
Supplementary Online Appendix

B.1 Notes on the definition of Lehmann informativeness

I have defined Lehmann informativeness in terms of the function I (x, θ) : X (θ; κ2) →

X (θ; κ1), defined by

F (I (x, θ) |θ; κ1) = F (x|θ; κ2) .

The condition is:

[L-I] For any x ∈ X (κ2), and θ1, θ2 > θ1 such that x ∈ X (θ1; κ2) ∩ X (θ2; κ2), I (x, θ1) ≥

I (x, θ2).

Typically, the definition is instead stated in terms of the function J (x, θ) : X (θ; κ1) →

X (θ; κ2), defined by

F (x|θ; κ1) = F (J (x, θ) |θ; κ2) .

The condition is then:

[L-J] For any x ∈ X (κ1), and θ1, θ2 > θ1 such that x ∈ X (θ1; κ1)∩X (θ2; κ1), J (x, θ2) ≥

J (x, θ1).

Note that I and J are inverses. Specifically, for any x ∈ X (θ; κ1), I (J (x, θ)) = x, and

for any x ∈ X (θ; κ2), J (I (x, θ)) = x. These statements make use of the fact that both I

and J are strictly increasing in their first argument (by Property 1).

B.1.1 The advantage of stating the Lehmann informativeness in terms of [L-I]

The two formulations are equivalent under mild regularity conditions. The property actually

used in the proof of Proposition 1 is that I is decreasing. Given non-equivalence under

“pathological” conditions, it is easiest to simply state the definition in terms of [L-I].

B.1.2 Equivalence under many conditions

When the supports X (θ; κ) are well-behaved, in terms of not varying too much in θ, the two

definitions are equivalent.

Specifically:

Lemma 2 If X (θ1; κ1) ∩ X (θ2; κ1) %= ∅ for all θ1, θ2 ∈ Θ then [L-J] implies [L-I].

Lemma 3 If X (θ1; κ2) ∩ X (θ2; κ2) %= ∅ for all θ1, θ2 ∈ Θ then [L-I] implies [L-J].

Note, moreover, that the global non-empty intersection properties can be considerably

weakened to ones that hold only locally. For transparency, I state the proof for the global

property.
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Proof of Lemma 2: Suppose [L-J] holds, but [L-I] is violated, i.e., for some x ∈ X (κ2),

and θ1, θ2 > θ1 such that x ∈ X (θ1; κ2) ∩ X (θ2; κ2), I (x, θ2) > I (x, θ1).

Certainly I (x, θ1) ∈ X (θ1; κ1) and I (x, θ2) ∈ X (θ2; κ1). Since X (θ1; κ1)∩X (θ2; κ1) %= ∅,

it follows from Property 1 that there exists x0 ∈ X (θ1; κ1) ∩ X (θ2; κ1) such that

I (x, θ2) ≥ x0 ≥ I (x, θ1) ,

with at least one of the two inequalities strict. But then

x = J (I (x, θ2) , θ2) ≥ J (x0, θ2) ≥ J (x0, θ1) ≥ J (I (x, θ1) , θ1) = x,

with at least one of the first and third inequalities being strict. The contradiction completes

the proof.

Proof of Lemma 3: Suppose [L-I] holds, but [L-J] is violated, i.e., for some x ∈ X (κ1),

and θ1, θ2 > θ1 such that x ∈ X (θ1; κ1) ∩ X (θ2; κ1), J (x, θ2) < J (x, θ1).

Certainly J (x, θ1) ∈ X (θ1; κ2) and J (x, θ2) ∈ X (θ2; κ2). Since X (θ1; κ2)∩X (θ2; κ2) %= ∅,

it follows from Property 1 that there exists x0 ∈ X (θ1; κ2) ∩ X (θ2; κ2) such that

J (x, θ2) ≤ x0 ≤ J (x, θ1) ,

with at least one of the two inequalities strict. But then

x = I (J (x, θ2) , θ2) ≤ I (x0, θ2) ≤ I (x0, θ1) ≤ I (J (x, θ1) , θ1) = x,

with at least one of the first and third inequalities being strict. The contradiction completes

the proof.

B.1.3 A simple example in which [L-I] holds but [L-J] is violated

Consider a case in which Θ = {θ1, θ2}, with θ2 > θ1, X (θ1; κ1)∩X (θ2; κ1) %= ∅ but X (θ1; κ2)∩

X (θ2; κ2) = ∅, and X (θ2; κ2) < X (θ1; κ2). (Since these sets don’t intersect, this ordering is

unambiguous.)

In this case, [L-I] holds vacuously, while trivially, if x ∈ X (θ1; κ1) ∩ X (θ2; κ1), then

J (x, θ2) < J (x, θ1), so that [L-J] is violated.

Note, moreover, that this simple case is one in which the regime κ2 is unambiguously

more informative than regime κ1, since in regime κ2 the observation of X fully reveals the

value of θ ∈ {θ1, θ2}, while this isn’t the case in regime κ1.

22



B.2 Detailed calculations used in subsection 2.1

(I) Consider ū (x; t) = u
(

W (t) + R̄x
)

and u (x; t) = u (W (t) +Rx), where W ′ (t) < 0,

R < 0 < R̄, and u features decreasing absolute risk aversion (DARA).

In this case,
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Hence DARA implies (6). Moreover, DARA further implies that −
u′′(W (t)+R̄x)
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is decreasing

in x and −u′′(W (t)+Rx)
u′(W (t)+Rx) is increasing in x, so that (7) holds.

(II) Consider ū (x; t) = (1− t)u
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)

+tu
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and u (x; t) = (1− t) u
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)

+

tu (W +Rx), where W < W̄ , R < 0 < R̄, and u features DARA. In this case,
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ūx (x; t)

ux (x; t)

)

=
u′
(

W + R̄x
)

− u′
(

W̄ + R̄x
)

(1− t) u′
(

W̄ + R̄x
)

+ tu′
(

W + R̄x
) −

u′ (W +Rx)− u′
(

W̄ +Rx
)

(1− t) u′
(

W̄ +Rx
)

+ tu′ (W +Rx)

=

u′(W+R̄x)
u′(W̄+R̄x)

− 1

(1− t) + t
u′(W+R̄x)
u′(W̄+R̄x)

−

u′(W+Rx)

u′(W̄+Rx)
− 1

(1− t) + t u′(W+Rx)

u′(W̄+Rx)

. (29)

So (6) holds, since the expression y−1
1−t+ty

is increasing in y, and
u′(W+R̄x)
u′(W̄+R̄x)

< u′(W+Rx)

u′(W̄+Rx)
by

DARA, since DARA implies that u′(W+y)

u′(W̄+y)
is decreasing in y. These same observations also

imply that the first term in (29) is decreasing in x while the second term is increasing in x,

so that (7) holds.

B.3 Detailed calculations used in subsection 2.2

B.3.1 Demand decreasing in price, qx < 0

Writing the FOC (11) explicitly gives

(1− ψ)
(

R̄− x
)

u′
(

q
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R̄− x
))

+ ψ (R− x) u′ (q (R− x)) = 0. (30)

Since Uqq < 0, this has at most one solution in q. The derivative of the RHS of (30) with

respect to x is

−
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)
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The first term is strictly negative. The second term equals
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By DARA,
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and so expression (31) is strictly below
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which is simply 0 at the informed agent’s optimal demand q (x, θ, κ). Hence an increase in

x must strictly reduce q (x, θ, κ).

B.3.2 Derivation of (14)

By straightforward substitution,
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Recall that θ and κ enter U only via the function ψ, and moreover, U is linear in ψ. Ac-

cordingly, write Uψ etc to denote the derivative of U with respect to ψ. Hence Uqθ = ψθUqψ,

Uqxθ = ψθUqxψ, Uqκ = ψκUqψ, Uqqκ = ψκUqqψ, and Uqθκ = ψθψκUqψψ + ψθκUqψ = ψθκUqψ.

Hence
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.
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To ease notation, define ū′ ≡ u′
(

q
(

R̄− x
))

and u′ = u′ (q (R− x)), with analogous defini-

tions for higher order derivatives. Straightforward differentiation yields

Uq = (1− ψ)
(

R̄− x
)

ū′ + ψ (R− x) u′,

Uqx = − (1− ψ) ū′ − ψu′ − (1− ψ)
(

R̄ − x
)

qū′′ − ψ (R− x) qu′′,
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)2
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)
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,
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I first establish that
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>
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−
1

ψ
. (32)

Evaluating,
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Note the function y−1
y−ψ(y−1) is increasing in y, since y − ψ (y − 1)− (y − 1) (1− ψ) = 1 > 0.

Hence the function y−1
y−ψ(y−1) varies from − 1

ψ
to 1

1−ψ as y varies from 0 to ∞. Consequently,

−
Uqqψ

Uqq

> −
1

ψ
,

establishing (32).

Second, I consider the term
UqψUqqx − UqqUqxψ

UqqUqx

. (33)

As s (0) , s (1) → 0, the equilibrium value of q approaches 0 for all realizations of t, so that
ū′

u′ ,
ū′′

u′′ ,
ū′′′

u′′′ → 1 and x → (1− ψ) R̄+ψR. Hence Uqqx → 0 and Uqxψ → 0 while the other terms

in (33) remain bounded away from 0, implying that (33) converges to 0, and establishing
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(14).

B.3.3 Comparison of log-submodularity of ψ and log-supermodularity of the

likelihood ratio 1−ψ
ψ

Note that log-submodularity of ψ implies log-supermodularity of the likelihood ratio 1−ψ
ψ

, as

follows. Log supermodularity of 1−ψ
ψ

is equivalent to

∂

∂θ

(

−ψκ
1− ψ

−
ψκ
ψ

)

≥ 0,

i.e.,
ψκθ (1− ψ) + ψκψθ

(1− ψ)2
+
ψκθψ − ψκψθ

ψ2
≤ 0,

i.e.,

(1− ψ)ψψκθ +
(

ψ2 − (1− ψ)2
)

ψκψθ ≤ 0,

i.e.,

ψψκθ +
2ψ − 1

1− ψ
ψκψθ ≤ 0,

i.e.,

ψψκθ − ψκψθ +

(

2ψ − 1

1− ψ
+ 1

)

ψκψθ ≤ 0,

i.e.,

ψψκθ − ψκψθ +
ψ

1− ψ
ψκψθ ≤ 0.

B.4 Detailed calculations used in subsection 2.3

B.4.1 Verification of equilibrium price (17)

Let ξ (θ, t) be the value of x > 0 that solves

θ − x− λ (t) +
A

x
= 0. (34)

Solving explicitly,

x2 + x (λ (t)− θ)− A = 0.

Focusing on the positive-valued solution, it follows that

ξ (θ, t) =
1

2

(

θ − λ (t) +
√

(θ − λ (t))2 + 4A
)

.
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Note that ξ is strictly increasing in θ and strictly decreasing in t. Moreover,

ξ

(

A

λ (t)
, t

)

=
A

λ (t)
.

If θ > A
λ(t) then the conjectured price is ξ (θ, t) > A

λ(t) . Liquidity demand is −λ (t)+ A
ξ(θ,t) < 0.

Since ξ (θ, t) solves (34), it follows that θ > ξ (θ, t). Hence informed demand is θ − ξ (θ, t).

Since ξ (θ, t) solves (34) it follows that the market-clearing condition (16) holds.

If θ ∈
[

A
λ(t) −K, A

λ(t)

]

then the conjectured price is ξ (θ, t) = A
λ(t) . Liquidity demand is

hence −λ (t) + A
ξ(θ,t) = 0. Since θ ∈ [ξ (θ, t)−K, ξ (θ, t)], informed demand is also 0. Hence

the market-clearing condition (16) holds.

If θ < A
λ(t) − K then the conjectured price is ξ (θ +K, t) < A

λ(t) . Liquidity demand is

−λ (t) + A
ξ(θ,t) > 0. Since ξ (θ +K, t) solves

(θ +K)− x− λ (t) +
A

x
= 0 (35)

it follows that θ+K < ξ (θ +K, t). Hence informed demand is θ− ξ (θ, t)+K. Since ξ (θ, t)

solves (35) it follows that the market-clearing condition (16) holds.

B.4.2 The equilibrium price satisfies SCP

I next show that the equilibrium price x (θ, t, K), which coincides with the quantile function,

satisfies SCP. Let θ1, θ2 ≥ θ1, t1,t2 ≥ t1 and K1 = K (κ1) be such that x (θ2, t2, K1) ≥

x (θ1, t1, K1), and consider κ2 > κ1. I establish that at K2 = K (κ2) < K1, x (θ2, t2, K2) ≥

x (θ1, t1, K2), with strict inequality if x (θ2, t2, K1) > x (θ1, t1, K1).

First, note that the result is immediate if t2 = t1, since x is weakly increasing in θ, and

moreover, the interval over which x is constant in θ strictly shrinks as K falls from K1 to

K2. So for the remainder of the proof assume t2 > t1.

Second, the result is also immediate if θ2 ≥ A
λ(t2)

−K2, since in this case x (θ2, t2, K2) =

x (θ2, t2, K1) while x (θ1, t1, K2) ≤ x (θ1, t1, K1). So for the remainder of the proof assume

θ2 <
A

λ(t2)
−K2. Hence θ1 <

A
λ(t1)

−K2 also.

Third: Given t2 > t1 and θ2 <
A

λ(t2)
it follows that θ1 <

A
λ(t1)

−K1. To see this, suppose

to the contrary that θ1 ≥ A
λ(t1)

− K1. Then x (θ1, t1, K1) = A
λ(t1)

> A
λ(t2)

≥ x (θ2, t2, K1), a

contradiction.

Fourth: Given θ1 < A
λ(t1)

− K1, it follows that θ2 − λ (t2) ≥ θ1 − λ (t1), as follows. By

definition, x (θ1, t1, K1) solves

(θ1 +K1)− x− λ (t1) +
A

x
= 0.
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If θ2 ≤
A

λ(t2)
−K1 then the result is immediate from x (θ1, t1, K1) ≤ x (θ2, t2, K1). If instead

θ2 >
A

λ(t2)
−K1 then note that, at x = A

λ(t2)
,

(θ2 +K1)− x− λ (t2) +
A

x
> 0,

and the result again follows from x (θ1, t1, K1) ≤ x (θ2, t2, K1) =
A

λ(t2)
.

Finally: Given θ2−λ (t2) ≥ θ1−λ (t1) the result is immediate from the fact that x (θ, t, K2)

solves (35) for (θ, t) = (θ1, t1) , (θ2, t2) and K = K2.
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