Supplementary Online Appendix

B.1 Notes on the definition of Lehmann informativeness

I have defined Lehmann informativeness in terms of the function I (x,0) : X (0;k2) —
X (0; k1), defined by
F(I(,0)10; k1) = F (]0; 52) -

The condition is:
[L-I] For any = € X (k2), and 6,0y > 0; such that z € X (01; ko) N X (09; ko), I (x,01) >
I(z,0,).
Typically, the definition is instead stated in terms of the function J (z,6) : X (0; k1) —
X (0; kg), defined by
F (2]0; k1) = F (J (2,0) 10; 52) -

The condition is then:

[L-J] For any = € X (K1), and 6,05 > 0 such that x € X (01; k1) N X (025 k1), J (z,0) >
J (z,07).

Note that I and J are inverses. Specifically, for any © € X (0; k1), I (J (z,0)) = x, and
for any x € X (6;k2), J (I (x,0)) = x. These statements make use of the fact that both /

and J are strictly increasing in their first argument (by Property 1).

B.1.1 The advantage of stating the Lehmann informativeness in terms of [L-I]

The two formulations are equivalent under mild regularity conditions. The property actually
used in the proof of Proposition 1 is that [ is decreasing. Given non-equivalence under

“pathological” conditions, it is easiest to simply state the definition in terms of [L-I|.

B.1.2 Equivalence under many conditions

When the supports X (0; k) are well-behaved, in terms of not varying too much in 6, the two
definitions are equivalent.

Specifically:
Lemma 2 If X (01; k1) N X (625 k1) # 0 for all 01,605 € © then [L-J] implies [L-1].
Lemma 3 If X (01; ko) N X (02; k2) # O for all 61,05 € © then [L-I] implies [L-J].

Note, moreover, that the global non-empty intersection properties can be considerably

weakened to ones that hold only locally. For transparency, I state the proof for the global
property.
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Proof of Lemma 2: Suppose [L-J| holds, but |L-I] is violated, i.e., for some z € X (k2),
and 61,0, > 01 such that © € X (61; k2) N X (625 k2), I (x,09) > I (x,6;).

Certainly I (z,6,) € X (61; k1) and I (z,63) € X (625 k1). Since X (015 k1) NX (625 k1) # 0,
it follows from Property 1 that there exists o € X (01; k1) N X (0s; k1) such that

I(QE,@Q) Z Zo Z I(x,@l),
with at least one of the two inequalities strict. But then
x=J(I(2,02),09) > J (w0,00) > J (w9,61) > J (I (x,01),01) =,

with at least one of the first and third inequalities being strict. The contradiction completes
the proof.

Proof of Lemma 3: Suppose |L-I] holds, but [L-J] is violated, i.e., for some x € X (k1),
and 0;, 0y > 0 such that ©x € X (01; k1) N X (02; k1), J (z,05) < J (x,07).

Certainly J (z,61) € X (61; ko) and J (x,02) € X (02; k2). Since X (01; k2)NX (625 ko) # 0,
it follows from Property 1 that there exists zg € X (0y; k2) N X (02; ko) such that

J([L’,eg) S Zo S J(x,é’l),
with at least one of the two inequalities strict. But then
v =1(J(2,05),05) < I (0,05) < I (wo,01) < I (J (2,01),01) =,

with at least one of the first and third inequalities being strict. The contradiction completes

the proof.

B.1.3 A simple example in which [L-I] holds but [L-J] is violated

Consider a case in which © = {61,605}, with 6 > 6, X (01; k1)NX (62; k1) # D but X (61 Kk2)N
X (095 k2) = 0, and X (0q; Kk2) < X (61; k2). (Since these sets don’t intersect, this ordering is
unambiguous. )

In this case, [L-I] holds vacuously, while trivially, if © € X (61;k1) N X (62; k1), then
J (x,05) < J(z,07), so that [L-J] is violated.

Note, moreover, that this simple case is one in which the regime ko is unambiguously
more informative than regime k1, since in regime ko the observation of X fully reveals the

value of 6§ € {0, 6,}, while this isn’t the case in regime ;.
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B.2 Detailed calculations used in subsection 2.1

(I) Consider @ (x;t) = u (W (t) +R’x) and u(z;t) = w(W (t) + Rx), where W' (t) < 0,
R <0 < R, and u features decreasing absolute risk aversion (DARA).

In this case,

ot

o0\ () TR (W) + )

aat <_ Uy (l’; t)) B 0 I ( Eu’ (W (t) + RLL’)) W (t) u” (W (t) RSL’) o <t> o’ (W (t) +El')

"

Hence DARA implies (6). Moreover, DARA further implies that —% is decreasing

u” (W (t)+Re)

(Wi 1S increasing in @, so that (7) holds.

in x and —

(IT) Consider @ (x;t) = (1 —t)u (W + Rx) +tu (M + R’x) and u (z;t) = (1 —t)u (W + Ex)+
tu (W + Rx), where W < W, R <0< R, and u features DARA. In this case,

an<—w> _ u’(w+Rx)—u’(W+Rx) - u’(w+ﬁx)—u’(W+Ex)
ot U, (z;1) (1—1t)u (V_V+Rx) + tu’ (E+Rz) (I—t)w (W—I—Em) + tu' (W + Rx)
W(Wihe) W(WrR)
= U/(W%), ) “’<W*Ex2, Wik - (29)
R (e oI T
So (6) holds, since the expression % is increasing in y, and Ziggigzg Z/E%Igg

DARA, since DARA implies that % is decreasing in y. These same observations also

imply that the first term in (29) is decreasing in x while the second term is increasing in z,

so that (7) holds.

B.3 Detailed calculations used in subsection 2.2
B.3.1 Demand decreasing in price, ¢, <0

Writing the FOC (11) explicitly gives

(1) (R—a)u (q(R—x)) + ¢ (B—2)u (¢(R—x)) =0. (30)

Since U,, < 0, this has at most one solution in ¢. The derivative of the RHS of (30) with

respect to x is
— (A=) (¢(R—2)) + v (q¢(B— 1))
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— q((1-v)(R—=2)u" (¢(R—2)) +¢ (R —2)u" (¢(R—-2))). (31)

The first term is strictly negative. The second term equals

(5

By DARA,

WgB-a)|
B (- >Q.

(1—1) (R—x)u'(q(R—x))—l—

u' (g

¢ (o(R-)
o (A2))

and so expression (31) is strictly below

q <q

Ma_wMR—@u%MR—@)+w@—xw%ﬂﬁ—@ﬂ=qZ

which is simply 0 at the informed agent’s optimal demand ¢ (x, 6, k). Hence an increase in

x must strictly reduce ¢ (x,0, k).

B.3.2 Derivation of (14)

By straightforward substitution,

9 (%
00 \ g

00
qu@ + q@qum N Uan + q@quﬁ

— gln qu(q(x>97’%)>x797/i)
B an(Q(x>9>K')ax>9>H)

x=x(0,t,k) x=x(0,t,k)

Uge Uy
Uqo Uqo
. qu@ - U_quqqx Uan - U_quqqn
Uga Ugre

Recall that 6 and x enter U only via the function v, and moreover, U is linear in ¢. Ac-
cordingly, write Uy, etc to denote the derivative of U with respect to 1. Hence Uy = ¥pUyy,

Uq:c@ = ?/)quw, Uqﬁ = ¢anw7 qun = ?/)anqw, and Uqﬁn = %@Danww + ?/)eanw = ¢0anw-
Hence

U, U,
w@ quw - @De Uiqj qu:c wﬁn Uqw - w@wn Uiqj quw

z=xz(0,t,k) qu w"f U‘N/J
_ < UgpUggr — UgqUgary Vo . Ugqy )
= —y + .
UgqUqa Vothx Ugq
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To ease notation, define @' = v’ (q (R - x)) and v = v’ (¢ (R — x)), with analogous defini-

tions for higher order derivatives. Straightforward differentiation yields

U = (1-¢)(R—z)u +¢(R-x)u,

Up = —(1—¢)@ —vu' — (1-v) (R—2)qi" — ¢ (R— ) qu’,
Uy = (1—¢)(R—a;) @+ (R—z)u",

Up = —((R—2)a — (R—2)u),

Upp = ﬂ’—u'+(R—x)qa”—(ﬁ—x)qﬂ’,

Upps = —((R—x)2a”—(ﬁ—x)2g”>,

Ve = —2(1—0) (R—a)a" — 20 (R—2)u" — (1) (R—x) qu" — 4 (R~ )’ qu".

I first establish that .
@bon . qu = wﬁn _ = (32)
w@wn qu w@wn w

Evaluating,

U _ (f=a) @~ (R a)u"
Uaa (R - ZE)zﬂ” — <(R - [t)zﬂ// —(R— :5)2@’)

(R—x)zﬂ”
(B—2)"u"
(R—x)2ﬁ” (R—x)Qﬂ” 1 .
@=re Y\ @ T
Note the function .- ( 1y Is increasing in y, since y — ¢ (y—1)—(y—1D(1—-2)=1>0.
Hence the function i( 1 0 varies from —i to ﬁ as y varies from 0 to oo. Consequently,
Y L
qu w

establishing (32).

Second, I consider the term
ququqr — quUqrw.
UgqUsa

(33)

As s(0),s(1) — 0, the equilibrium value of g approaches 0 for all realizations of ¢, so that

! =11 =11

v Z,,, Z,,, —landz — (1 — ) R+v¢R. Hence Uyge — 0 and U,y — 0 while the other terms
in (33) remain bounded away from 0, implying that (33) converges to 0, and establishing

2

25



(14).

B.3.3 Comparison of log-submodularity of ¢y and log-supermodularity of the
likelihood ratio =%

(4
Note that log-submodularity of ¢ implies log-supermodularity of the likelihood ratio %, as
follows. Log supermodularity of % is equivalent to
g —¥x _ U > 0,
b\1—y )~
ie.,
K 11— K K - ¥k
Yo ( @D)t?/)?/)aJr?/)e?/) ZQ/JWS(],
1-4v) ¥
ie.,
(1= ) Youg + (° = (1 = )*) vhuthy <0,
ie.,
2 — 1
_— <
Vg + et <0,
ie.,
29— 1
Wﬂne - %we + ( 1¢_ ¢ + 1) wﬁ¢€ < 07
ie.,
v
WPHG - ¢n¢€ + ﬂ¢nw9 < 0.
B.4 Detailed calculations used in subsection 2.3
B.4.1 Verification of equilibrium price (17)
Let £ (0,t) be the value of > 0 that solves
A
0—x—A(t)+—=0. (34)

X

Solving explicitly,
?ra(At)—0)—A=0.

Focusing on the positive-valued solution, it follows that

g(&,t):%(9—A(t)+\/(«9—)\(t))2+4A).
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Note that £ is strictly increasing in € and strictly decreasing in ¢. Moreover,

() =30

Ifo > (t) then the conjectured price is & (6,t) > (t). Liquidity demand is =\ (¢) + =5+ (9 5 <0.
Since & (6,t) solves (34), it follows that # > £ (0,t). Hence informed demand is 6 — £ (0, 1).
Since £ (6,t) solves (34) it follows that the market-clearing condition (16) holds.

If 9 € [ﬁ - K, W} then the conjectured price is £ (6,t) = ﬁ. Liquidity demand is
hence —A (t) + WA@ = 0. Since 0 € [€(0,t) — K,£(0,1)], informed demand is also 0. Hence
the market-clearing condition (16) holds.

If 0 < % K then the conjectured price is & (6 + K,t) < ﬁ. Liquidity demand is
—A(t)+ 6(6 5 > 0. Since € (0 + K,t) solves

(9+K)—x—>\(t)+§20 (35)

it follows that 6+ K < £ (§ + K, t). Hence informed demand is  — & (0,t) + K. Since £ (0, 1)
solves (35) it follows that the market-clearing condition (16) holds.

B.4.2 The equilibrium price satisfies SCP

[ next show that the equilibrium price z (0, t, K'), which coincides with the quantile function,
satisfies SCP. Let 01,0y > 0y, t1,ts > t; and K; = K (k1) be such that z (s, ts, Kj)
x (6h,t1, K1), and consider ks > k1. I establish that at Ky = K (ka) < Kj, x (0o, 12, Ks)
x (bh,t1, Ky), with strict inequality if x (6, t2, K1) > x (01,11, K7).

First, note that the result is immediate if ¢, = 1, since = is weakly increasing in 6, and

>
>

moreover, the interval over which z is constant in 6 strictly shrinks as K falls from K to
K5. So for the remainder of the proof assume ty > t;.

Second, the result is also immediate if 6y > — K, since in this case x (0, ta, Ks) =

)\(t
x (02, ty, K1) while z (Hl,tl,K2) < z (64,11, K1). So for the remainder of the proof assume
0y < (A) K5. Hence 6; < )\(t ) K2 also.

Third: Given t, > t; and 92 < t2 it follows that #; < )\(t ) — K. To see this, suppose

to the contrary that 6; > A(tl) — Ki. Then x (01,6, K;) = A(I?) > ﬁ > 1z (by, 19, K1), a

contradiction.
Fourth: Given 0, < )\(t 3
definition, z (01, t1, K1) solves

— K3, it follows that 0y — A (t3) > 61 — A (1), as follows. By

A
(91+K1)—$—)\(t1)+;:0

27



If 6, < ﬁ — K then the result is immediate from z (0, t1, K1) < x (0, t, K7). If instead

0y > ﬁ — K, then note that, at x = ﬁ,

A
(‘92+K1)—$—)\(t2)+;>0,

and the result again follows from x (01,t1, K1) < x (02,19, K1) = ﬁ.
Finally: Given 6,—A\ (t2) > 61—\ (1) the result is immediate from the fact that = (0, ¢, K5)

solves (35) for (0,t) = (01,t1), (62,t2) and K = K.
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