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Abstract

Lehmann’s (1988) ordering of information content is equivalent to a single-crossing

property of the quantile function. This equivalence considerably aids the application of

Lehmann’s ordering.

The information content of prices and agents’ actions is central to many areas of economics.

Blackwell (1953) develops a very general notion of information content: a variable X is more

informative than a variable Y if a decisionmaker would prefer to observe X rather than Y ,

regardless of the decision problem faced. However, Blackwell’s ordering fails to rank many

cases of interest. For example, Lehmann (1988) shows that, surprisingly, Blackwell’s ordering

fails to rank the amount of information about a variable θ that is is conveyed by the family

of random variables Xκ = θ + ν
κ
, where ν is uniformly distributed over [−1, 1].

Lehmann (1988) proposes an alternative notion of information content that ranks more

cases than Blackwell’s, including the example just given. Lehmann’s ordering is stated in

a way that is likely to be intuitive to economists: rather than insisting that an arbitrary

decisionmaker prefer to observe X rather than Y , Lehmann considers only monotone deci-

sion problems, i.e., those in which the decision of a fully informed decisionmaker would be

monotone in the underlying state variable. However, Lehmann’s ordering is stated in a way

that, at first sight, it hard operationalize.

∗I thank Mehmet Ekmekci and Raj Singh for very constructive comments, along with seminar audiences
at the CEPR Gerzensee conference, the Society for Economic Dynamics, Boston College, IDC, Hebrew
University, Tel Aviv University, the University of Minnesota, and the University of Washington. An earlier
draft of this paper circulated under the title “Bailouts and the information content of investments.” Any
errors are my own.
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The main result in this short paper is that Lehmann’s ordering is equivalent to a single-

crossing property of the quantile function. Although simple, this equivalence has not previ-

ously been noted.1 Exploiting this equivalence considerably aids the application of Lehmann’s

ordering, especially in differentiable cases. In particular, by working with the Spence-Mirrlees

formulation of single-crossing, it is possible to compare the information content of prices

and actions without fully solving for prices or optimal actions. The equivalence with single-

crossing also provides a geometric intuition for why Lehmann’s ordering captures information

content.

1 Lehmann-informativeness and the single-crossing prop-

erty of the quantile function

Lehmann’s ordering is as follows. A decisionmaker cares about the realization of a state

variable θ ∈ Θ, but doesn’t observe θ directly. Instead, the decisionmaker observes the

realization of a real-valued random variable X, whose distribution depends on θ. The dis-

tribution of X also depends on a “regime,” which is indexed by the parameter κ, and known

to the decisionmaker. The interpretation of the regime κ depends on the application; see

Section 2 for examples. In the simple case above of X = θ + ν
κ
, the regime κ is simply a

scaling parameter that controls the variance of the “noise” term ν
κ
.

Let F (·|θ; κ) be the distribution of X conditional on θ in regime κ, with X (θ; κ) denoting

the corresponding support. Define X (κ) ≡
⋃

θ∈Θ X (θ; κ). For any x ∈ X (κ), define Θ (x; κ)

as the set of states such that x lies in the support of X, i.e., Θ (x; κ) =
{

θ̃ : x ∈ X
(

θ̃; κ
)}

.

Lehmann’s ordering compares how much information X conveys about θ in two alternate

regimes κ1 and κ2. Define the function I (·, θ; κ1, κ2) : X (θ; κ2) → X (θ; κ1) by

F (I (x, θ; κ1, κ2) |θ; κ1) = F (x|θ; κ2) . (1)

Definition 1 X is a more Lehmann-informative in regime κ2 than κ1 if for all x ∈ X (κ2),

the function I (x, θ; κ1, κ2) is weakly decreasing in θ ∈ Θ (x; κ2).

Remark : Definition 1 differs slightly from Lehmann’s original definition, which is that the

1For contributions within economics on Lehmann’s ordering, see Persico (2000), Bergemann and Vali-
maki (2002), Jewitt (2007), Quah and Strulovici (2009), Athey and Levin (2018), Chi and Choi (2019), Li
and Zhou (2020), and Kim (2023). In particular, Chi and Choi establish equivalence between Lehmann’s
ordering and the usefulness of performance measures in agency problems; and as an intermediate step, estab-
lish equivalence between Lehmann’s ordering and single-crossing in the difference in distribution functions;
while Kim establishes equivalence between Lehmann’s ordering and a weaker version of Blackwell’s garbling
condition.
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inverse of I with respect to x is weakly increasing in θ.2 Under mild regularity conditions on

how the support X (θ; κ) varies with the underlying state θ, the two conditions are equivalent

(see online appendix). Definition 1 has the advantage of being the condition that is used

in the proof of Proposition 1, and avoids the need to impose further conditions on how the

support X (θ; κ) varies with θ.

1.1 Lehmann-informativeness and decision problems

Lehmann-informativeness is of interest because it ranks outcomes in a particular class of

decision problems. Specifically, consider a decisionmaker who must select b ∈ B ⊂ &.

The decisionmaker’s objective is to choose b to maximize an objective V (b, θ), which is

continuous in b. The decisionmaker does not observe θ directly, and instead observes only

X, as described above.

The objective V satisfies the single-crossing property (SCP, Milgrom and Shannon (1994))

in (b, θ). Hence the decision problem is monotone, in the sense that a decisionmaker who

were counterfactually fully informed about θ would choose higher values of b when θ is higher.

To allow for cases in which the choice set B in non-compact, I impose the following

relatively mild assumption on how V behaves for low and high choices of b ∈ B: There exist

θ, θ̄ ≥ θ, b and b̄ such that if θ ≤ θ then V (·, θ) is weakly decreasing for b ≥ b̄, and if θ ≥ θ̄

then V (·, θ) is weakly increasing for b ≤ b.

Lehmann (1988) and Quah and Strulovici (2009) establish that if X is more Lehmann-

informative in regime κ2 than κ1, then the decisionmaker is better off in regime κ2 than in

κ1.3 Both papers restrict attention to the case in which the support of X is independent

of the realization of θ. To facilitate applications, Proposition 1 below represents a modest

generalization of these previous results to the case in which the support of X potentially de-

pends on θ, and in which the decisionmaker’s action space is non-compact. For convenience,

I state the following two properties used in Proposition 1 separately.

First, the distribution function of X is continuous and strictly increasing:

Property 1 For all states θ and regimes κ, the support X (θ; κ) is an interval, and the distri-

bution function F (·|θ; κ) is continuous and strictly increasing over X (θ; κ), with infx∈X (θ;κ) F (x|θ; κ) =

0 and supx∈X (θ;κ) F (x|θ; κ) = 1.

Second, any shift in the support of X across regimes satisfies the following mild restriction:

2The inverse of I is the function J (·, θ;κ1,κ2) : X (θ;κ1) → X (θ;κ2) defined by F (x|θ;κ1) =
F (J (x, θ;κ1,κ2) |θ;κ2).

3Lehmann (1988) imposes slightly different assumptions on the decisionmaker’s objective.
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Property 2 Let θ ∈ Θ and κ, κ̃ be alternate regimes. The support X (θ; κ) is unbounded

above (respectively, below) if and only if X (θ; κ̃) is unbounded above (below).

Properties 1 and 2 ensure that the function I, defined in (1) and on which the Lehmann

ordering is based, is well-defined and a bijection.

Proposition 1 Let Properties 1 and 2 hold. If X is more Lehmann-informative in regime κ2

than κ1, and ζ : X (κ1) → B is a weakly increasing function, then there exists φ : X (κ2) → B

such that, for all θ, V (φ (X) , θ) in regime κ2 first-order stochastically dominates V (ζ (X) , θ)

in regime κ1.

Because Proposition 1 is close to existing results, I relegate its proof to Appendix B.

As Quah and Strulovici (2009) emphasize, Lehmann-informativeness implies an improve-

ment in the decisionmaker’s payoff in a very robust sense, in that Proposition 1 is completely

independent of the decisionmaker’s prior beliefs of θ. Moreover, Li and Zhou (2020) relate

Lehmann-informativeness to a utility improvement for uncertainty-averse decisionmakers.

Proposition 1 is predicated on the decisionmaker’s action being weakly increasing in X

in the initial regime κ1. Lehmann (1988) and Quah and Strulovici (2009) each give sufficient

conditions for this. In both cases, the conditions include that the monotone likelihood ratio

property (MLRP) holds.4

1.2 Equivalence of Lehmann-informativeness to the quantile func-

tion satisfying the SCP

The main result in this paper is that Lehmann-informativeness is equivalent to a single-

crossing property of the quantile function F−1 (1− t|θ; κ), which specifies the top t percentile

of X.

Given Property 1, for all t ∈ (0, 1) the quantile function F−1 (1− t|θ; κ) is uniquely

defined. In addition, define F−1 (0|θ;ψ) = inf X (θ;ψ) and F−1 (1|θ;ψ) = supX (θ;ψ),

with the understanding that if X (θ;ψ) is unbounded below (respectively, above) then

inf X (θ;ψ) = −∞ (respectively, supX (θ;ψ) = ∞).

The equivalence of Lehmann-informativeness with the quantile function satisfying the

SCP naturally requires an ordering on the set of states Θ. The standard first-order stochastic

dominance (FOSD) ordering is sufficient. Because of the centrality of the quantile function to

4That is: f(x|θ2;κ)
f(x|θ1;κ)

is weakly increasing in x if θ2 > θ1, where f (x|θ;κ) denotes the density function

corresponding to the distribution function F (x|θ;κ).
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the analysis, I include an equivalent formulation of FOSD in terms of the quantile function5

in the following:

Property 3 For any regime κ, if θ2 > θ1 then the distribution of X given θ2 FOSD

the distribution of X given θ1, i.e., F (x|θ2; κ) ≤ F (x|θ1; κ) for any x, or equivalently,

F−1 (1− t|θ2; κ) ≥ F−1 (1− t|θ1; κ).

As noted, Lehmann (1988) and Quah and Strulovici (2009) both impose MLRP, which

implies FOSD.6

The main result is:

Proposition 2 Let Properties 1-3 hold. The Lehmann-informativeness of X is increasing

in the regime κ if and only if the quantile function F−1 (1− t|θ; κ) satisfies the SCP in

((θ, t) ; κ), where Θ× [0, 1] has the product ordering.

The following simple example illustrates Proposition 2.

Example: Let X = θ + ν
κ
, where ν is distributed uniformly over [−1, 1]. Theorem 5.3

in Lehmann establishes that Lehmann informativeness is increasing in κ.7 The quantile

function is F−1 (1− t|θ; κ) = θ + 1−2t
κ

. Hence F−1 (1− t2|θ2; κ1) ≥ (>)F−1 (1− t1|θ1; κ1) is

equivalent to θ2 − θ1 ≥ (>) 2t2−2t1
κ1

; and so if additionally t2 ≥ t1, θ2 ≥ θ1, and κ2 ≥ κ1, then

F−1 (1− t2|θ2; κ2) ≥ (>)F−1 (1− t1|θ1; κ2). Hence F−1 (1− t|θ; κ) indeed satisfies the SCP

in ((θ, t) ; κ), where Θ× [0, 1] has the product ordering.

1.3 Spence-Mirrlees single-crossing

To check whether the quantile function F−1 (1− t|θ; κ) satisfies the SCP, it is useful to

relate it to the Spence-Mirrlees single-crossing condition, which is expressed in terms of

derivatives. Milgrom and Shannon’s (1994) Theorem 3 establishes the equivalence (under

certain conditions) between the Spence-Mirrlees condition and the SCP under the lexico-

graphic ordering. Under Property 1, F−1 (1− t|θ; κ) is strictly decreasing in t, and under

Property 3, F−1 (1− t|θ; κ) is weakly increasing in θ. Under these conditions, it is straight-

forward to show that the SCP under the product ordering coincides with the SCP under the

lexicographic ordering, which in turn coincides with the Spence-Mirrlees condition.

5See, for example, Theorem 4.1 in Levy (1998).
6See, for example, Gollier (2001).
7Evaluating, I (x, θ;κ1,κ2) =

κ2

κ1
(x− θ) + θ (regardless of the distribution of ν).
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Proposition 3 Let Properties 1-3 hold.

(I) F−1 (1− t|θ; κ) satisfies the SCP in ((θ, t) ; κ), where Θ × [0, 1] has the product or-

dering, if and only if F−1 (1− t|θ; κ) satisfies the SCP in ((θ, t) ; κ), where Θ× [0, 1] has the

lexicographic ordering.

(II) If, moreover, F−1 (1− t|θ; κ) is differentiable with respect to θ and t, with derivatives

continuous in (θ, t, κ), then the Lehmann-informativeness of X is increasing in the regime κ if

and only if F−1 (1− t|θ; κ) satisfies the Spence-Mirrlees single-crossing condition condition,

i.e.,
∂
∂θ
F−1 (1− t|θ; κ)

∣

∣

∣

∂
∂t
F−1 (1− t|θ; κ)

∣

∣

∣

is increasing in κ. (2)

1.4 A geometric interpretation of Lehmann’s ordering

Propositions 2 and 3 establish the equivalence of Lehmann’s ordering and single-crossing

of the quantile function. Section 2 below illustrates how this equivalence aids the applica-

tion of Lehmann ordering. In addition, this equivalence leads to the following geometric

interpretation of Lehmann’s ordering.

Graphically, the SCP corresponds to the isoquants of the quantile function F−1 (1− t|θ; κ)

in (θ, t) growing steeper as κ increases, as illustrated in Figure 1. In the example above,

the isoquants are the lines t = 1
2 (1 + κθ − κx). Intuitively, steeper isoquants correspond to

greater information content, as follows. The observation of a realization of X conveys the

same information as the observation of what quantile the realization belongs to. Steeper iso-

quants correspond to the quantile containing more information about θ, and correspondingly

less information about the “noise” term t.

2 Applications

2.1 Learning from the actions of others

In many cases, economic agents learn from the actions of others. For example, one economic

agent—the decisionmaker, in the formalism of this paper—may learn about the quality of

an investment project by observing a second economic agent’s willingness to invest funds in

a similar project, where the second economic agent knows θ.

Specifically, suppose that the decisionmaker observes an investment x made by an in-

vestor, where the investor chooses the investment x to solve

max
x≥0

(1− ψ (θ, κ)) ū (x; t) + ψ (θ, κ) u (x; t) , (3)
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θ

t

Isoquant of F−1 (1− t|θ; κ1)

Isoquant of F−1 (1− t|θ; κ2) for κ2 > κ1

Slope is −
∂
∂θ

F−1(1−t|θ;κ2)
∂
∂t

F−1(1−t|θ;κ2)

Figure 1: Graphical illustration of Lehmann-informativeness and SCP of the quantile func-
tion. Steeper isoquants for κ2 than for κ1 correspond to greater Lehmann-informativeness.

where ū and u are both concave in x, with ūx > 0 > ux. That is, there are “good” and

“bad” outcomes, where the bad outcome occurs with probability ψ (θ, κ), and depends on

the combination of a state variable θ and a regime κ. For example, κ could be a macroe-

conomic state, or a government policy. The investment x is beneficial conditional on the

good outcome, but costly conditional on the bad outcome. Finally, t represents idiosyncratic

factors that affect the investor’s willingness to invest, such as the investor’s wealth level, or

the investor’s exposure to other risks. Assume that t ∼ U(0, 1). From the perspective of the

decisionmaker, t introduces noise into the investor’s decision.

Note that “investment” and the “investor” can be broadly interpreted in a number of

different ways.

It is often suggested that investors pay more attention to fundamentals—here, θ—if they

are more exposed to the risk of bad outcomes. Below, I formalize this idea by deriving a

simple condition for when greater exposure to the risk of bad outcomes increases Lehmann-

informativeness. In what is close to a normalization, I parameterize ψ so that ψκ > 0 and

ψθ < 0, i.e., higher values of κ correspond to a higher probability of a bad outcome, and

higher values of θ correspond to better fundamentals (lower probability of a bad outcome).

A simple example that fits within this general framework is that the bad outcome occurs

only if both a project specific event occurs (probability 1− θ) and an external event occurs

(probability κ), so that

ψ = (1− θ) κ. (4)
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The concavity assumptions on ū and u imply

∂

∂x
ln

(

−
ūx (x; t)

ux (x; t)

)

< 0. (5)

In addition, suppose that, for all values of θ, t, κ,

(1− ψ (θ, κ)) ūx (0; t) + ψ (θ, κ) ux (0; t) > 0,

so that investment is always positive; and that the idiosyncratic factor t affects the utility

ratio − ūx

ux
according to

∂

∂t
ln

(

−
ūx (x; t)

ux (x; t)

)

< 0, (6)

∂2

∂t∂x
ln

(

−
ūx (x; t)

ux (x; t)

)

≤ 0. (7)

To interpret (6), suppose that t is an underlying characteristic that raises the marginal

utilities ūx and −ux. Then (6) says that t raises marginal utility proportionally more in the

bad state than in the good state. This is a natural property. For example, it is satisfied in

the following two specifications, which correspond to the idiosyncratic term t representing,

respectively, the investor’s wealth level and risk exposure: (I) ū (x; t) = u
(

W (t) + R̄x
)

and

u (x; t) = u (W (t) +Rx), (II) ū (x; t) = (1− t) u
(

W̄ + R̄x
)

+ tu
(

W + R̄x
)

and u (x; t) =

(1− t) u
(

W̄ +Rx
)

+ tu (W +Rx), where in both specifications R < 0 < R̄, and u features

decreasing absolute risk aversion (DARA); in (I), W ′ (t) < 0, and in (II), W < W̄ .8

Inequality (7) is a regularity condition, and says that the extent to which t raises marginal

utility proportionally more in the bad state than in the good state increases as the investor

invests more. It is satisfied by both specifications (I) and (II).

Let x (θ, t, κ) denote the investor’s optimal investment. Given concavity, it is determined

by the first-order condition (FOC) of (3), which can be straightforwardly written as

ln

(

−
ūx (x (θ, t, κ) ; t)

ux (x (θ, t, κ) ; t)

)

+ ln

(

1− ψ (θ, κ)

ψ (θ, κ)

)

= 0. (8)

Differentiation of (8) with respect to θ and t delivers

xθ (θ, t, κ)
∂

∂x
ln

(

−
ūx (x; t)

ux (x; t)

)
∣

∣

∣

∣

∣

x=x(θ,t,κ)

= −
∂

∂θ
ln

(

1− ψ (θ, κ)

ψ (θ, κ)

)

8The online appendix contains a proof that both specifications (I) and (II) satisfy both (6) and (7).
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xt (θ, t, κ)
∂

∂x
ln

(

−
ūx (x; t)

ux (x; t)

)∣

∣

∣

∣

∣

x=x(θ,t,κ)

= −
∂

∂t
ln

(

−
ūx (x; t)

ux (x; t)

)∣

∣

∣

∣

∣

x=x(θ,t,κ)

xκ (θ, t, κ)
∂

∂x
ln

(

−
ūx (x; t)

ux (x; t)

)∣

∣

∣

∣

∣

x=x(θ,t,κ)

= −
∂

∂κ
ln

(

1− ψ (θ, κ)

ψ (θ, κ)

)

.

From (5), it follows that xθ > 0, and, from (6), that xt < 0. So Properties 1-3 are satisfied,

and the quantile function of X is given by

F−1 (1− t|θ; κ) = x (θ, t, κ) . (9)

Moreover, the Spence-Mirrlees ratio is

∂
∂θ
F−1 (1− t|θ; κ)

∣

∣

∣

∂
∂t
F−1 (1− t|θ; κ)

∣

∣

∣

= −
xθ (θ, t, κ)

xt (θ, t, κ)
=

∂
∂θ

ln
(

1−ψ(θ,κ)
ψ(θ,κ)

)

− ∂
∂t
ln
(

− ūx(x;t)
ux(x;t)

)∣

∣

∣

x=x(θ,t,κ)

. (10)

By Proposition 3, the Lehmann-informativeness of the investment x is increasing in the

regime κ if and only if the ratio (10) is increasing in κ. Importantly, this condition can be

evaluated without solving for the action x.

Recall that ψκ > 0, i.e., as κ increases, the investor is more exposed to the risk of bad

outcomes. Hence xκ < 0, and so by (7) the denominator in (10) is decreasing in κ.

The ratio 1−ψ(θ,κ)
ψ(θ,κ) is the likelihood ratio of good and bad outcomes for the investor. So by

Proposition 3, a sufficient condition for the Lehmann-informativeness of the investment x to

increase in exposure to risk (κ) is that the likelihood ratio 1−ψ(θ,κ)
ψ(θ,κ) be log supermodular. To

interpret this condition, recall that the ratio 1−ψ
ψ

is increasing in θ. So log supermodularity

says that the likelihood ratio 1−ψ
ψ

becomes more sensitive to θ as κ increases.

Note that specification (4) satisfies the log-supermodularity condition,9 and hence gener-

ates investment decisions that are more Lehmann-informative in cases with more exposure

to risk (higher κ).

2.2 Learning from prices

Instead of a decisionmaker learning from the actions of others, as in the previous subsection, I

consider now the case of a decisionmaker who learns from prices. To give a specific example,

a lender may seek to learn the riskiness of mortgage lending from the traded prices of

mortgage-backed securities. Bond, Edmans, and Goldstein (2012) survey the literature on

agents learning from financial prices.

Since the price is the object the decisionmaker is learning from, I denote the price by

9That is: ∂∂θ ln
1−ψ
ψ = κ

1−(1−θ)κ + 1
1−θ , which is increasing in κ.
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x. The price is determined by the standard market clearing condition. Specifically, the

market is populated by a mixture of informed agents, who observe θ and choose a quantity

q to maximize utility U (q, x, θ, κ), and other agents, who trade for idiosyncratic reasons

unrelated to either the price x or the state θ. These agents are analogous to the “noise” or

“liquidity” traders in Grossman and Stiglitz (1980) and a large subsequent literature. Let the

excess demand stemming from these noise traders be −s (t), where t ∼ U (0, 1) and s′ (t) > 0.

Moreover, I assume that s (0) and s (1) are both finite, and focus on the case in which s (0)

and s (1) are sufficiently small, as explained below. The utility function of informed agents

takes the form

U (q, x, θ, κ) = (1− ψ (θ, κ))u
(

q
(

R̄− x
))

+ ψ (θ, κ) u (q (R− x)) ,

where u is increasing and concave and exhibits DARA, R̄ > R ≥ 0, and ψ is again parameter-

ized so that ψκ > 0 and ψθ < 0. Note that this specification falls outside the CARA-normal

framework that is used in many noisy rational expectation models.10

An informed agent’s demand at price x is q (x, θ, κ), determined by the FOC

Uq (q (x, θ, κ) , x, θ, κ) = 0. (11)

The equilibrium price x (θ, t, κ) is then determined by the market clearing condition

q (x (θ, t, κ) , θ, κ) = s (t) . (12)

Assume that ψ ∈ (0, 1) for all values of θ and κ. Then an immediate consequence of market

clearing (12) is that the price x lies in the open interval
(

R, R̄
)

. Hence Uqθ > 0 and Uqκ < 0.

Moreover, concavity of u implies that Uqq < 0. It follows straightforwardly that, as one would

expect, demand is increasing in θ and decreasing in κ, i.e., qθ > 0, and qκ < 0. Moreover, in

the online appendix I establish that demand is decreasing in price, qx < 0.

Differentiation of the market clearing (12) condition yields

xθqx + qθ = 0

xtqx − s′ (t) = 0

xκqx + qκ = 0.

So xθ > 0 and xt < 0, implying that the quantile function simply equals the price, i.e., (9)

10Breon-Drish (2015) and subsequent papers analyze noisy rational expecation equilibria outside the
CARA-normal framework. A key insight in these papers is that one can use the market clearing condi-
tion to implicitly characterize equilibrium prices; and the analysis below similarly exploits this observation.
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holds, and that Properties 1-3 are satisfied. Moreover, the Spence-Mirrlees ratio is

∂
∂θ
F−1 (1− t|θ; κ)

∣

∣

∣

∂
∂t
F−1 (1− t|θ; κ)

∣

∣

∣

= −
xθ
xt

=
qθ

s′ (t)
.

Hence, by Proposition 3, to evaluate Lehmann-informativeness one must sign

∂

∂κ





∂
∂θ
F−1 (1− t|θ; κ)

∣

∣

∣

∂
∂t
F−1 (1− t|θ; κ)

∣

∣

∣



 =
qθκ + qθxxκ

s′ (t)
=

qθκ −
qθxqκ
qx

s′ (t)
= −

qκ
s′ (t)

∂

∂θ
ln

(

qx
qκ

)∣

∣

∣

∣

∣

x=x(θ,t,κ)

. (13)

Expression (13) states the Spence-Mirrlees condition in terms of the demand function q, and

so can be checked without solving explicitly for prices x. Moreover, further straightforward

substitution relates the properties of demand directly to the utility function U : see online

appendix for details, both here and below. In particular, for s (0) and s (1) sufficiently small,

∂

∂θ
ln

(

qx
qκ

)
∣

∣

∣

∣

∣

x=x(θ,t,κ)

>
ψθ
ψ

−
ψθκ
ψκ

. (14)

In words: The RHS of (14) arises from qθκ, i.e., it captures the interaction of θ and κ in

determining demand q. Intuitively, this is the key determinant of whether the information

content of the price is increasing in κ. The assumption that s (0) and s (1) are sufficiently

small ensures that the interaction of θ and the price x in determining demand, qθx, is of

second-order importance.

Consequently, (14) implies that the Lehmann-informativeness of prices is increasing in

κ if ψθ
ψ

− ψθκ
ψκ

≥ 0 (recall that qκ < 0, s′ (t) > 0), or equivalently, if the probability ψ of

the low realization R is weakly log-submodular in (θ, κ). It is immediate that specification

(4) satisfies this condition. More generally, log-submodularity holds if the bad-outcome

probability becomes more sensitive to the state θ as κ increases.

2.3 Trading constraints and the informational content of prices

I next use the tools from Section 1 to show how constraints on short-sales of assets can lead

to prices that are less informative.11

For maximal transparency, I adopt a very simple model. Informed investors know θ,

have mean-variance preferences, and trade the asset. As before, q (x, θ, κ) denotes informed

11Various authors have argued that the combination of short-sales constraints and investor disagreement
(stemming, for example, from heterogeneous priors) prevent asset prices impounding negative information
(see, e.g., Miller (1977), Hong and Stein (2007)), and leads to inflated asset prices. Here, I focus on how
short-sales constraints affect price-informativeness rather than the price-level; and on the effect of short-sales
constraints absent disagreement.
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agent demand given asset price x, state θ, and regime κ. The regime κ affects shorting

costs: positions q < 0 incur a per-unit cost of K (κ), where without loss K is a decreasing

function of the regime κ. So under mean-variance preferences, informed agent demand takes

the simple form

q (x, θ, K) =



















θ − x θ > x

0 θ ∈ [x−K, x]

θ − x+K θ < x−K

, (15)

where for expositional transparency I have normalized the residual variance and risk aversion

parameters so that there is no further multiplicative constant. As is widely appreciated,

transaction costs lead to a kinked demand function, with an interval of prices over which,

for a given θ, informed agents do not take either long or short positions in the asset, i.e.,

have locally perfectly inelastic demand.

There are also “liquidity” sellers who trade in response to urgent consumption needs,

and sell all their shares, regardless of price. The number λ (t) of such traders is uncertain,

and determined by the realization of t ∈ (0, 1). The function λ is strictly positive for all

realizations of t, and is strictly increasing in t.

In addition, there is a further measure A of buyers who receive a wealth endowment, and

spend all this endowment buying shares, resulting in demand A
x
.12

The market-clearing condition is consequently

q (x, θ, K)− λ (t) +
A

x
= 0. (16)

The LHS of (16) is strictly decreasing in the price x, and is strictly positive as x → 0 and

strictly negative as x → ∞. Hence a positive-valued solution exists x, and is unique.

In contrast to the applications to subsections 2.1 and 2.2, the equilibrium value of x

(here, price) can be solved for analytically, and takes the following simple form (here and

below, all details are relegated to the online appendix). First, define

ξ (θ, t) =
1

2

(

θ − λ (t) +
√

(θ − λ (t))2 + 4A
)

.

Then the equilibrium price is

x (θ, t, K) =



















ξ (θ, t) if θ > A
λ(t)

A
λ(t) if θ ∈

[

A
λ(t) −K, A

λ(t)

]

ξ (θ +K, t) if θ < A
λ(t) −K

. (17)

12The presence of liquidity “buyers” is needed to ensure that informed traders sometimes take short posi-
tions; if informed traders never take short positions then shorting costs are irrelevant.
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Note that ξ
(

A
λ(t) , t

)

= A
λ(t) , so that the price x is continuous in (θ, t). As one would expect,

shorting costs generate an interval of fundamentals over which the price is independent of

the fundamental.

Note that x (θ, t, K) is increasing in θ, which ensures that Properties 1-3 are satisfied;

and is strictly decreasing in t, so that the quantile function simply equals the price, i.e., (9)

holds.

The price (17) does not satisfy the differentiability requirements needed to apply Propo-

sition 3. But it is nonetheless relatively straightforward to show that the price x satisfies

SCP in ((θ, t) ; κ). By Proposition 2, it follows that Lehmann-informativeness is increasing

in κ, i.e., is decreasing in the shorting cost K.

2.4 Inflation and the information content of prices

As Ball and Romer (2003) observe, economists often argue that “inflation reduces the ef-

ficiency of the price system.” Ball and Romer consider a model in which firms set prices

every two periods, and consumers seek to learn about the expected real price of each firm’s

product. Here, I recast this idea in a continuous-time setting with an arbitrary frequency of

price-resetting, and relate the informational content of prices to Lehmann.

Let δ denote the inflation rate. The length of time between each firm’s (nominal) price

changes is s. Let PH be the price the firm selects when it has the opportunity to change

prices. Consequently, the expected real price of the firm’s product is P̄ ≡ PH

´ s

0 e−δt̃dt̃.

As in Ball and Romer, a consumer observes a product’s real price P at an instant in time,

but does not know the time t that has elapsed since the last price-change. The consumer

wishes to infer the expected real price P̄ .

Hence a consumer observes

P = PHe
−δt =

e−δt
´ s

0 e−δt̃dt̃
P̄ ,

and wishes to infer P̄ .

Taking logs and disregarding constant terms, the consumer effectively observes ln P̄ − δt,

and wants to infer ln P̄ . Because the consumers don’t know the last price-change date, the

time-since-price-change t is uniformly distributed over [0, s] from their perspective. This is

exactly the example presented following Proposition 2. As such, a reduction in inflation δ

is associated with an increase in the Lehmann-informativeness of prices, but isn’t associated

with an increase in Blackwell informativeness.
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2.5 Measuring information content with conditional variance

Subsections 2.2 and 2.3 analyze the information content of financial prices. In many studies

of financial markets, the information content of prices is measured by their ability to predict

future cash flows, as measured using second moments. In the notation of this paper, this

boils down to the conditional variance var (θ|X), i.e., θ is a future cash flow, X is the current

price, and greater residual variance corresponds to lower informativeness.13

Lehmann-informativeness implies the conditional variance ordering, as follows. Sup-

pose that X2 is more Lehmann-informative than X1. By Theorem 1(i) of Ganuza and

Penalva (2010), it follows that E
[

E [θ|X2]
2
]

≥ E
[

E [θ|X1]
2
]

. By the law of total expec-

tation, E [E [θ|X2]] = E [E [θ|X1]] = E [θ]. Consequently, var (E [θ|X2]) ≥ var (E [θ|X1]).

By the law of total variance, it follows that E [var (θ|X2)] ≤ E [var (θ|X1)], i.e., X2 is more

informative under the conditional variance ordering.

3 Conclusion

Lehmann’s (1988) information ordering is equivalent to a single-crossing property of the

quantile function. Under mild differentiability conditions, Lehmann’s ordering is also equiv-

alent to Spence-Mirrlees single-crossing. These equivalences, which have not previously been

noted, considerably aid the application of Lehmann’s ordering.

References

Athey, Susan and Jonathan Levin (2018) “The value of information in monotone decision

problems.” Research in Economics, Vol. 72, pp. 101–116.

Bai, Jennie, Thomas Philippon, and Alexi Savov (2016) “Have financial markets become

more informative?” Journal of Financial Economics, Vol. 122, pp. 625–654.

Ball, Laurence and David Romer (2013) “Inflation and the informativeness of prices.” Jour-

nal of Money, Credit, and Banking, Vol. 35, pp 177–196.

Bergemann, Dirk and Juuso Välimäki (2002), “Information Acquisition and Efficient Mech-

anism Design.” Econometrica, Vol. 70, No. 3, pp. 1007–1033.

Blackwell, David (1953) “Equivalent Comparisons of Experiments.” The Annals of Mathe-

matical Statistics, Vol. 24, No. 2, pp. 265–272.

Bond, Philip, Alex Edmans and Itay Goldstein (2012) “The real effects of financial markets.”

13See, for example, Brunnermeier (2005), Peress (2010), Bai et al (2016). Closely related are Dávila and
Parlatore (2018), who define price informativeness using var (X |θ), i.e., the residual variance of current prices
conditional on future cash flow innovations.

14



Annual Review of Financial Economics, Vol. 4, pp. 339–360.

Breon-Drish, Bradyn (2015) “On Existence and Uniqueness of Equilibrium in a Class of

Noisy Rational Expectations Models.” Review of Economic Studies, Vol. 82, pp. 868–921.

Brunnermeier, Markus K. (2005) “Information leakage and market efficiency.” Review of

Financial Studies, Vol. 18, pp. 417–457.

Chang, Koo Chi and Kyoung Jin Choi (2019) “Performance measurement in agency models.”

Working paper.

Dávila, Eduardo and Cecilia Parlatore (2018) “Identifying Price Informativeness.” Working

Paper.

Ganuza, Juan-José and José S. Penalva (2010) “Signal Orderings Based on Dispersion and

the Supply of Private Information in Auctions.” Econometrica, Vol. 78, No. 3 (May), pp.

1007–1030.

Gollier, Christian (2001) The economics of risk and time, MIT Press.

Grossman, Sanford J. and Joseph E. Stiglitz (1980) “On the Impossibility of Informationally

Efficient Markets.” American Economic Review, Vol. 70, No. 3, pp. 393–408.

Hong, Harrison and Jeremy C. Stein (2007) “Disagreement and the Stock Market.” Journal

of Economic Perspectives, Vol. 21, No. 2 (Spring), pp. 109–128.

Jewitt, Ian (2007) “Information order in decision and agency problems,” working paper.

Jian, and Junjie Zhou (2020) “Information order in monotone decision problems under un-

certainty.” Journal of Economic Theory, Vol. 187.

Kim, Yonggyun (2023) “Comparing information in general monotone decisions problems.”

Journal of Economic Theory, Vol. 211.

Lehmann, Erich (1988) “Comparing Location Experiments.” Annals of Statistics, Vol. 16,

pp. 521–533.

Levy, Haim (1998), Stochastic dominance: investment decision making under uncertainty,

Kluwer.

Miller, Edward M. (1977) “Risk, Uncertainty, and Divergence of Opinion.” Journal of Fi-

nance, Vol. 32, No. 4 (Sep.), pp. 1151–1168

Milgrom, Paul and Chris Shannon (1994). “Monotone Comparative Statics.” Econometrica,

Vol. 62, No. 1, pp. 157–180.

Persico, Nicola (2000) “Information Acquisition in Auctions.” Econometrica, Vol. 68, No. 1,

pp. 135–148.

Peress, Joel (2010) “Product market competition, insider trading and stock market effi-

ciency.” Journal of Finance, Vol. 65, pp. 1–43.

Quah, John K. H. and Bruno Strulovici (2009) “Comparative Statics, Informativeness, and

the Interval Dominance Order.” Econometrica, Vol. 77, No. 6, pp. 1949–1992.

15



A Proofs of Propositions 2 and 3

Proof of Proposition 2:

SCP implies Lehmann-informativeness: Fix κ1, κ2 > κ1, x ∈ X (κ2) and θ1, θ2 ∈ Θ (x; κ2)

with θ2 ≥ θ1. Let t1 and t2 be such that

F−1 (1− t1|θ1; κ2) = F−1 (1− t2|θ2; κ2) = x. (18)

Hence

F (x|θ1; κ2) = 1− t1 (19)

F (x|θ2; κ2) = 1− t2. (20)

By FOSD, it follows that t2 ≥ t1. Equations (19) and (20) also deliver

F
(

F−1 (1− t1|θ1; κ1) |θ1; κ1
)

= 1− t1 = F (x|θ1; κ2)

F
(

F−1 (1− t2|θ2; κ1) |θ2; κ1
)

= 1− t2 = F (x|θ2; κ2) .

Hence

I (x, θ1; κ1, κ2) = F−1 (1− t1|θ1; κ1)

I (x, θ2; κ1, κ2) = F−1 (1− t2|θ2; κ1) .

Equality (18) and the SCP then imply

F−1 (1− t2|θ2; κ1) ≤ F−1 (1− t1|θ1; κ1) ,

establishing the result.

Lehmann-informativeness implies SCP:

Suppose that, contrary to the claimed result, the SCP is violated, i.e., there exist t1,

t2 ≥ t1, θ1, θ2 ≥ θ1, κ1 and κ2 ≥ κ1 such that either

F−1 (1− t2|θ2; κ1) = F−1 (1− t1|θ1; κ1) (21)

F−1 (1− t2|θ2; κ2) < F−1 (1− t1|θ1; κ2) , (22)

or

F−1 (1− t2|θ2; κ1) > F−1 (1− t1|θ1; κ1) (23)
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F−1 (1− t2|θ2; κ2) ≤ F−1 (1− t1|θ1; κ2) . (24)

The first step is to find t3 such that

F−1 (1− t3|θ2; κ1) > F−1 (1− t1|θ1; κ1) (25)

F−1 (1− t3|θ2; κ2) = F−1 (1− t1|θ1; κ2) . (26)

There are two subcases. First, if (23) and (24) hold, with (24) at equality, then simply set

t3 = t2. Second, if instead F−1 (1− t2|θ2; κ2) < F−1 (1− t1|θ1; κ2) then by Property 3,

F−1 (1− t2|θ2; κ2) < F−1 (1− t1|θ1; κ2) ≤ F−1 (1− t1|θ2; κ2) .

So by Property 1, there exists t3 such that t1 ≤ t3 < t2 satisfying (26). Moreover, since

t3 < t2 and F−1 (1− t2|θ2; κ1) ≥ F−1 (1− t1|θ1; κ1) it follows that (25) holds.

Let x = F−1 (1− t1|θ1; κ2) ∈ X (θ1; κ2). From (26) and the definition of x

F (x|θ1; κ2) = 1− t1

F (x|θ2; κ2) = 1− t3.

By an identical argument to that used in the first half of the proof,

I (x, θ1; κ1, κ2) = F−1 (1− t1|θ1; κ1)

I (x, θ2; κ1, κ2) = F−1 (1− t3|θ2; κ1) .

So the Lehmann-informativeness condition implies

F−1 (1− t3|θ2; κ1) ≤ F−1 (1− t1|θ1; κ1) ,

contradicting (25) and completing the proof.

Proof of Proposition 3:

Part (I): If (θ2, t2) exceeds (θ1, t1) under the product order, it does so under the lexico-

graphic order also. As such, it is immediate that if F−1 (1− t|θ; κ) satisfies the SCP under

the lexicographic order, it does so under the product order also. To establish the opposite

implication, consider (θ1, t1), (θ2, t2), κ1, and κ2 such that (θ2, t2) exceeds (θ1, t1) under the

lexicographic order; κ2 > κ1; and F−1 (1− t2|θ2; κ1) ≥ F−1 (1− t1|θ1; κ1). The only non-

17



trivial case to consider is that in which (θ2, t2) does not exceed (θ1, t1) under the product

order, i.e., θ2 ≥ θ1 but t2 < t1. In this case, Properties 1 and 3 imply that, for any κ,

F−1 (1− t2|θ2; κ) ≥ F−1 (1− t2|θ1; κ) > F−1 (1− t1|θ1; κ) ,

completing the proof.

Part (II): As noted in the main text, Part (II) is an application of Milgrom and Shan-

non’s (1994) Theorem 3. To apply this result it is necessary to verify the condition that

F−1 (1− t|θ; κ) is completely regular, which, given that F−1 is weakly increasing in θ, is

equivalent to checking that if

F−1 (1− t1|θ1; κ) = F−1 (1− t2|θ2; κ)

for some θ2 > θ1, then for any θ ∈ (θ1, θ2) there exists t (θ) continuous in θ such that

F−1 (1− t (θ) |θ; κ) = F−1 (1− t1|θ1; κ) . (27)

This condition is indeed satisfied since, by Property 3,

F−1 (1− t1|θ; κ) ≥ F−1 (1− t1|θ1; κ) = F−1 (1− t2|θ2; κ) ≥ F−1 (1− t2|θ; κ) ,

and hence (by Property 1) there exists a unique t (θ) such (27) holds. Continuity follows

since F−1 is continuous in (θ, t, κ).

B Proof of Proposition 1

The heart of proof of Proposition 1 is the following result, which generalizes Step 2 of Lemma

3 in Quah and Strulovici (2009) to the case in which the action space B is non-compact.

Lemma 1 If b (θ) is a weakly decreasing function then there exists b∗ such that V (b∗, θ) ≥

V (b (θ) , θ) for all θ ∈ Θ.

Proof of Lemma 1: Consider first the case in which b (·) takes only finitely many

values. Hence there is finite partition {Θk : k = 1, . . . , K} of Θ such that b (·) is constant

over each partition element Θk, and every member of Θk+1 exceeds every member of Θk.

The proof establishes the slightly stronger result that there exists b∗ ∈ [b (ΘK) , b (Θ1)] such

that V (b∗, θ) ≥ V (b (θ) , θ) for all θ ∈ Θ.

The proof is by induction. Suppose there exists b̃k ≥ b (Θk) such that V
(

b̃k, θ
)

≥

V (b (θ) , θ) for all θ ∈
⋃

j≤k Θj. To establish the result, it is sufficient to establish the
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inductive step that there exists b̃k+1 ≥ b (Θk+1) such that V
(

b̃k+1, θ
)

≥ V (b (θ) , θ) for all

θ ∈
⋃

j≤k+1Θj. Define b̃k+1 as the supremum of

arg max
b∈[b(Θk+1),b̃k]

V (b, supΘk) .

So in particular, V
(

b̃k+1, supΘk

)

≥ V (b (Θk+1) , supΘk). Since b is constant over Θk+1, SCP

implies V
(

b̃k+1, θ
)

≥ V (b (θ) , θ) for all θ ∈ Θk+1. Moreover, V
(

b̃k+1, θ
)

≥ V
(

b̃k, θ
)

for all

θ ∈
⋃

j≤k Θj, since if instead V
(

b̃k, θ
)

> V
(

b̃k+1, θ
)

for some θ ∈
⋃

j≤k Θj, SCP implies that

V
(

b̃k, supΘk

)

> V
(

b̃k+1, supΘk

)

, which contradicts the definition of b̃k+1. By supposition,

it then follows that V
(

b̃k+1, θ
)

≥ V (b (θ) , θ) for all θ ∈
⋃

j≤k+1Θj , establishing the inductive

step and hence completing the proof of this case.

Next, consider the case in which b (·) take infinitely many values. Recall that θ, θ̄, b and

b̄ are defined in subsection 1.1. Define

β (θ) =



















min
{

b (θ) ,max
{

b (θ) , b̄
}}

if θ ≤ θ

b (θ) if θ ∈
(

θ, θ̄
)

max
{

b (θ) ,min
{

b
(

θ̄
)

, b
}}

if θ ≥ θ̄

.

Define B̄ =
[

min
{

b
(

θ̄
)

, b
}

,max
{

b (θ) , b̄
}]

. Observe that β is weakly decreasing and

β (Θ) ⊂ B̄. Moreover, if β (θ) ,= b (θ) then either θ ≤ θ and b (θ) > β (θ) ≥ b̄, or θ ≥ θ̄

and b (θ) < β (θ) ≤ b. So by the definition of θ, θ̄, b and b̄,

V (β (θ) , θ) ≥ V (b (θ) , θ) for all θ ∈ Θ. (28)

Let {Bn} be a sequence of finite subsets of B̄ such that Bn ⊂ Bn+1 and
⋃

n Bn is dense in

B̄. Define βn (θ) as the largest member of Bn that is weakly less than β (θ). Hence for any

θ ∈ Θ, βn+1(θ) ≥ βn (θ) and βn (θ) → β (θ).

For any n, the first part of the proof implies that there exists b∗n such that V (b∗n, θ) ≥

V (βn (θ) , θ) for all θ ∈ Θ. Moreover, b∗n ∈ B̄. Hence b∗n has a convergent subsequence, with

limit b∗. By the continuity of V in its first argument, it follows that V (b∗, θ) ≥ V (β (θ) , θ)

for all θ ∈ Θ. The result then follows from (28), completing the proof.

Proof of Proposition 1: Under Property 1, for any θ, I (·, θ) is strictly increasing. Let

J (·, θ) : X (θ; κ1) → X (θ; κ2) be the inverse of I (·, θ) with respect to its first argument.

Note that J (·; θ) is strictly increasing.

Note first that X in regime κ2 and J (X, θ) in regime κ1 have the same distribution, since
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for any x ∈ X (θ; κ2),

Pr (X ≤ x|θ; κ2) = F (x|θ; κ2)

= F (I (x, θ) |θ; κ1)

= Pr (X ≤ I (x, θ) |θ; κ1)

= Pr (J (X, θ) ≤ J (I (x, θ) , θ) |θ; κ1)

= Pr (J (X, θ) ≤ x|θ; κ1) .

By the Lehmann-informativeness property, for any x ∈ X (κ2) the function ζ (I (x, θ)) is

weakly decreasing in θ over Θ (x; κ2). So by Lemma 1, there exists a function φ : X (κ2) → B

such that, for any x ∈ X (κ2),

V (φ (x) , θ) ≥ V (ζ (I (x, θ)) , θ) for all θ ∈ Θ (x; κ2) .

It follows that, for any θ and V̄ ,

Pr
(

V (φ (X) , θ) ≤ V̄ |θ; κ2
)

= Pr
(

V (φ (J (X, θ)) , θ) ≤ V̄ |θ; κ1
)

≤ Pr
(

V (ζ (I (J (X, θ) , θ)) , θ) ≤ V̄ |θ; κ1
)

= Pr
(

V (ζ (X) , θ) ≤ V̄ |θ; κ1
)

,

where the inequality uses J (X, θ) ∈ X (θ; κ2), completing the proof.
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