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Abstract

We examine voluntary disclosure when the sender is risk-averse and uncer-
tain about audience preferences. We show that some senders stay silent in
equilibrium, in contrast to classic “unravelling” results. Silence reduces the sen-
sitivity of a sender’s payoff to audiences’ preferences, which is attractive to risk-
averse senders, i.e., “silence is safest.” Increases in sender risk-aversion reduce
disclosure by sender-types who bear a higher risk under disclosure. In contrast,
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consequences of rules mandating that any disclosure be entirely public.
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1 Introduction

An important and long-standing question in the economics of information is whether
voluntary disclosure leads to full disclosure. A compelling and intuitive argument,
often described as the “unravelling” argument, suggests that it does.1 In brief, the
argument is that the firm, or more generally the “sender,” with the most favorable
information will voluntarily disclose. So the audience for the disclosure will interpret
silence as indicating that the firm does not have the most favorable information. But
given this, the firm with the second most favorable piece of information will disclose,
and so on. All the firms thus disclose in the end.

Despite the force of the unravelling argument, the prediction of full disclosure
appears too strong. There are many cases in which valuable information that is po-
tentially disclosable is not disclosed, that is, the would-be sender is “silent.” Firms
do not voluntarily reveal all value-relevant information. Students do not always vol-
untarily disclose test scores. Politicians do not always voluntarily reveal past tax
returns before elections. In such cases, potential disclosers believe that silence is in
their best interests, even though audiences often interpret silence with skepticism.
Moreover, the unravelling argument has the strong implication that disclosure laws
and regulations are unnecessary, which is inconsistent with the vigorous arguments
associated with the introduction of such rules.

In this paper, we give a new yet simple explanation for silence. Our explanation
captures the idea that some types of sender fear disclosure because, if they disclose,
the information revealed will make someone unhappy; and consequently, that staying
silent and not disclosing is the safest option. Moreover, our explanation has the
advantage of applying even in cases where disclosure has no direct cost, and in which
there is no uncertainty that the sender possesses information to disclose, which are
arguably the leading existing explanations of silence (see Grossman and Hart, 1980;
Jovanovic, 1982; Dye, 1985).

Our explanation has two key ingredients, both of which we show to be necessary
for silence to occur in equilibrium. The first ingredient is that the sender does not
know the audience’s collective preferences. In particular, the sender does not know
whether he would benefit from convincing the audience that his type is “low,” or

1See Viscusi (1978), Grossman and Hart (1980), Milgrom (1981), Grossman (1981), and Milgrom
and Roberts (1986). Dranove and Jin (2010) provide a recent survey of the literature.
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“high.” For example, firms often disclose to a mix of investors, who wish to see high
cash flows; and other parties, such as regulators, labor unions, tax authorities, and
competitors, who they would like to convince that cash flows are low. Whether a firm
benefits from convincing its audience that its cash flow is high or low depends on the
relative strength of the preferences of different members of the firm’s audience. To
take another example, a politician who is considering disclosing past tax returns may
be unsure whether voters wish to see high income (thereby indicating that he is rich
and successful) or low income (thereby excusing the low taxes he is known to have
paid). Many applications indeed feature audiences with different preferences, as we
discuss in Section 3.

The second key ingredient in our analysis is sender risk-aversion.2 Absent sender
risk-aversion, sender uncertainty about audience preferences is not enough to gen-
erate silence. The reason is that the expected payoff from disclosure can still be
ordered, so that one can still identify senders with the highest incentive to disclose,
and the unravelling argument still applies. Under risk-aversion, silence potentially
delivers an additional benefit of making the sender’s payoffs safer, thereby breaking
the unravelling argument. We show that silence arises precisely when it is safer than
disclosure.

In a little more detail, consider, for example, a firm with private information
about the level of its cash flow, which it can voluntarily disclose. Along the lines
above, the firm discloses to an audience composed of investors and a regulator. While
investors always reward the firm for high cash flows, the regulator may treat the firm
more harshly if it believes cash flows are higher. However, the firm is uncertain about
whether the regulator treats firms uniformly, i.e., acts independently of perceived firm
cash flow; or is instead discriminatory, i.e., treats firms with higher perceived cash
flows more harshly. If the regulator acts uniformly, then the firm wants to convince its
audience that its cash flows are high. The reverse is true if the regulator is sufficiently
discriminatory.

A disclosing firm faces a lottery over different outcomes, where the lottery realiza-
tion depends on whether the regulator is uniform or discriminatory. Firms disclosing
extreme cash flows—i.e., either very high, or very low—face particularly high-risk lot-

2Note that even if the sender is a firm, risk-aversion is still a natural assumption if either the
firm’s managers are risk-averse and are exposed to firm outcomes, or if financing frictions lead to a
firm value function that is concave.

2



teries, because they receive very different treatment from uniform and discriminatory
regulators. In contrast, a firm disclosing moderate cash flows is treated in a similar
way by the two types of regulator, and hence faces a much safer lottery.

In a typical equilibrium that we study, firms with extreme information stay silent
and do not disclose, while firms with intermediate information disclose. Audiences
correctly interpret silence as indicating extreme information—in the example above,
either very low or very high cash flows. The audience’s response to silence is thus
based on the average of these extremes, i.e., a belief that the firm has moderate cash
flows. In particular, this means that uniform and discriminatory regulators treat the
firm in similar ways. So silence generates a lower-risk lottery for firms with extreme
information, relative to the alternative of disclosing.

The discussion above highlights the firm’s uncertainty about the regulator’s type.
But investors’ presence in the audience is important, because it means the firm is
unsure about the ordinal preferences of its combined audience. If instead investors
were absent, a firm would know that it is best off when its audience believes cash
flows are low, and standard unravelling forces would lead to full disclosure.

Given the economic forces underlying equilibrium silence and the failure of unravel-
ling, it is natural to conjecture that silence becomes more likely as sender risk-aversion
increases. Similarly, silence exposes audiences to risk by reducing their ability to dif-
ferentiate between different sender-types. Consequently, silence becomes less likely as
the audience become more risk-averse. Section 6 formalizes these comparative statics.

Finally, in an extension we explore the impact of rules that mandate that any
disclosure should be entirely public, such as Regulation Fair Disclosure in the US. We
show that such rules, perhaps surprisingly, may reduce total disclosure. The reason is
that they remove senders’ ability to shield themselves from uncertainty about audience
preferences by selectively targeting audience segments with known preferences.

Although our formal model is couched in terms of the sender being a seller and
an audience composed of buyers, with different audiences corresponding to different
buyer preferences, this formal framework covers a wide range of applications, including
the regulator example discussed above. Other applications, which we detail in Section
3, include the disclosure of ratings (security ratings, student test scores, school or food
safety ratings etc.); the disclosure of corporate news that is imperfectly correlated with
firm type, such as inventory levels; and disclosure in political economy settings.

Previous research has identified other possible reasons for why full unravelling may
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not occur, and some senders choose to remain silent instead of disclosing. As noted
above, the most widely applicable existing explanations are that full unravelling does
not occur if disclosure is costly (Grossman and Hart, 1980; Jovanovic, 1982); and that
full unravelling does not occur if there is some probability that the sender is unable
to disclose (Dye, 1985).

While the assumptions of costly disclosure and unobservably impossible disclosure
are certainly satisfied in some settings, there are also many settings in which disclosure
is costless, and there is no uncertainty as to whether the sender is able to disclose,
but voluntary disclosure does not generate full disclosure. For example, disclosure
of tax returns by a politician is both costless, and known to be feasible with com-
plete certainty. Moreover, accounting scholars have suggested that “big data”—i.e.,
the improvement of information technology and the resulting mass production of
information—will likely reduce accounting and reporting costs, which implies lower
disclosure costs and less uncertainty as to whether firms have information in the first
place.3 Our paper can explain silence in these settings where previous explanations
cannot. Moreover, it captures precisely the idea that staying silent and not disclosing
is the “safest” course of action.

Unravelling results have been generalized to wider classes of economies by papers
such as Okuno-Fujiwara et al (1990) and Seidmann and Winter (1997).4 Okuno-
Fujiwara et al (1990) stress the importance of sender payoff monotonicity, and exhibit
examples in which a failure of monotonicity blocks unravelling and leads to full si-
lence. However, we show that payoff non-monotonicity alone is not sufficient to block
unravelling. Our paper can be viewed as identifying a set of economically relevant
conditions under which partial silence emerges as an equilibrium outcome in a natural
setting.

The literature on disclosure is large, and has suggested a number of further al-
ternative explanations of silence, as surveyed in Dranove and Jin (2010). Among

3See Warren et al (2015) for a survey.
4Giovannoni and Seidmann (2007) study a setting similar to Seidmann and Winter (1997), and

characterize conditions under which no disclosure occurs. Differently from our paper, the sender
knows the audience’s preferences. Instead silence arises because different sender types desire different
audience responses, as in the following simple example (which is closely related to examples in these
two papers). The sender’s type x is uniform over [−1, 1], and the audience takes an action a equal
to his posterior estimate of x. If the sender’s payoff is given by −ax, there is an equilibrium with
no disclosure, since no disclosure yields a payoff of 0 for all sender types, while disclosure by type x
yields a payoff of −x2.
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them, some share our focus on audience heterogeneity, though rely on very different
economic forces. For example, Fishman and Hagerty (2003) show that silence arises if
some audience members are unable to process the information content of disclosure.
Harbaugh and To (2017) consider a setting in which the sender’s type is drawn from
the interval [0, 1], but disclosures are restricted to specifying which element of a finite
partition of [0, 1] the type belongs to. Moreover, the audience is endowed with a
private signal about the sender’s type. Consequently, the best senders in a partition
element may prefer to remain silent in order to avoid mixing with mediocre senders in
the same partition element, and thus the unraveling argument breaks down. Similarly,
Quigley and Walther (2018) show that when disclosing is costly while the audience
observes a separate noisy signal about the sender, the best sender may remain silent,
rely on the audience’s signal, and thus save the disclosure cost. This then generates
“reverse unraveling” in which other sender-types also remain silent in order to pool
with higher sender-types.

Dutta and Trueman (2002), Suijs (2007), and Celik (2014) all analyze relatively
special situations in which the sender is unsure how the audience will respond to
a disclosure. However, Dutta and Trueman (2002) assume that there is a strictly
positive probability that the sender has nothing to disclose, and state that this is
critical for their results. In Suijs (2007)’s environment (unlike ours), there is a direct
benefit to silence.5 In Celik (2014), a seller chooses whether to disclose a location
on a Hotelling line, and also makes a take-it-or-leave-it price offer to a buyer whose
location on the Hotelling line is assumed to follow a uniform distribution.6 The details
of price formation are important: if instead there were several buyers in competition,
the only equilibrium would be full disclosure.

2 Model

We consider a firm—henceforth, the sender—that has a characteristic or type x, and
that interacts with an audience that is composed of one or more members, as detailed

5To be specific, in Suijs (2007)’s model, disclosure gives a payoff of either U (0) or U (1), with
probabilities 1 − p (φ) and p (φ) respectively, where φ is the sender’s type. Silence gives payoffs of
U
(
1
2

)
and something at least U (0), with corresponding probabilities, and regardless of audience

inferences about what silence means. So if the type space is such that 1 − p (φ) is sufficiently high
for all types, silence is an equilibrium.

6These assumptions imply that disclosing sellers at the ends of the line face a severe trade off
between proposing a higher price and achieving a reasonable sale probability.
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below. The sender’s type x is drawn from a set X, where X is a compact interval
of the real line.7 The prior distribution of x has full support over X, and admits a
density function f . We normalize the endpoints of X so that X = [0, 1].

The sender is privately informed about his type x. The sender can, at zero cost,
credibly disclose his type x to an audience; or stay silent and not disclose any infor-
mation. The sender is uncertain about the composition of the audience to whom he
discloses. The sender’s utility is determined by the composition of the audience and
the audience’s beliefs about the sender’s type.

Looking ahead, the sender’s uncertainty about the audience’s collective ordinal
preferences plays a central role in our analysis. By modeling sender uncertainty
about the audience’s composition, as we do next, we are able to capture both (i)
cases in which the sender is unsure of the ordinal preferences of individual audience
members, as well as (ii) cases in which the sender knows the ordinal preferences of
each member, but remains unsure how they aggregate. For example, we can formalize
the example discussed in the introduction, in which the sender discloses to investors
and a regulator of unknown type.

Formally, an audience is composed of one or more receivers. The set of possible
receivers is {1, 2, . . . , n}, where n ≥ 1. Let P (n) denote the power set of {1, 2, . . . , n}.
The set of possible audiences is N ⊂ P (n), and we write N ∈ N to denote a
representative audience. The sender does not know what audience he faces when
making disclosure decisions; let Pr (N) be the probability he assigns to facing audience
N ∈ N . Given a realized audience N , any disclosure is observed by all its members
i ∈ N .

The sender’s utility is determined by the combination of disclosure decisions and
the identity of receivers in the audience he faces. We denote the sender’s payoff from
an individual receiver i ∈ N by pi. The sender’s payoff from audience N is then
pN ≡

∑
i∈N pi. The sender’s risk preferences are determined by v, a differentiable

and strictly increasing function. Hence the sender’s expected utility is

EN [v (pN)] =
∑
N∈N

Pr(N)v (pN) .

7The assumption that X is compact ensures that there exists an equilibrium of the disclosure
game we describe. If instead X is non-compact, it is straightforward to give examples in which no
equilibrium exists.
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Note that, for clarity, we typically write EN when the expectation is being taken over
audiences N ∈ N .

The sender’s payoff pi from an individual receiver i ∈ N is determined by

Ex [ui (gi(x)− pi) |I] = ui (0) , (1)

where I is the receiver’s information (i.e., either the particular x the sender discloses,
or nothing), ui is continuous, strictly increasing and weakly concave, and gi is differ-
entiable. The form of (1) is motivated by a firm of type x selling an item to a set
of competing buyers, each of whom has risk preferences given by ui and a valuation
of the item of gi (x), so that pi is the competitive price. For other applications, it is
frequently useful to set ui to be linear, so that (1) simplifies to

pi = Ex [gi(x)|I] .

Note that we impose no assumption on the relationship between different gi’s or as
to whether gi is monotone or not.

For use throughout, we denote the sender’s expected utility from disclosing x by
V D (x). This quantity is straightforward to calculate, since in this case the sender’s
payoff pi from receiver i is simply pi = gi (x), and so

V D (x) ≡ EN

[
v

(∑
i∈N

pi

)]
= EN

[
v

(∑
i∈N

gi (x)

)]
=
∑
N∈N

Pr (N) v

(∑
i∈N

gi(x)

)
.

It is also convenient to define the aggregation of audience N ’s preferences, gN (x):

gN (x) ≡
∑
i∈N

gi(x).

We say an equilibrium features full disclosure if the probability that the sender
discloses is 1, otherwise it features silence. More specifically, we say an equilibrium
features partial silence if the probability that the sender discloses is strictly less than 1

but strictly more than 0, while full silence if the probability that the sender discloses
is 0.

Throughout, we write
(
pSN
)
N∈N for the “prices” received from the different audi-

ences following silence. Note that these prices are endogenous, and are determined in

7



equilibrium.
We make the following mild regularity assumptions, which rule out economically

uninteresting outcomes in which unravelling does not occur because an interval of
sender-types all derive exactly the same utility from disclosure. First, no audience
has flat preferences over the sender’s type:

Assumption 1 For any N ∈ N and any subset X̃ ⊂ X with positive measure, there
exists x̃ ∈ X̃ such that gN (x̃) > Ex

[
gN (x) |X̃

]
.

Second, the expected price (as opposed to utility) received after disclosure is not
flat in the sender’s type:

Assumption 2 Either: For any subset X̃ ⊂ X with positive measure, there exists
x̃ ∈ X̃ such that EN [gN (x̃)] > Ex

[
EN [gN (x)] |X̃

]
; or else the sender is strictly

risk-averse.

Note that Assumption 2 holds generically in the space of probability distributions
over the audience’s type (as a consequence of Assumption 1). Moreover, Assumption
2 allows for the non-generic case of a flat expected price if the sender is strictly risk-
averse. This is useful primarily because it enables us to use a very simple example in
Section 4 to illustrate our results.

Before proceeding, we note the following straightforward result, which is directly
implied by receivers’ (weak) risk-aversion, and which we use repeatedly:

Lemma 1 For any audience N ∈ N ,

pN ≤ Ex [gN(x)|I] , (2)

where the inequality is strict if ui is strictly concave for any i ∈ N and the posterior
of x given information I is non-degenerate.

3 Model applications

Our model is general enough to accommodate many economically relevant applica-
tions in which disclosing is costless. We have described the baseline model in terms
of the sender being a firm that sells an item with characteristic x to buyers (the
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audiences). The seller chooses whether or not to disclose the characteristic x. Impor-
tantly, different buyers have different preferences over the characteristic x. To give
a few examples: a firm may be unsure whether consumers prefer an innovative or
a conventional product; a financial advisor may be unsure about clients’ risk-return
preferences; and in a mergers and acquisitions setting, a target firm may be unsure as
to whether the bidding firms’ technology is a complement or a substitute to its own
technology.

Below, we expand on four applications for which the mapping from our model to
the application is more involved.

3.1 Conflict between debt and equity

A leading case of distinct investor preferences in financial economics is that between
equity- and debt-holders, where different preferences stem from the different structure
of these securities.

A firm anticipates that it will need to raise funding in the future. With some
probability q it will prefer to issue equity, but with probability 1− q it will prefer to
issue debt. For simplicity we take the firm’s preference between debt and equity as
exogenous.

The firm’s future cash flow y is a random variable. The firm does not know
its future cash flow realization, but it does know its type, x, which determines the
distribution of y. For example, x may represent the firm’s choice of projects, which
affect both the mean and variance of cash flows. The firm can disclose x.

The firm has outstanding equity and debt, with values E (x) and D (x), and total
firm value is V (x) ≡ E (x) +D (x). For simplicity, we assume that the firm’s future
issue of equity and debt is sufficiently small that the new issue does not affect prices.
Let κ1 and κ2 denote the small amount of equity and debt that the firm will issue.

To map this application into our setting, let n = 2 (two receivers); g1 (x) = κ1E (x)

and g2 (x) = κ2D (x) (receivers 1 and 2 correspond to the firm issuing debt and equity
respectively); and N = {{1} , {2}} (either the firm issues equity, or it issues debt).
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3.2 Conflict between investors and regulators (or labor union,

tax authority, or competitor)

In the introduction we discussed the case of a firm choosing whether to disclose its
expected cash flow x to an audience composed of investors and a regulator, with the
firm uncertain about whether the regulator acts uniformly, and treats all firms the
same; or instead is discriminatory, and treats more harshly firms that it believes have
higher cash flows.

We formalize this case as follows. Let n = 3 (three receivers); g1 a strictly increas-
ing function, g2 (x) ≡ −κ, some constant κ, and g3 some strictly decreasing function,
with u2 and u3 both linear (receiver 1 represents investors, receiver 2 is the uniform
regulator, and receiver 3 is the discriminatory regulator); and N = {{1, 2} , {1, 3}}
(the audience either consists of investors and a uniform regulator, or investors and a
discriminatory regulator).

By relabeling, our model also covers similar applications in which the regulator
is replaced by a labor union, a tax authority, a competitor, or some combination of
these entities.

3.3 Political elections

We next consider another important case in which the sender’s payoffs do not stem
from prices paid by buyers, that is, political elections. This case also illustrates that
the concavity of sender’s preference function v need not stem from fundamental risk
preferences. We present a very stripped-down model of elections, though (as with
elsewhere) it could be straightforwardly enriched.

Consider a political candidate facing a pool of voters. The candidate has an
attribute (either innate, or a policy position) x. For example, x may represent the
strength of a candidate’s links to some industry; or his stance on trade agreements;
or his personal income. The candidate does not know how voters respond to this
attribute. In particular, with probability Pr({1}), voters are of type 1 in the sense
that they like this attribute, and respond positively to higher values of x. In contrast,
with probability Pr({2}), voters are of type 2 in the sense that they dislike this
attribute, and respond negatively.

In addition, and regardless of whether the pool of voters is type 1 or 2, voters
also weigh other factors when deciding whether to vote the candidate. These other
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factors are represented by δ, which is uniformly distributed over [0, 1]. Specifically, if
the pool of voters is type i, the candidate wins the election if

log (Ex [gi(x)|I] + κa) + log δ ≥ log κb,

so that voters’ preferences over x are captured by the functions gi, where g1 is in-
creasing and g2 is decreasing; and κa and κb are parameters capturing details of
the political process, and the characteristics of the candidate’s opponent(s). Con-
sequently, the candidate wins the election if δ ≥ κb

E[gi(x)|I]+κa , and so has a winning
probability of

1− κb
Ex [gi(x)|I] + κa

.

Normalizing the candidate’s winning payoff to 1, and defining v (p) = 1 − κb
p+κa

, the
candidate’s expected utility is hence∑

i=1,2

Pr({i})v (Ex [gi(x)|I]) ,

which falls within our framework. Note that v is strictly increasing, and concave.
Also note in this example an audience is equivelent to a receiver.

3.4 Disclosure of ratings and other signals of the underlying

attribute

In many cases, the object the sender is able to verifiably disclose is distinct from the
object that receivers care about. A leading example is that audiences care about the
quality of the object the sender is selling, but the sender is only able to disclose some-
thing that is imperfectly correlated with quality, such as a rating issued by a third
party (e.g., firms disclosing security ratings; students disclosing test scores; schools
disclosing test scores; and restaurants disclosing quality ratings). An alternative ex-
ample is a firm disclosing total sales, or inventory, or similar, which is correlated with
quality (e.g., high sales might indicate high quality). Importantly, in this setting dif-
ferences among audiences can arise even when all audiences have the same preferences
over the underlying attribute (e.g., they all prefer higher quality to lower quality),
but differ in other information, which leads them to form different posteriors after

11



disclosure.8

Formally, suppose that the sender has a true underlying type or attribute, y,
e.g., “quality.” As in subsection 3.3, the members of any particular audience N

are homogeneous, i.e., each audience effectively consists of a single receiver. For
simplicity, assume that if an audience knew the seller’s good were of quality y, it
would value it at y. Neither the sender nor the audience knows y, however. Instead,
the sender knows the realization of a signal x that is correlated with y, and is able to
disclose x to audiences.

Audiences potentially differ in their prior assessment of the distribution of the
underlying attribute y;9 we denote by ψN(y) the density corresponding to the prior of
audience N . Audiences also differ in their assessment of the distribution of the signal
x conditional on the underlying attribute y, i.e., HN (x|y), the distribution of x con-
ditional on y. Hence the conditional expectation of audience N , EN [y|x], potentially
differs across types, both because of differences in priors about the underlying type,
ψN , and differences in assessments of the process via which the signal is generated,
HN (·|·).

As a simple example to illustrate how this can lead to different audience prefer-
ence orderings over the disclosable signal x, consider the specific case in which the
signal x is either perfectly correlated with the underlying attribute y, or is completely
uncorrelated, with density φ (x). For example, a rating is either completely accurate,
or is simply noise; or, in the inventory example, a firm’s inventory is either completely
driven by quality, or is unrelated to quality. A audience of type N attaches prob-
abilities λN and (1− λN) to these two possibilities. Without loss, if the signal y is
perfectly correlated with x, it simply equals x.

In this case, upon observing signal x, audience N assesses the probability that it
is perfectly correlated with the underlying attribute y as

λNψN (x)

λNψN (x) + (1− λN)φ (x)
. (3)

8Note that the heterogeneity in audience information is independent of the information the sender
is disclosing, in contrast to Harbaugh and To (2017) and Quigley and Walther (2018). Related, the
forces behind silence in our paper are very different from in these papers, as evidenced by the fact
that sender risk-aversion plays a critical role in our results (see Proposition 2), while coarse disclosure
and disclosure costs respectively play a critical role in Harbaugh and To (2017) and Quigley and
Walther (2018).

9For transparency, in this application we directly consider aggregated audience beliefs, as opposed
to receiver beliefs.
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Note that this expression depends both on audience N ’s prior assessment λN of how
likely the signal is to be perfectly correlated, and on audience N ’s prior ψN of the
distribution of the attribute.

The unconditional expectation of the attribute y is EN [y] =
∫
xψN (x) dx, where

the superscript N denotes that the expectation is taken using audience N ’s priors.
Since the signal x perfectly reveals the attribute if it is perfectly correlated, and
provides no information if it is completely uncorrelated, audience N ’s conditional
expectation of the attribute y after observing x is

EN [y|x] =
λNψN (x)

λNψN (x) + (1− λN)φ (x)

(
x− EN [y]

)
+ EN [y] . (4)

As a simple parameterization, consider the case in which when the signal is un-
correlated with the attribute, it is drawn from an upper-triangular distribution over
[0, 1], i.e.,

φ (x) = 2x, (5)

while audiences’ priors follow a mixture of lower- and upper-triangular distributions,
i.e., for audience N there is constant αN such that

ψN (y) = 2 (1− y) (1− αN) + 2yαN . (6)

Among other interpretations, this parameterization captures in a simple way that
ratings (i.e., the signal x) are upwards biased relative to the truth (i.e., the attribute
y).

In the appendix, we show that if an audience N has a sufficiently negative prior
about the distribution of the attribute y (i.e., αN < α̂ (λN), for some α̂ (λN)), the
conditional expectation EN [y|x] is first increasing then decreasing in x, with the
maximizing signal x itself increasing in the audience’s assessment λN that the signal
x is perfectly correlated with the attribute y. That is, higher signal realizations x
reduce the audience’s posterior of the correlation between the signal and the underly-
ing attribute by enough that the audience’s conditional expectation of the attribute
declines towards his unconditional mean EN [y].10 In contrast, if the audience has a

10Although we demonstrate this in a highly parameterized setting, this property emerges much
more widely, and Dawid (1973) gives conditions under which E [y|x] → E [y] as x approaches its
supremum.
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more positive prior about the attribute (i.e., αN ≥ α̂ (λN)), the conditional expec-
tation EN [y|x] is monotonically increasing in the signal x. Hence, this setting falls
within our general framework, where gN (x) = EN [y|x], and different audiences cor-
respond to differences in priors of both the distribution of the underlying attribute,
as parameterized by αN , and of the correlation between the signal and the attribute,
as parameterized by λN .

4 Necessary conditions for silence

We start by showing how equilibria with silence can emerge in our setting, and de-
riving a pair of necessary conditions. The following simple example illustrates these
necessary conditions:

Example 1: Consider the investor-regulator application of the introduction, which
we formalized in subsection 3.2. Recall that receiver 1 corresponds to investors, re-
ceiver 2 corresponds to a uniform regulator, and receiver 3 corresponds to a discrim-
inatory regulator; and the audience is either {1, 2} or {1, 3}. We adopt the following
specific parameterization: g1 (x) = x, g2 (x) = −1, g3 (x) = −2x, ui is linear for all
receivers i, the sender is strictly risk-averse (v is strictly concave), the unconditional
mean E [x] of the sender’s type is 1

2
, and the two audiences are equally probable.

Consequently, the aggregated preferences of audience {1, 2} (investors and uniform
regulator) are given by g{1,2}(x) = x−1, while the aggregated preferences of audience
{1, 3} are given by g{1,3}(x) = x− 2x = −x.

There is an equilibrium in which all sender types stay silent, as follows. The
sender’s disclosure payoff function is V D (x) = 1

2
v (x− 1) + 1

2
v (−x). In the claimed

equilibrium, a sender’s payoff from remaining silent is 1
2
v (E [x]− 1)+1

2
v (E [x]− 2E [x]),

which coincides with V D (E [x]). The payoff to any sender x 6= 1
2
from silence is hence

strictly higher than the payoff from disclosure because V D is a strictly concave func-
tion that is symmetric over [0, 1], and hence obtains it maximum at 1

2
= E [x].

In words: In the equilibrium described, disclosure induces a lottery over outcomes
x − 1 and −x, depending on the regulator’s type. The expectation of these lottery
payoffs is −1

2
. In contrast, silence induces a degenerate lottery with a certain outcome

−1
2
, obtained regardless of whether the regulator is uniform or discriminatory. The

sender is risk-averse, and so strictly prefers silence, because it is safer.
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As Example 1 makes clear, the two key properties driving equilibrium silence are
(I) receivers differ in their preference orderings over some sender-types, which gives
rise to a risky lottery; and (II) sender risk-aversion. We next establish the necessity
of these two properties formally.

First, silence can only arise if at least some audiences differ in their preference
orderings:

Proposition 1 If there is no uncertainty over audience preference orderings, i.e.,
gN1 is ordinally equivalent to gN2 in the sense that gN1 (x) < (≤) gN1 (x̃) if and only if
gN2 (x) < (≤) gN2 (x̃) for any N1, N2 ∈ N , then disclosure occurs with probability 1.11

By Proposition 1, uncertainty over only the strength of audience preferences for
a higher value of x is insufficient to generate silence, since in this case all the audi-
ences have ordinally equivalent preferences, and a version of the standard unravelling
proof applies. In contrast, silence requires the sender to be unsure about whether an
audience values higher or lower values of x, at least over some range.

To highlight this point, consider the following perturbation of Example 1:

Example 2: Identical to Example 1, except that N = {{2}, {3}}, i.e., the
sender discloses only to a regulator, though is still uncertain whether the regu-
lator is uniform or discriminatory. Hence the disclosure payoff function is simply
V D (x) = 1

2
v (−1) + 1

2
v (−2x), and in particular, is monotone decreasing. The stan-

dard unravelling argument applies, and the only equilibrium entails full disclosure.

Example 2 highlights the role of the investors in Example 1. Without investors
(Example 2), the sender only faces uncertainty about the cardinal strength of the
audience’s preferences, and full unravelling occurs. With investors (Example 1), the
sender faces uncertainty about the ordinal properties of the audience’s preferences,
and there is an equilibrium with full silence.

We also highlight that Proposition 1 is true even if gN is non-monotone, illustrating
that non-monotone audience preferences (and hence non-monotone sender payoffs)
alone are not sufficient to generate silence in equilibrium. Roughly speaking, if gN is

11Note that Proposition 1 can be also stated with respect to receivers: silence can only arise if
at least some receivers differ in their preference orderings. The logic is straightforward: if gi is
ordinally equivalent to gj for any receivers i, j, it must be that gN1

is ordinally equivalent to gN2
for

any audiences N1, N2 ∈ N .
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non-monotone, but all audiences have ordinally equivalent preferences, the unravelling
argument still applies after a change in variables from x to gN (x).

We turn now to our second necessary condition, sender risk aversion. If the sender
is either risk-neutral or risk-loving, then unravelling occurs, and all senders disclose:

Proposition 2 If the sender’s utility function v is linear or strictly convex then
disclosure occurs with probability 1.

In particular, if the sender and receiver utility functions v and ui are all linear,
then one can simply switch variables from x to EN [gN(x)], and apply the standard
unravelling argument with respect to EN [gN(x)]. The proof of Proposition 2 extends
this argument to cover convex v functions and concave ui functions.

Remark : A separate point that Example 1 illustrates is that our setting regularly
has multiple equilibria. Full-disclosure can always be supported as an equilibrium,
simply by assigning off-equilibrium beliefs on silence that load on the type with the
lowest utility from disclosure. Accordingly, our main results are concerned with char-
acterizing silence equilibria when they exist, and with comparative statics on silence
equilibria.

5 Silence is safest: Characteristics of silence equilib-

ria

We next characterize silence equilibria. In light of Proposition 2, for the remainder
of the paper we impose:

Assumption 3 The sender’s utility function v is strictly concave.

In addition, we further assume that the receiver payoff functions gi are concave.
The reason for this assumption is that if instead the payoff functions are convex,
silence creates a direct benefit to the sender via standard Jensen’s inequality effects,
which makes the economics underlying a silence equilibrium less interesting. We
elaborate on this point in more detail in subsection 7.2.

Assumption 4 For any i ∈ {1, 2, ..., n}, the receiver payoff function gi is weakly
concave.
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In many cases, Assumption 4 has a very natural economic interpretation. For
example, in the regulator and tax authority examples of Section 2, concavity corre-
sponds to progressive “taxation” by the regulator or tax authority. In the debt-equity
example of subsection 3.1, concavity (indeed linearity) arises if the attribute x cor-
responds to risky investments in market securities, so that overall firm value V is
constant in x (see appendix for details). In the voting example of subsection 3.3,
concavity roughly corresponds to type-1 voters having relatively flat preferences over
ranges of the attribute x that type-2 voters feel very strongly about, and vice versa.
Moreover, concavity is also satisfied in subsection 3.4 (see appendix for details).

Because Assumption 4 rules out a direct benefit to silence it strengthens Lemma
1 to

pN ≤ Ex [gN(x)|I] ≤ gN (Ex [x|I]) . (7)

Note, moreover, that Assumptions 3 and 4 imply that the disclosure utility V D is
strictly concave in the sender’s type (see Figure 1).

5.1 Silence by senders with extreme types

Example 1 of Section 4 has no disclosure at all. However, this is an unusual case, in
the sense that it can arise only if

max
x̃

EN [v (gN (x̃))] ≤ EN
[
v
(
pSN
)]
, (8)

which by (7) implies

max
x̃

EN [v (gN (x̃))] ≤ EN [v (gN (Ex [x]))] , (9)

which requires the knife-edge condition arg maxx̃EN [v (gN (x̃))] = Ex [x].
More generally, partial silence equilibria entail some sender-types disclosing and

other types not disclosing. Specifically, any partial silence equilibrium has silence by
extreme sender-types, and disclosure by intermediate sender-types, as illustrated in
Figure 1:

Proposition 3 In any equilibrium with silence there exist x, x̄ ∈ (0, 1) with x ≤ x̄

such that all senders x ∈ (x, x̄) strictly prefer to disclose and all senders x < x and
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Figure 1: Illustration of a generic partial silence equilibrium

x > x̄ strictly prefer silence. Moreover, V D(x) = V D(x̄) = EN
[
v
(
pSN
)]
.

If x = x̄ in Proposition 3, the equilibrium features full silence, as in Example 1 of
Section 4. If instead x < x̄, the equilibrium features partial silence.

The proof of Proposition 3 is intuitive. Suppose first that senders sufficiently close
to the extremes 0, 1 do not disclose. If the equilibrium features partial silence, the
continuity of V D implies that there exist senders x and x̄ > x who are indifferent
between disclosure and silence. Since silence delivers the same expected utility to all
sender-types, the fact that both x and x̄ are indifferent between disclosure and silence
also implies V D (x) = V D (x̄). So if x ∈ (x, x̄) then, by the strict concavity of V D,

V D (x) > V D (x) = V D (x̄) , (10)

i.e., all senders in (x, x̄) strictly prefer disclosure to silence. Similarly, any sender with
type below x or above x̄ strictly prefers silence.

If instead the equilibrium features full silence, simply set x = x̄ = Ex [x]. As
noted above, full silence implies maxx̃EN [v (gN (x̃))] = EN [v (gN (Ex [x]))]. More-
over, by (7) and (8), maxx̃EN [v (gN (x̃))] ≤ EN

[
v
(
pSN
)]
≤ EN [v (gN (Ex [x]))]. It

immediately follows that EN
[
v
(
pSN
)]

= EN [v (gN (Ex [x]))] = V D(Ex [x]).
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Finally, what if at least one of senders x = 0, 1 discloses? If both senders x = 0, 1

disclose, then an analogue of (10) implies that all senders disclose. If instead just one
of senders x = 0, 1 discloses, the concavity of V D implies that the silence set is either
a lower or upper interval of X. Lemma A-1 in the appendix formally rules out this
possibility. The intuition is as follows. Economically, silence is attractive for extreme
sender-types only if receivers interpret silence as meaning that the sender either has
a very low or very high type, and so on average is of an intermediate type. In this
case, silence allows an extreme type agent to replace a very risky lottery over prices
(gN(x))N∈N with a safer lottery over more similar prices

(
pSN
)
N∈N .

In light of Proposition 3, we define a marginal discloser xm as follows:

Definition 1 In an equilibrium with silence, a sender-type xm is a marginal discloser
if V D(xm) = EN

[
v
(
pSN
)]
.

As we remarked earlier, whenever a silence equilibrium exists, there also exists
an equilibrium with full disclosure. An additional form of multiplicity arises if the
equilibrium condition V D(x) = V D(x̄) = EN

[
v
(
pSN
)]

has multiple solutions (recall
that pSN is a function of x and x̄). Whether such multiplicity arises is determined
by the density f of the sender’s type, on which we have imposed no assumptions.
We phrase all results below in a way that allows for the existence of multiple silence
equilibria. It is also worth noting that, given the concavity of V D, an immediate
corollary of Proposition 3 is that equilibria are straightforwardly ranked in terms of
the sets of sender-types who disclose:

Corollary 1 Suppose that multiple silence equilibria exist, and let {x, x̄} and {x′, x̄′}
be the marginal disclosers in two such equilibria. Then either (x, x̄) ⊂ (x′, x̄′) or
(x′, x̄′) ⊂ (x, x̄).

5.2 Silence is safest

Our next result formalizes the idea that the lottery over
(
pSN
)
N∈N is safer. That is,

silence is safest. For use both here and below, we state the following mild condition,
which guarantees strictness of some key inequalities:

Condition 1 There is at least one receiver i for which either ui or gi is strictly
concave.
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In particular, in any silence equilibrium Condition 1 strengthens inequality (7) to
the strict inequality pSN < gN (Ex [x|silence]) for any audience containing i.

Proposition 4 Consider an equilibrium with silence, and marginal disclosers x and
x̄, where x ≤ x̄. Then

x ≤ Ex [x|silence] ≤ x̄, (11)

and moreover, there is at least one marginal discloser xm ∈ {x, x̄} for which

EN
[
pSN
]
≤ EN [gN (xm)] . (12)

All three inequalities are strict if the equilibrium has partial silence (i.e., x < x̄) and
Condition 1 holds.

Equation (11) in Proposition 4 formalizes the idea that silence is attractive because
receivers’ equilibrium expectation of the sender’s type given silence lies between the
marginal discloser types x and x̄. Inequality (12) says that the silence lottery is safer
than the disclosure lottery of at least one of the marginal disclosers, in the following
sense: since the lotteries provide the same expected utility to the sender (this is the
definition of a marginal discloser), a lower expected payment implies that the lottery
must be safer. In words, “silence is safest.”

5.3 Existence of silence equilibria

Propositions 3 and 4 characterize silence equilibria, conditional on such equilibria
existing. In general, an equilibrium with silence indeed exists provided that (I) at
least some audiences have different preference orderings over extreme sender-types;
(II) the probability of different audiences is such that extreme sender-types dislike
disclosure sufficiently equally; and (III) receivers are not too risk-averse. Proposition
5 establishes existence of silence equilibria under these conditions.

The result requires some mild regularity conditions on audience preferences over
extreme sender-types, and on the prior density f of extreme sender-types. For clarity,
we state these regularity assumptions separately.

Assumption 5 For all audiences N ∈ N , the derivative ∂v(gN (x))
∂x

remains bounded
as x→ 0, 1.
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Assumption 6 For any constant κ > 0, limx→0
f(x)

f(1−κx) exists and is strictly positive.

In addition, recall that at this point in the paper we have imposed Assumption 3,
which states that the sender is strictly risk-averse.

Proposition 5 Suppose that there are audiences N1, N2 ∈ N such that gN1 (0) <

gN1 (1) and gN2 (0) > gN2 (1). Then an equilibrium with silence exists if the distri-
bution of audiences {Pr(N)} is such that

∣∣V D (0)− V D (1)
∣∣ is sufficiently small, and

all receivers are sufficiently close to risk-neutral.

The proof of Proposition 5 is based on standard fixed-point arguments, and
we sketch a special case here to illustrate how it works. Let everything be the
same as in the above Example 1, with the exception that now Ex [x] 6= 1

2
. A

specific property of the example, which considerably simplifies the argument be-
low, is that pSN1

+ pSN2
= −1, so that the expected utility from silence is simply

Pr(N1)v
(
pSN1

)
+ Pr(N2)v

(
−1− pSN1

)
= V D

(
pSN1

+ 1
)
.12 Note that the condition

that
∣∣V D (1)− V D (0)

∣∣ is sufficiently small is certainly satisfied, since in the example
V D (0) = V D (1).

To show that an equilibrium exists, we look for a candidate equilibrium in which
types X\ [x, x̄] stay silent and do not disclose, while types [x, x̄] disclose. From Propo-
sition 3, we know that any silence equilibrium has this structure. To this end, we
vary the candidate value of x continuously from argmaxx̃ V

D (x̃) = 1
2
down to 0.

The corresponding candidate value of x̄ > 1
2
is determined by the equilibrium con-

dition V D (x) = V D (x̄). Given candidate values of x, x̄, the corresponding payoffs
associated with silence are pSN1

= Ex [x|X\ [x, x̄]]− 1 and pSN2
= −Ex [x|X\ [x, x̄]].

On the one hand, at x = x̄ = 1
2
, we know pSN1

+ 1 = Ex [x] 6= 1
2
, so that V D (x) >

V D
(
pSN1

+ 1
)
. That is, the sender x strictly prefers disclosure to silence, implying

that full silence is not an equilibrium.
On the other hand, as x approaches 0, x̄ approaches 1. Under the regularity

conditions on the tails of the density function of Assumption 6, it follows that pSN1
+1

is bounded away from both 0 and 1. Consequently, for all x sufficiently close to 0, we
know V D (x) < V D

(
pSN1

+ 1
)
, since V D obtains its minimum value at the extremes

x = 0, 1. In words, the sender x strictly prefers silence to disclosure as x approaches
0.

12The proof in the appendix is general and does not rely on this property.
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By continuity, it follows that there is at least one candidate equilibrium x ∈
(
0, 1

2

)
that satisfies the equilibrium condition V D (x) = V D (x̄) = V D

(
pSN1

+ 1
)
.

Among other things, the above argument highlights the role of the condition in
Proposition 5 that

∣∣V D (0)− V D (1)
∣∣ needs to be sufficiently small. This condition

ensures that for any candidate specification of a marginal discloser with low type (i.e.,
a small x), it remains possible to find a corresponding marginal discloser with high
type (i.e., a large x̄).

At the same time, it is worth emphasizing that Proposition 5 states just one set
of sufficient conditions for silence. Silence equilibria can certainly exist even when
V D (0) and V D (1) are very different.

6 Comparative statics

Given that a key economic force driving equilibrium silence is that silence reduces the
risk faced by senders, especially those with extreme types, it is natural to conjecture
that silence is increasing in sender risk-aversion. Propositions 6 and 7 make this
intuition precise. It is also natural to expect that disclosure is increasing in receiver
risk-aversion because silence exposes receivers to risk by reducing their ability to
differentiate between different sender-types, and thus a more risk-averse receiver is
less willing to pay a high price to a non-disclosing sender. This is formalized in
Proposition 8.

6.1 Increasing sender risk-aversion

Proposition 4 says that in a partial silence equilibrium, silence reduces risk for at
least one of the marginal disclosers x and x̄. Given this, a natural conjecture is that
as seller risk-aversion increases, senders close to this marginal discloser are less likely
to disclose, and more likely to remain silent.

For the case of two audiences (|N | = 2), we can establish this result using Pratt’s
(1964) general ordering of risk preferences.

Proposition 6 Suppose that |N | = 2, Condition 1 holds, and that an equilibrium
with partial silence exists when the sender’s preferences are given by v. Suppose that
the sender’s preferences change to ṽ = φ ◦ v for some increasing and strictly concave

22



φ, corresponding to greater risk aversion. Then there is a marginal discloser xm for
whom silence is safer than disclosure in the original equilibrium, i.e., EN

[
pSN
]
<

EN [gN (xm)], and a new silence equilibrium under preferences ṽ, such that silence
strictly increases in the neighborhood of xm.

The restriction to two audiences in Proposition 6 is needed because, as is widely
appreciated, it is hard to produce general comparative statics on choices between
risky lotteries with respect to risk preferences (see, e.g., Ross (1981) for a discussion
of this point), without imposing significant structure on either the utility function
or on the distribution of payoffs. Specifically, with just two audiences we are able to
show that, for at least one of the marginal disclosers xm ∈ {x, x̄}, the prices associated
with silence, i.e., pSN1

, pSN2
, lie within the range of possible prices associated with dis-

closure, i.e., lie in the interval [min {gN1 (xm) , gN2 (xm)} ,max {gN1 (xm) , gN2 (xm)}].
This property allows us to apply results based on Pratt’s ordering of risk preferences
(specifically, Hammond (1974)).

For more than two audiences, we are unable to guarantee this property. Since
we then lack structure on the distribution of payoffs, we must instead impose more
structure on the set of utility functions to produce similar comparative statics with
respect to sender risk-aversion. We have the following result:

Proposition 7 Suppose that Condition 1 holds, and that an equilibrium with partial
silence exists when the sender’s preferences are given by v. Suppose that the sender’s
preferences change to ṽ, where αṽ (x)+x = v (x) for some constant α > 0, correspond-
ing to greater risk aversion. Then there is a marginal discloser xm for whom silence
is safer than disclosure in the original equilibrium, i.e., EN

[
pSN
]
< EN [gN (xm)], and

a new silence equilibrium under preferences ṽ, such that silence strictly increases in
the neighborhood of xm.

In words, the comparison of risk preferences used in Proposition 7 amounts to
saying: preferences represented by ṽ are more risk-averse than preferences represented
by v if v corresponds to a mixture of ṽ and risk neutral preferences. This ordering
is closely related to Ross’s (1981) notion of preferences becoming “strongly more risk
averse.” Note that in the specific case of mean variance preferences, our comparison
corresponds to a greater dislike of variance.
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6.2 Increasing receiver risk-aversion

Another interesting question is how would equilibrium disclosure changes when the
audience becomes more risk averse. To address this question formally, we consider an
increase in receiver risk-aversion, also in the sense of Pratt. Intuitively, while silence
helps risk-averse senders by delivering a safer lottery, it hurts risk-averse receivers,
because it means that they buy an item of uncertain quality. Consequently, an in-
crease in receiver risk-aversion reduces the prices paid to a non-disclosing sender.
Hence higher risk-aversion of receivers makes silence less attractive for senders. Con-
sequently, when the receivers, and thus the audience, become more risk averse, silence
is reduced:

Proposition 8 Suppose that Condition 1 holds and an equilibrium with silence exists
when receivers’ preferences are given by {ui}. Suppose that some receiver j’s prefer-
ences change to ũj = φ ◦uj for some increasing and strictly concave φ, corresponding
to greater risk aversion of j. Then all equilibria feature strictly more disclosure than
the equilibrium with the least amount of disclosure under {ui}.

Note that, in our setting, disclosure by a sender eliminates all risk for the audi-
ence. However, the economic force in Proposition 8 continues to hold even in situa-
tions where disclosure reduces the risk faced by the audience, instead of completely
eliminating it.

7 Discussion and extensions

7.1 Targeted disclosure and Regulation Fair Disclosure

So far, we have assumed that all disclosure is fully public, in the sense that it is
received by all members of the audience. Here, we briefly explore the implications of
instead allowing the sender to exclude some subset of receivers from receiving the dis-
closure. By considering this extension, we are then able to analyze the consequences
of rules such as the U.S. Regulation Fair Disclosure (Reg FD) that mandate that any
disclosure must be fully public, and so inhibit a sender’s ability to exclude particular
receivers. In particular, we show how rules mandating public disclosure may end up
reducing total disclosure. This is consistent with the empirical evidence documented
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in Bailey et al (2002) that firms disclose less information overall after the introduction
of Reg FD.

To fix ideas, consider the following small perturbation of Example 1:

Example 3: The set of possible receivers is {1, 1′, 2, 3}, where receivers 1 and 1′

are different classes of investors, receiver 2 is the uniform regulator, and receiver
3 is the discriminatory regulator. Investors 1 and 1′ have aligned preferences, i.e.,
for some λ ∈ (0, 1), g1 (x) = λx and g1′ (x) = (1− λ)x. Under the public disclosure
benchmark (i.e., the case we have thus far focused on), the audience is either {1, 1′, 2}
or {1, 1′, 3}. All other elements are the same as Example 1.

We extend our model to allow the sender to exclude some receivers. Formally, we
allow the sender to exclude some exogenously fixed subset of receiversM ⊂ {1, . . . , n}.
Hence sender-type x now chooses between three actions, namely: (I) disclose to who-
ever the audience is; (II) stay silent; or (III) disclose to whoever the audience is,
while excluding receivers M .13 A sender’s choice of whether to exclude receivers M
is not publicly observed, though clearly any receiver i ∈M who receives a disclosure
can infer that the sender has not excluded M . The sender’s payoff is determined
exactly as before; however, if a sender discloses and excludesM , then receivers i ∈M
have coarser information to form expectations of the sender’s type x than receivers
in N\M .

As an application, in Example 3 we set M = {1′, 2, 3}. That is: the firm (sender)
could disclose to a small subset of targeted investors, corresponding to receiver 1;
or disclose publicly, in which case the regulator also observes the disclosure; or stay
silent completely. We emphasize that in order to fit the applications we have in mind
we have given the sender only limited ability to selectively disclose.14

For λ sufficiently small (i.e., a small number of targeted investors), an equilibrium
outcome of allowing this form of targeted disclosure in Example 3 is as follows. All
firms disclose to the subset of targeted investors corresponding to receiver 1 (i.e., full
unravelling). Firms with cash flows close to 1

2
also disclose publicly, while most firms

exclude M , i.e., disclose only to the targeted investors (receiver 1).15

13The first two actions are exactly as before; it is the third option that is new to this extension.
14We have also remained consistent with out main motivation, and continued to assume that

the firm is unable to distinguish between the uniform and discriminatory regulator, i.e., between
receivers 2 and 3.

15The argument that it is an equilibrium outcome for most firms to exclude M is as follows.
Exactly the same argument as used in Example 1 establishes that if λ = 0 then it is an equilibrium
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Now consider the effect of introducing a rule along the lines of Reg FD that
prevents a firm from selectively disclosing to just the investor subset 1. In line with
our discussion above, we assume that once the firm discloses to both investor subsets
1 and 1′, the disclosure is public, and so is also observed by the regulator. That
is, we interpret Reg FD as blocking the firm’s ability to exclude the receiver subset
M = {1′, 2, 3}. Consequently, Reg FD returns the model to the case we have focused
on, in which all disclosures are public. In this case, we are back to Example 1, and it
is an equilibrium for all firms to remain silent, and disclose nothing. Hence Reg FD
can end up reducing disclosure, instead of expanding it, in the sense that originally
all firms disclose to at least a subset of investors, while after Reg FD is imposed all
firms switch to complete silence.

The intuition of Reg FD discouraging disclosure is that a mandate that any disclo-
sure be fully public reduces the ability of firms to control the amount of uncertainty
about audience preferences that they face.16

7.2 Direct benefits to silence

The analysis of Sections 5 and 6 is all conducted under Assumption 4, which states
that the payoff functions gi are weakly concave. In this subsection, we briefly relax
this assumption and explore the opposite case in which the payoff functions are strictly
convex. As we noted when introducing Assumption 4, convexity of gi (and hence the
resulting convexity of gN) introduces a direct gain to silence. Here we illustrate this
point in more detail. Although this is not uninteresting, this force is separate from the
effects due to sender uncertainty about the receiver’s type, and sender risk-aversion,
both of which are necessary for silence, and so are central effects we wish to study.

We focus on the specific case in which all receivers have linear preferences uj, and
for all audiences N , there is a constant αN such that gN (x) = v−1 (αNx). Since v
is strictly concave, this implies that gN is strictly convex. In this analytically very
tractable case we show how the convexity of gN generates a direct gain to silence,
and in turn leads to an equilibrium with full silence. (In contrast, recall that, under

for all firms to exclude M . By continuity, for a sufficiently small λ it is an equilibrium outcome for
most firms to exclude M .

16Related but different from us, Guembel and Rossetto (2009) also argue that Reg FD may lead
to less disclosure. In their model, unsophisticated receivers may misunderstand complex messages,
and thus the sender perfer to disclose to sophisticated receivers only. Under Reg FD, therefore, the
sender may prefer not to say anything rather than risk being misunderstood.
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Assumption 4, full silence is non-generic in the space of probability distributions over
audiences.)

In this case, the sender’s expected utility from disclosure, V D (x), is clearly linear.
Assuming that αN does not have the same sign for all audiences (see Proposition 1),
we can choose probabilities {Pr(N)} such that V D has a slope arbitrarily close to 0.
And whenever the slope is sufficiently close 0, there is an equilibrium in which no one
discloses, as we next show.

If no sender-type discloses, the silence expected utility is

EN [v (Ex [gN (x)])] .

The expected utility gain from silence (if no one discloses) relative to disclosure for a
given sender-type x̂ is

EN [v (Ex [gN (x)])]−V D (x̂) = EN [v (Ex [gN (x)])]−EN [v (gN (Ex [x]))]+V D (Ex [x])−V D (x̂) .

(13)
The sense in which convexity of gN generates a direct benefit to silence is then that,
since gN is strictly convex, for any audience,

Ex [gN (x)]− gN (Ex [x]) > 0.

Thus, the first difference in (13) is the direct benefit to silence induced by the convexity
of gN , which is bounded away from 0. The second term in (13) approaches 0 as the
slope of V D approaches 0. So provided probabilities {Pr(N)} are chosen so that V D

has a slope sufficiently close to 0, there is indeed an equilibrium in which no one
discloses. As discussed, this equilibrium outcome is driven by the fact that silence
generates a direct benefit.

7.3 Welfare consequences of mandated disclosure

In many circumstances, regulations and laws mandate disclosure. In cases where the
standard unravelling argument applies, such regulations should have little effect on
equilibrium outcomes and utilities. In contrast, in the cases we have characterized
where the equilibrium outcome is less than full disclosure, such regulations clearly
increase disclosure. This affects welfare differently for senders and receivers.
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For senders, mandated disclosure can only lower welfare, since an unregulated
sender always has the option of staying silent.

Under the competitive condition (1), receiver utility is always simply ui (0), so
that receiver utility is unaffected by mandated disclosure. But more generally, one
could imagine replacing (1) with alternative assumptions that leave receivers some
surplus. (Such a change would not affect the key economic forces in our analysis.)
In this case, mandated disclosure has the potential to increase receiver welfare, by
reducing the risk to which they are exposed.

7.4 Generalized disclosure

Thus far, we have considered the case in which the sender either discloses that his
type is in the singleton set {x}, or else discloses nothing. Here we consider instead
the case in which the sender can disclose any member A of some family of sets X ,
provided that x ∈ A. We assume that, at a minimum, X contains all singletons, all
closed subintervals of the interval X, and all binary unions of closed subintervals of
X. To avoid economically uninteresting mathematical complications, we assume that
all members of X are closed. Note that silence simply corresponds to disclosing X.

This enlarged set of disclosure possibilities is most likely to be relevant if disclosure
takes the form of a trustworthy auditor reporting a sender’s type x to receivers; or
alternatively, if severe ex-post penalties can be inflicted on senders who are found to
have lied (see discussion in Glode et al (2018)). If instead disclosure takes the form of
simply displaying some attribute to receivers (e.g., a food safety rating, a tax return,
etc.), then our benchmark analysis so far covers the relevant case.17

Note that this expansion of the sender’s disclosure possibilities does not affect
standard unravelling results. Indeed, it is straightforward to adapt the proofs of
Propositions 1 and 2 to show that, under the conditions stated in these results, in
any equilibrium a sender discloses {x} with probability one.

17Specifically, Glode et al (2018) analyze a setting in which the sender can disclose any subset
of the type space that includes his own type. Their analysis also differs from ours in two other
important respects. First, the receiver has all the bargaining power, which implies that any sender
obtains zero surplus if he fully discloses his type. Second, their paper is primarily concerned with the
case in which the sender can commit to a disclosure rule before seeing his type. As an extension, they
also consider the non-commitment case, and show that partial disclosure survives as an equilibrium,
since given the bargaining power assumption the sender prefers to preserve some uncertainty about
his type in order to obtain at least some informational rent.
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Our main result in this section is that, given the expanded set of disclosure possi-
bilities, an equilibrium with less than full disclosure—“silence” in the sense that the
sender does not fully disclose his type—exists under a very wide range of circum-
stances. This is true if the key conditions we identify in this paper are satisfied,
namely, sender risk-aversion, differences in audience preferences, and receivers who
are not too risk-averse. In particular, we are able to establish existence of an equi-
librium with less than full disclosure without imposing the sufficient condition that
V D (0) is sufficiently close to V D (1), which we used to establish Proposition 5.

Proposition 9 If (A) there exist ξ, ξ̄ ∈ (0, 1) and a pair of some audiences N1, N2

such that ξ 6= ξ̄, V D
(
ξ
)

= V D
(
ξ̄
)
, and gN1 (x) 6= gN2 (x) for x = ξ, ξ̄, and (B) all

receivers are sufficiently close to risk neutral, then there is an equilibrium with less
than full disclosure, i.e., there is a positive probability of a sender disclosing a signal
other than {x}.

It is worth stressing that the condition (A) is satisfied whenever audiences have
different preferences (gN1 differs from gN2 for at least some audiences N1, N2), and
these different preferences generate non-monotonicity of the expected utility from
disclosing {x}, as given by the function V D.

The proof of Proposition 9 is very close to previous analysis, and we give it here.
We establish the existence of an equilibrium characterized by x, x̄ ∈

(
ξ, ξ̄
)
, in which

senders with x ∈ (x, x̄) and x ∈ X\
[
ξ, ξ̄
]
disclose their exact type {x}; while the

remaining senders with x ∈
[
ξ, x
]
∪
[
x̄, ξ̄
]
disclose simply

[
ξ, x
]
∪
[
x̄, ξ̄
]
.

The proof of Proposition 9 builds on the proof of Proposition 5. First, if one
restricts senders to disclose either {x} or

[
ξ, x
]
∪
[
x̄, ξ̄
]
, the proof is the same as that

of Proposition 5.18

It then remains to ensure that senders do not deviate to other disclosures. The
equilibrium is supported by the following off-equilibrium beliefs: If the sender discloses
A ∈ X , and A 6=

[
ξ, x
]
∪
[
x̄, ξ̄
]
, off-equilibrium beliefs place full mass on the sender’s

type being in arg minx̃∈A V
D (x̃). These off-equilibrium beliefs immediately imply

that senders with x ∈ X\
([
ξ, x
]
∪
[
x̄, ξ̄
])

do not have a profitable deviation. For
senders with x ∈

[
ξ, x
]
∪
[
x̄, ξ̄
]
, note that these off-equilibrium beliefs ensure that

18Indeed, the fact that ξ, ξ̄ ∈ (0, 1) means that the proof avoids the complications of what happens
to utility and density functions as x→ 0, 1, which is what allows use to dispense with the regularity
conditions contained in Assumptions 5 and 6.
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any deviation is at least weakly worse than the deviation of disclosing {x}—which
has already been established to be an unprofitable deviation, by the first step of the
proof.

8 Conclusion

There are many settings in which voluntary disclosure is possible, but in which disclo-
sure occurs with probabilities below 1, despite classic unravelling arguments. In this
paper we explore a possible explanation, which is new to the literature, namely that
potential disclosers do not know the preference ordering of the audience to whom they
are disclosing, and because of risk-aversion they dislike the risk that this imposes. We
show how these two features together naturally deliver equilibrium silence.

In contrast to existing leading explanations of silence, our explanation does not
require disclosure to be either costly, or impossible for some (unobservable) subset of
would-be disclosers. As such, our paper can explain silence even in settings where
disclosure is costless, and there is no uncertainty about whether disclosure is possible.

Our explanation captures the intuitive notion that a sender may prefer to stay
silent because anything that he says will make some audiences very unhappy, while
staying silent avoids this extreme outcome. That is, silence is safest. Specifically,
silence reduces the risk borne by potential disclosers with extreme information. Con-
sequently, disclosure decreases when potential disclosers grow more risk-averse, in a
sense we make precise. On the other hand, silence reduces the information available
to the audience for disclosures, thereby increasing the risk borne by the audience. Be-
cause of this, potential disclosers benefit more from disclosing when audiences grow
more risk-averse, leading to increased equilibrium disclosure.
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Appendix

Throughout the appendix, denote by S the set of sender-types which do not disclose.

Results omitted from main text

Lemma A-1 Let Assumptions 1, 3 and 4 hold. Let x, x̄ be such that 0 ≤ x < x̄ ≤ 1;
all senders in (x, x̄) disclose; and all senders x < x and x > x̄ do not disclose. Then
Ex [x|S] ∈ [x, x̄]. Under Condition 1, moreover, Ex [x|S] ∈ (x, x̄).

Proof of Lemma A-1: Given the assumptions, V D is strictly concave.
Case 1, 0 < x < x̄ < 1: In this case, V D (x) = V D (x̄) = EN

[
v
(
pSN
)]
, and V D is

strictly increasing for x ≤ x and strictly decreasing for x ≥ x̄. So if Ex [x|S] < x then

V D (Ex [x|S]) < V D (x) = EN
[
v
(
pSN
)]
, (A-1)

while if instead Ex [x|S] > x̄ then

V D (Ex [x|S]) < V D (x̄) = EN
[
v
(
pSN
)]
. (A-2)

However, (7) implies that

V D (Ex [x|S]) = EN [v (gN (Ex [x|S]))] ≥ EN
[
v
(
pSN
)]
, (A-3)

delivering a contradiction.
Case 2, 0 = x < x̄ < 1: In this case, V D (x̄) = EN

[
v
(
pSN
)]

and V D is strictly
decreasing for x ≥ x̄. So if Ex [x|S] > x̄ then (A-2) and (A-3) deliver a contradiction.

Case 3, 0 < x < x̄ = 1: In this case, V D (x) = EN
[
v
(
pSN
)]

and V D is strictly
increasing for x ≤ x. So if Ex [x|S] < x then (A-1) and (A-3) deliver a contradiction.

Finally, to show that Ex [x|S] ∈ (x, x̄) under Condition 1, note that Condition 1
implies that inequality (A-3) holds strictly.

Details for Section 3

Subsection 3.1: Provided that E (x) is strictly monotone in x, and V
(
E−1

(
Ẽ
))

is concave in Ẽ, this falls in our framework (including satisfying Assumption 4) after
a change in variables in which the type is the equity value Ẽ = E (x), since the debt
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value is V
(
E−1

(
Ẽ
))
− Ẽ. In particular, if V is constant in x, as discussed in the

main text, then V
(
E−1

(
Ẽ
))

is constant and hence concave in Ẽ.

Subsection 3.4: Evaluating, audienceN ’s unconditional expectation of the attribute
y is

EN [y] = (1− αN)
1

3
+ αN

2

3
=

1 + αN
3

, (A-4)

and the substituting (5) and (6) into (3) implies that, upon observing signal x, au-
dience N assesses the probability that it is perfectly correlated with the underlying
attribute as

λN (2 (1− x) (1− αN) + 2xαN)

λN (2 (1− x) (1− αN) + 2xαN) + (1− pN) 2x
=

λN (1− αN + x (2αN − 1))

λN (1− αN + x (2αN − 1)) + (1− λN)x
.

(A-5)
As one would expect, this probability is increasing in λN , the audience’s prior that
the signal x is perfectly correlated with the attribute y; and is also increasing in αN
for high signals x > 1

2
. By straightforward differentiation, it is decreasing in x (and

strictly so if αN < 1).
Substituting (A-4) and (A-5) into (4) yields

EN [y|x] =
λN (1− αN + x (2αN − 1))

λN (1− αN + x (2αN − 1)) + (1− λN)x

(
x− 1 + αN

3

)
+

1 + αN
3

= λN
(2αN − 1)x2 − 2

3
(α2

N + 2αN − 2)x− 1
3

(1− α2
N)

x (1− 2λN (1− αN)) + λN (1− αN)
+

1 + αN
3

.

Differentiation yields19

19To obtain the following expressions, note that for arbitrary constants a, b, c, d, e,

∂

∂x

ax2 + bx+ c

dx+ e
=

adx2 + 2aex+ be− cd
(dx+ e)

2 ,

∂2

∂x2
ax2 + bx+ c

dx+ e
= 2

ae2 − d (be− cd)

(dx+ e)
3 .
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∂

∂x
EN [y|x] = λN

(2αN − 1) (1− 2λN (1− αN))x2 + 2 (2αN − 1)λN (1− αN)x

(λN (1− αN) + x (1− 2λN (1− αN)))2

+ λN

1
3

(1− α2
N) (1− 2λN (1− αN))− 2

3
(α2

N + 2αN − 2)λN (1− αN)

(λN (1− αN) + x (1− 2λN (1− αN)))2

= λN
(2αN − 1) (1− 2λN (1− αN))x2 + 2 (2αN − 1)λN (1− αN)x

(λN (1− αN) + x (1− 2λN (1− αN)))2

+ λN

1
3

(1− αN) (1 + 2λN + αN (1− 4λN))

(λN (1− αN) + x (1− 2λN (1− αN)))2

and

∂2

∂x2
EN [y|x] = 2λN

(2αN − 1)λ2N (1− αN )2 − (1− 2λN (1− αN )) 1
3 (1− αN ) (1 + 2λN + αN (1− 4λN ))

(λN (1− αN ) + x (1− 2λN (1− αN )))3

= 2λN (1− αN )
(2αN − 1)λ2N (1− αN )− 1

3 (1− 2λN (1− αN )) (1 + 2λN + αN (1− 4λN ))

(λN (1− αN ) + x (1− 2λN (1− αN )))3
.

First, we show that ∂2

∂x2
EN [y|x] < 0. The denominator term λN (1− αN)+x (1− 2λN (1− αN))

is positive, since it is just a rewriting of λNψN (x) + (1− λN)φ (x). The numer-
ator is negative, as follows. Note first that the numerator term is a quadratic in
λN , which at λN = 0 evaluates as −1

3
(1 + αN) < 0 and at λN = 1 evaluates as

(1− αN) ((2αN − 1)− (1− 2 (1− αN))) = 0. So it is sufficient to show that the nu-
merator is increasing in λN at λN = 1. The derivative of the numerator term with
respect to λN is

2λN (2αN − 1) (1− αN)+
2

3
(1− αN) (1 + 2λN + αN (1− 4λN))−1

3
(1− 2λN (1− αN)) (2− 4αN) ,

which at λN = 1 evaluates as

2 (2αN − 1) (1− αN) + 2 (1− αN)2 − 2

3
(1− 2 (1− αN)) (1− 2αN)

=
2

3

(
a2N + aN + 1

)
>

2

3

(
aN +

1

2

)2

≥ 0,

completing the proof that ∂2

∂x2
EN [y|x] < 0.

Next, we show that there exists some α̂ < 1
2
such that, if αN < α̂, EN [y|x] obtains
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its maximum at a signal value strictly below 1. At x = 0,

∂

∂x
EN [y|x] = λN

1
3

(1− αN) (1 + 2λN + αN (1− 4λN))

(λN (1− αN) + x (1− 2λN (1− αN)))2
> 0,

where the inequality follows from the fact that 1 + 2λN + αN (1− 4λN) is positive at
both λN = 0 and λN = 1. At x = 1,

∂

∂x
EN [y|x] = λN

(2αN − 1) + 1
3

(1− αN) (1 + 2λN + αN (1− 4λN))

(λN (1− αN) + x (1− 2λN (1− αN)))2
.

Note that if αN = 0 then this expression is strictly negative, while if αN = 1
2
it is

strictly positive. Hence there is some α̂ < 1
2
such that, if αN < α̂, EN [y|x] obtains

its maximum at a signal value strictly below 1.
Finally, we show that for αN < α̂, arg maxEN [y|x] is increasing in λN . To do so,

it suffices to show that the denominator term of EN [y|x],

(2αN − 1) (1− 2λN (1− αN))x2 + 2 (2αN − 1)λN (1− αN)x

+
1

3
(1− αN) (1 + 2λN + αN (1− 4λN)) ,

is increasing in λN , i.e., that

−2 (2αN − 1) (1− αN)x2 + 2 (2αN − 1) (1− αN)x+
1

3
(1− αN) (2− 4αN) > 0,

i.e. (and recalling that 1− 2αN > 0),

x2 − x+
1

3
> 0.

This is indeed true since

x2 − x+
1

3
> x2 − x+

1

4
=

(
x− 1

2

)2

≥ 0.

Proofs of results stated in main text

Proof of Lemma 1: Concavity of ui and Jensen’s inequality imply

ui (Ex [gi(x)− pi|I]) ≥ Ex [ui (gi(x)− pi) |I] = ui (0) ,
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which in turn implies pi ≤ Ex [gi(x)|I] and then immediately pN ≤ Ex [gN(x)|I].

Proof of Proposition 1: Suppose to the contrary that the probability of silence is
strictly positive. So there exists some non-zero-measure subset S ⊂ [0, 1] of sender-
types who do not disclose.

Write N =
{
N1, N2, . . . , N|N |

}
. We recursively define x1, . . . , x|N | ∈ S as fol-

lows. First, by Assumption 1, define x1 ∈ S such that gN1 (x1) > Ex [gN1 (x) |S].
Next, suppose that x1, . . . , xk−1 are defined, with the properties that xk−1 ∈ S,
and gN (xk−1) > Ex [gN (x) |S] for all audiences N = N1, . . . , Nk−1. Then, define
xk ∈ S such that gNk

(xk) ≥ gNk
(xk−1) and gNk

(xk) > Ex [gNk
(x) |S]. To see

that such a choice is possible, note that if gNk
(xk−1) > Ex [gNk

(x) |S] then one
can simply set xk = xk−1; while if instead Ex [gNk

(x) |S] ≥ gNk
(xk−1), by Assump-

tion 1 there must exist xk ∈ S with gNk
(xk) > Ex [gNk

(x) |S] ≥ gNk
(xk−1). Since

gNk
(xk) ≥ gNk

(xk−1), by ordinal equivalence gN (xk) ≥ gN (xk−1) for any audience
N , and hence gN (xk) > Ex [gN (x) |S] for all audiences N = N1, . . . , Nk, establishing
the recursive step.

So in particular, v
(
gN
(
x|N |

))
> v (Ex [gN (x) |S]) for all audiences N ∈ N . By

Lemma 1, Ex [gN(x)|S] ≥ pSN . Hence v
(
gN
(
x|N |

))
> v

(
pSN
)
for all audiences N ∈ N .

But this implies that sender x|N | ∈ S would strictly gain by deviating and disclosing.
The contradiction completes the proof.

Proof of Proposition 2: Suppose to the contrary that the probability of silence is
strictly positive. So there exists some non-zero-measure subset S ⊂ [0, 1] of sender-
types who disclose with probability below 1. Since any sender-type x′ ∈ S prefers
silence to disclosure, Lemma 1 implies

EN [v (gN (x′))] ≤ EN
[
v
(
pSN
)]
≤ EN [v (Ex [gN(x)|S])] .

Since v is weakly convex,

EN [v (Ex [gN(x)|S])] ≤ EN [Ex [v (gN(x)) |S]] = Ex [EN [v (gN (x))] |S] .

Combining these two inequalities implies that, for any x′ ∈ S,

EN [v (gN (x′))] ≤ Ex [EN [v (gN (x))] |S] .
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If v is strictly convex, the above inequality is strict, giving a contradiction. If instead
v is linear, this inequality contradicts Assumption 2, completing the proof.

Proof of Proposition 4: First, consider the case in which the equilibrium features
full silence, i.e., x = x̄. Then (9) implies

EN [v (gN (Ex [x]))] = max
x̃

EN [v (gN (x̃))] = EN
[
v
(
pSN
)]
. (A-6)

Since V D is strictly concave, Ex [x] is the unique maximizer of V D, and hence x̄ =

Ex [x]. Moreover, (A-6) combines with (7) to imply pSN = gN (Ex [x]) for all audiences
N , completing the proof of this case.

Next, consider the case of an equilibrium with partial silence. Inequality (11)
is established by Lemma A-1, and is strict under Condition 1. To establish (12),
suppose to the contrary that

EN
[
pSN
]
>max {EN [gN (x)] , EN [gN (x̄)]} . (A-7)

By (7), it follows that

EN [gN (E [x|S])] > max {EN [gN (x)] , EN [gN (x̄)]} .

Given concavity of gN and (11), it follows that EN [gN (x)] obtains its maximum in
the interval [x, x̄], and hence is weakly increasing over [0, x] and weakly decreasing
over [x̄, 1]. Hence (A-7) implies that

EN
[
pSN
]
>EN [gN (x̃)] for all x̃ ∈ [0, x] ∪ [x̄, 1] .

Another application of Lemma 1 then implies that

EN [Ex [gN (x) | [0, x] ∪ [x̄, 1]]] > EN [gN (x̃)] for all x̃ ∈ [0, x] ∪ [x̄, 1] .

The contradiction establishes (12). Finally, an easy adaptation of the above argument
establishes that (12) is strict under Condition 1, completing the proof.

Proof of Proposition 5: Under the stated conditions, there exists some distribution
of audiences {Pr(N)}N∈N such that V D (0) = V D (1). We establish the existence of
a silence equilibrium for this distribution, and for the case in which all receivers are
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risk neutral (ui linear for all i ∈ {1, 2, ..., n}). The general result then follows by
continuity.

Because receivers are risk neutral, silence prices are simply given by pSi = Ex [gi (x) |S]

and pSN = Ex [gN (x) |S].
Note that Assumptions 1 and 3 imply that V D is strictly concave. Define xmax =

arg maxx̃ V
D (x̃).

If V D (xmax) ≤ EN [v (Ex [gN (x)])] then there is an equilibrium in which no sender
discloses, and the proof is complete. So for the remainder of the proof, we consider
the case in which

V D (xmax) > EN [v (Ex [gN (x)])] . (A-8)

For any x ∈ (0, xmax), define η (x) ∈ (xmax, 1) by V D (η (x)) = V D (x). Note
that η (x) exists and is unique, since V D (0) = V D (1) and V D is strictly concave.
Moreover, η is continuous, with η(x)→ 1 as x→ 0, and

∂

∂x
η (x) =

∂
∂x
V D (x)

∣∣
x=x

∂
∂x
V D (x)

∣∣
x=η(x)

.

Since V D (0) = V D (1), and V D is strictly concave, ∂
∂x
V D (x) remains bounded away

from 0 as x → 0, 1. Assumption 5 then implies that ∂
∂x
η (x) remains bounded away

from both 0 and −∞ as x → 0. Assumption 6 and l’Hôpital’s rule then imply that
the following limit exists, and is bounded away from 0:

lim
x→0

∫ x
0
f (x) dx∫ 1

η(x)
f (x) dx

= − lim
x→0

f (x)

f (η (x)) ∂
∂x
η (x)

.

Strict concavity of v (Assumption 3) and the condition that there are audiences
N1, N2 ∈ N such that gN1 (0) < gN1 (1) and gN2 (0) > gN2 (1) then implies that

lim
x→0

EN [v (Ex [gN (x) |X\ [x, η (x)]])]− EN [Ex [v (gN (x)) |X\ [x, η (x)]]] > 0. (A-9)

Also note that

EN [Ex [v (gN (x)) |X\ [x, η (x)]]] = Ex [EN [v (gN (x))] |X\ [x, η (x)]] = Ex
[
V D (x) |X\ [x, η (x)]

]
.
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Hence, and using V D (0) = V D (1),

lim
x→0

(
EN [Ex [v (gN (x)) |X\ [x, η (x)]]]− V D (x)

)
= 0. (A-10)

It follows by (A-9) that

V D (x)− EN [v (Ex [gN (x) |X\ [x, η (x)]])] < 0

for all x sufficiently close to 0.
Combined with (A-8), continuity then implies that there exists some x ∈ (0, xmax)

such that
V D (x) = V D (η (x)) = EN [v (Ex [gN (x) |X\ [x, η (x)]])] .

Hence there is an equilibrium in which senders [x, η (x)] disclose, while sendersX\ [x, η (x)]

remain silent and do not disclose, completing the proof.

Proof of Proposition 6: Consider any partial silence equilibrium, with a silence
set [0, x) ∪ (x̄, 1].

Claim A: For each audience N , pSN ≤ max{gN(x), gN(x̄)}.
Proof of claim: If gN is monotone over [x, x̄], then

pSN ≤ Ex[gN(x)|S] ≤ gN(Ex[x|S]) ≤ max{gN(x), gN(x̄)} ,

where the first inequality follows from Lemma 1, the second inequality follows from
Jensen’s inequality and the concavity of gN , and the last inequality follows from
Proposition 4 and the monotonicity of gN over [x, x̄].

If instead gN is non-monotone over [x, x̄], then by concavity, it is strictly increasing
over [0, x) and strictly decreasing over (x̄, 1]. Hence gN(x) < max{gN(x), gN(x̄)} for
all x ∈ [0, x) ∪ (x̄, 1]. So by Lemma 1,

pSN ≤ Ex[gN(x)|S] < max{gN(x), gN(x̄)}.

Claim B: For some x ∈ {x, x̄}, pSN1
, pSN2

∈ [min {gN1 (x) , gN2 (x)} ,max {gN1 (x) , gN2 (x)}].
Proof of Claim: Now consider any silence equilibrium in which the silence set is

[0, x) ∪ (x̄, 1]. The equilibrium condition implies that gN1 (x̄)− gN1 (x) and gN2 (x̄)−
gN2 (x) have opposite signs. Without loss, assume gN1(x) ≤ gN1(x̄) and gN2(x̄) ≤
gN2(x). So Claim A implies pSN1

≤ gN1(x̄) and pSN2
≤ gN2(x). The equilibrium
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condition then implies pSN2
≥ gN2(x̄) and pSN1

≥ gN1 (x), and so pSN1
∈ [gN1 (x) , gN1(x̄)]

and pSN2
∈ [gN2(x̄), gN2 (x)].

If the sets [gN1 (x) , gN1(x̄)] and [gN2(x̄), gN2 (x)] are ranked by the strong set order
(Veinott, 1989) then the result is straightforward: If [gN1 (x) , gN1(x̄)] � [gN2(x̄), gN2 (x)]

under this order, then pSN1
, pSN2

∈ [gN1 (x) , gN2 (x)]; while if instead [gN2(x̄), gN2 (x)] �
[gN1 (x) , gN1(x̄)], then pSN1

, pSN2
∈ [gN2 (x̄) , gN1 (x̄)].

Next, consider the cases where the two sets [gN1 (x) , gN1(x̄)] and [gN2(x̄), gN2 (x)]

are not ranked by the strong set order. There are two sub-cases. In the first sub-
case, [gN1 (x) , gN1(x̄)] ⊂ [gN2(x̄), gN2 (x)], and so either pSN2

∈ [gN2 (x̄) , gN1 (x̄)] or
pSN2
∈ [gN1 (x) , gN2 (x)] (or both), while both pSN1

∈ [gN2 (x̄) , gN1 (x̄)] and pSN1
∈

[gN1 (x) , gN2 (x)]. In the second sub-case, [gN2(x̄), gN2 (x)] ⊂ [gN1 (x) , gN1(x̄)], and
so either pSN1

∈ [gN1 (x) , gN2 (x)] or pSN1
∈ [gN2 (x̄) , gN1 (x̄)] (or both), while both

pSN2
∈ [gN1 (x) , gN2 (x)] and pSN2

∈ [gN2 (x̄) , gN1 (x̄)].
Claim C: If xm ∈ {x, x̄} and pSN1

, pSN2
∈ [min {gN1 (xm) , gN2 (xm)} ,max {gN1 (xm) , gN2 (xm)}]

then EN
[
pSN
]
≤ EN [gN (xm)].

Proof of Claim: If instead EN
[
pSN
]
> EN [gN (xm)] then Theorem 3 of Hammond

(1974) implies that EN
[
v
(
pSN
)]

> EN [v (gN (xm))], contradicting the equilibrium
condition.

Completing the proof: From above, for at least one xm ∈ {x, x̄}, we know pSN1
, pSN2

∈
[min {gN1 (xm) , gN2 (xm)} ,max {gN1 (xm) , gN2 (xm)}] and EN

[
pSN
]
≤ EN

[
gSN (xm)

]
,

along with the equilibrium condition EN
[
v
(
pSN
)]

= EN [v (gN (xm))]. So for any
increasing and strictly concave function φ, Theorem 3 of Hammond (1974) implies
that

EN
[
φ
(
v
(
pSN
))]
≥ EN [φ (v (gN (xm)))] . (A-11)

Moreover, under Condition 1, Claim A holds strictly (by Proposition 4), and hence
Claims B and C hold strictly also, and so (A-11) likewise holds strictly.

Given inequality (A-11), a straightforward modification of the argument in the
proof of equilibrium existence in Proposition 5 implies that, for preferences ṽ, there
exists an equilibrium in which senders [0, x˜) ∪ (x̃, 1] do not disclose, where if xm = x

then x˜ > x, and if xm = x̄ then x̃ < x̄. This completes the proof.

Proof of Proposition 7: Given Proposition 3, when the sender’s preferences are
given by v, consider an equilibrium in which senders in [0, x) ∪ (x̄, 1] do not disclose.
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By Proposition 4, for some xm ∈ {x, x̄},

EN
[
pSN
]
< EN [gN (xm)] . (A-12)

It follows that
EN
[
ṽ
(
pSN
)]
> EN [ṽ (gN (xm))] , (A-13)

since otherwise (A-12) and the definition that v (x) = αṽ (x) + x at all x ∈ X implies
that

EN
[
v
(
pSN
)]
< EN [v (gN (xm))] ,

contradicting the equilibrium condition when the sender’s preferences are given by v.
Given (A-13), the result follows as in the last step of the proof of Proposition 6.

Proof of Proposition 8: Consider the equilibrium with the least amount of dis-
closure. For any marginal discloser xm the equilibrium condition EN

[
v
(
pSN
)]

=

EN [v (gN (xm))] holds. Following the increase in receiver j’s risk-aversion, if the
silence set stays unchanged then pSj strictly decreases, and so does pSN for any au-
dience N containing j. Hence, for both marginal disclosers xm ∈ {x, x̄} we have
EN
[
v
(
pSN
)]
< EN [v (gN (xm))] for any audience N containing j. The result follows

as in the last step of the proof of Proposition 6.

43


