\frac{1}{\psi}$ to $\frac{1}{1-\psi}$ as y varies from 0 to ∞. Consequently,

$$
-\frac{U_{q q \psi}}{U_{q q}}>-\frac{1}{\psi}
$$

establishing (32).
Second, I consider the term

$$
\begin{equation*}
\frac{U_{q \psi} U_{q q x}-U_{q q} U_{q x \psi}}{U_{q q} U_{q x}} . \tag{33}
\end{equation*}
$$

As $s(0), s(1) \rightarrow 0$, the equilibrium value of q approaches 0 for all realizations of t, so that $\frac{\bar{u}^{\prime}}{\underline{u}^{\prime}}, \frac{\bar{u}^{\prime \prime}}{u^{\prime \prime}}, \frac{\bar{u}^{\prime \prime \prime}}{u^{\prime \prime \prime}} \rightarrow 1$ and $x \rightarrow(1-\psi) \bar{R}+\psi \underline{R}$. Hence $U_{q q x} \rightarrow 0$ and $U_{q x \psi} \rightarrow 0$ while the other terms in (33) remain bounded away from 0 , implying that (33) converges to 0 , and establishing

B.3.3 Comparison of log-submodularity of ψ and log-supermodularity of the

 likelihood ratio $\frac{1-\psi}{\psi}$Note that \log-submodularity of ψ implies \log-supermodularity of the likelihood ratio $\frac{1-\psi}{\psi}$, as follows. \log supermodularity of $\frac{1-\psi}{\psi}$ is equivalent to

$$
\frac{\partial}{\partial \theta}\left(\frac{-\psi_{\kappa}}{1-\psi}-\frac{\psi_{\kappa}}{\psi}\right) \geq 0
$$

i.e.,

$$
\frac{\psi_{\kappa \theta}(1-\psi)+\psi_{\kappa} \psi_{\theta}}{(1-\psi)^{2}}+\frac{\psi_{\kappa \theta} \psi-\psi_{\kappa} \psi_{\theta}}{\psi^{2}} \leq 0
$$

i.e.,

$$
(1-\psi) \psi \psi_{\kappa \theta}+\left(\psi^{2}-(1-\psi)^{2}\right) \psi_{\kappa} \psi_{\theta} \leq 0
$$

i.e.,

$$
\psi \psi_{\kappa \theta}+\frac{2 \psi-1}{1-\psi} \psi_{\kappa} \psi_{\theta} \leq 0
$$

i.e.,

$$
\psi \psi_{\kappa \theta}-\psi_{\kappa} \psi_{\theta}+\left(\frac{2 \psi-1}{1-\psi}+1\right) \psi_{\kappa} \psi_{\theta} \leq 0
$$

i.e.,

$$
\psi \psi_{\kappa \theta}-\psi_{\kappa} \psi_{\theta}+\frac{\psi}{1-\psi} \psi_{\kappa} \psi_{\theta} \leq 0
$$

B. 4 Detailed calculations used in subsection 2.3

B.4.1 Verification of equilibrium price (17)

Let $\xi(\theta, t)$ be the value of $x>0$ that solves

$$
\begin{equation*}
\theta-x-\lambda(t)+\frac{A}{x}=0 \tag{34}
\end{equation*}
$$

Solving explicitly,

$$
x^{2}+x(\lambda(t)-\theta)-A=0 .
$$

Focusing on the positive-valued solution, it follows that

$$
\xi(\theta, t)=\frac{1}{2}\left(\theta-\lambda(t)+\sqrt{(\theta-\lambda(t))^{2}+4 A}\right) .
$$

Note that ξ is strictly increasing in θ and strictly decreasing in t. Moreover,

$$
\xi\left(\frac{A}{\lambda(t)}, t\right)=\frac{A}{\lambda(t)} .
$$

If $\theta>\frac{A}{\lambda(t)}$ then the conjectured price is $\xi(\theta, t)>\frac{A}{\lambda(t)}$. Liquidity demand is $-\lambda(t)+\frac{A}{\xi(\theta, t)}<0$. Since $\xi(\theta, t)$ solves (34), it follows that $\theta>\xi(\theta, t)$. Hence informed demand is $\theta-\xi(\theta, t)$. Since $\xi(\theta, t)$ solves (34) it follows that the market-clearing condition (16) holds.

If $\theta \in\left[\frac{A}{\lambda(t)}-K, \frac{A}{\lambda(t)}\right]$ then the conjectured price is $\xi(\theta, t)=\frac{A}{\lambda(t)}$. Liquidity demand is hence $-\lambda(t)+\frac{A}{\xi(\theta, t)}=0$. Since $\theta \in[\xi(\theta, t)-K, \xi(\theta, t)]$, informed demand is also 0 . Hence the market-clearing condition (16) holds.

If $\theta<\frac{A}{\lambda(t)}-K$ then the conjectured price is $\xi(\theta+K, t)<\frac{A}{\lambda(t)}$. Liquidity demand is $-\lambda(t)+\frac{A}{\xi(\theta, t)}>0$. Since $\xi(\theta+K, t)$ solves

$$
\begin{equation*}
(\theta+K)-x-\lambda(t)+\frac{A}{x}=0 \tag{35}
\end{equation*}
$$

it follows that $\theta+K<\xi(\theta+K, t)$. Hence informed demand is $\theta-\xi(\theta, t)+K$. Since $\xi(\theta, t)$ solves (35) it follows that the market-clearing condition (16) holds.

B.4.2 The equilibrium price satisfies SCP

I next show that the equilibrium price $x(\theta, t, K)$, which coincides with the quantile function, satisfies SCP. Let $\theta_{1}, \theta_{2} \geq \theta_{1}, t_{1}, t_{2} \geq t_{1}$ and $K_{1}=K\left(\kappa_{1}\right)$ be such that $x\left(\theta_{2}, t_{2}, K_{1}\right) \geq$ $x\left(\theta_{1}, t_{1}, K_{1}\right)$, and consider $\kappa_{2}>\kappa_{1}$. I establish that at $K_{2}=K\left(\kappa_{2}\right)<K_{1}, x\left(\theta_{2}, t_{2}, K_{2}\right) \geq$ $x\left(\theta_{1}, t_{1}, K_{2}\right)$, with strict inequality if $x\left(\theta_{2}, t_{2}, K_{1}\right)>x\left(\theta_{1}, t_{1}, K_{1}\right)$.

First, note that the result is immediate if $t_{2}=t_{1}$, since x is weakly increasing in θ, and moreover, the interval over which x is constant in θ strictly shrinks as K falls from K_{1} to K_{2}. So for the remainder of the proof assume $t_{2}>t_{1}$.

Second, the result is also immediate if $\theta_{2} \geq \frac{A}{\lambda\left(t_{2}\right)}-K_{2}$, since in this case $x\left(\theta_{2}, t_{2}, K_{2}\right)=$ $x\left(\theta_{2}, t_{2}, K_{1}\right)$ while $x\left(\theta_{1}, t_{1}, K_{2}\right) \leq x\left(\theta_{1}, t_{1}, K_{1}\right)$. So for the remainder of the proof assume $\theta_{2}<\frac{A}{\lambda\left(t_{2}\right)}-K_{2}$. Hence $\theta_{1}<\frac{A}{\lambda\left(t_{1}\right)}-K_{2}$ also.

Third: Given $t_{2}>t_{1}$ and $\theta_{2}<\frac{A}{\lambda\left(t_{2}\right)}$ it follows that $\theta_{1}<\frac{A}{\lambda\left(t_{1}\right)}-K_{1}$. To see this, suppose to the contrary that $\theta_{1} \geq \frac{A}{\lambda\left(t_{1}\right)}-K_{1}$. Then $x\left(\theta_{1}, t_{1}, K_{1}\right)=\frac{A}{\lambda\left(t_{1}\right)}>\frac{A}{\lambda\left(t_{2}\right)} \geq x\left(\theta_{2}, t_{2}, K_{1}\right)$, a contradiction.

Fourth: Given $\theta_{1}<\frac{A}{\lambda\left(t_{1}\right)}-K_{1}$, it follows that $\theta_{2}-\lambda\left(t_{2}\right) \geq \theta_{1}-\lambda\left(t_{1}\right)$, as follows. By definition, $x\left(\theta_{1}, t_{1}, K_{1}\right)$ solves

$$
\left(\theta_{1}+K_{1}\right)-x-\lambda\left(t_{1}\right)+\frac{A}{x}=0
$$

If $\theta_{2} \leq \frac{A}{\lambda\left(t_{2}\right)}-K_{1}$ then the result is immediate from $x\left(\theta_{1}, t_{1}, K_{1}\right) \leq x\left(\theta_{2}, t_{2}, K_{1}\right)$. If instead $\theta_{2}>\frac{A}{\lambda\left(t_{2}\right)}-K_{1}$ then note that, at $x=\frac{A}{\lambda\left(t_{2}\right)}$,

$$
\left(\theta_{2}+K_{1}\right)-x-\lambda\left(t_{2}\right)+\frac{A}{x}>0
$$

and the result again follows from $x\left(\theta_{1}, t_{1}, K_{1}\right) \leq x\left(\theta_{2}, t_{2}, K_{1}\right)=\frac{A}{\lambda\left(t_{2}\right)}$.
Finally: Given $\theta_{2}-\lambda\left(t_{2}\right) \geq \theta_{1}-\lambda\left(t_{1}\right)$ the result is immediate from the fact that $x\left(\theta, t, K_{2}\right)$ solves (35) for $(\theta, t)=\left(\theta_{1}, t_{1}\right),\left(\theta_{2}, t_{2}\right)$ and $K=K_{2}$.

