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Abstract

We analyze a consumption-saving problem in which time-inconsistent preferences
generate demand for commitment, but uncertainty about future consumption needs
generates demand for flexibility. We characterize in a standard contracting frame-
work the circumstances under which this combination is possible, in the sense that
a commitment contract exists that implements the desired state-contingent consump-
tion plan, thus offering both commitment and flexibility. The key condition that we
identify is a preference reversal condition: high desired consumption today should be
associated with low marginal utility at future dates. Moreover, there are conditions
under which preference reversal naturally arises. The key insight of our paper is that
time-inconsistent preferences not only generate commitment problems, but also allow
their possible solution, since the preferences of later selves can be exploited to punish
overconsumption by earlier selves.
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1 Introduction

Preferences with hyperbolic time discounting, introduced by Strotz (1956), are widely used

to model behavior in a variety of settings.1 In his original article, Strotz observed that hy-

perbolic discounting generates demand for commitment.2 But in addition to commitment,

individuals value the flexibility to respond to economic shocks. For example, an individual

is likely to be uncertain about future consumption needs. In such cases, an individual

will be reluctant to commit to future consumption levels that are state-independent, and

there is a tension between commitment and flexibility (Amador et al 2006). In this paper,

we analyze the extent to which commitment and flexibility can be successfully combined.

When this is possible, hyperbolic discounting has no impact on equilibrium consumption.

In our setting, an individual would like to commit at date 0 to a consumption plan

that may depend on unverifiable shocks that are realized in the future. To this end, the

individual can enter into a commitment contract with the aim of implementing self 0’s3

desired consumption plan. The key contracting difficulty is that the shocks are realized

only after the contract is signed, and since they are unverifiable, the contract cannot

directly condition the individual’s consumption on their realization. Rather, a commitment

contract must provide the individual both with flexibility to respond to these shocks, and

with incentives to adhere to self 0’s desired consumption plan.

Our results characterize conditions under which the tension between commitment and

flexibility can be resolved. Our key condition is a preference reversal condition, which states

that desired consumption at date 1 is negatively correlated with marginal utility (MU) at

1See Frederick, Loewenstein and O’Donoghue (2002) for a review of models of time discounting. Applica-
tions of hyperbolic discounting include consumer finance (e.g., Laibson 1996 on savings behavior in general;
Laibson, Repetto, and Tobacman 1998 on retirement planning; DellaVigna and Malmendier 2004 and Shui
and Ausubel 2005 on credit card usage; Skiba and Tobacman 2008 on payday lending; and Jackson 1986 on
bankruptcy law), asset pricing (e.g., Luttmer and Mariotti 2003), and procrastination (e.g., O’Donoghue
and Rabin 1999a, 1999b, 2001).

2See Ariely and Wertenbroch (2002) for direct evidence of demand for commitment.
3We follow the literature and refer to the individual at date t as self t.

1



date 2. When this condition is satisfied, it is often possible to design a commitment contract

in which an individual is deterred from overconsumption at date 1 by the prospect that

future selves will engage in more costly forms of overconsumption at subsequent dates.

The key insight of our paper is that time-inconsistent preferences are not only the

source of the individual’s commitment problem, but also allow its possible solution. With

time-inconsistent preferences, the individual’s different selves have different preferences but

still share knowledge of the shock realizations. This opens up the possibility of later selves

punishing prior selves for deviating from self 0’s desired consumption plan, which would

be impossible if their preferences were the same. In essence, time-inconsistent preferences

turn a single-agent contracting problem into a multi-agent mechanism design problem. As

is well known from the implementation theory literature,4 this can dramatically expand

the set of outcomes that are attainable in equilibrium.

1.1 Illustrative examples

We illustrate our main results with three examples. In each example, there are three dates,

and quasi-hyperbolic time preferences over these dates, with a hyperbolic discount factor

of β = 1
2 and no regular time discounting.

Example 1: An individual is about to retire. At date 0, he has accumulated savings of 31
2 ,

and anticipates a retirement spanning dates 1, 2, 3. He also anticipates that at either date

1 or 2, he will have to make an essential home repair, at cost 1
2 . He has log preferences over

consumption (minus any home repair expenditure) at each date. So to equalize MU across

dates, self 0 wants consumption of 3
2 , 1, 1 at dates 1, 2, 3 respectively if the home repair is

needed at date 1, but consumption 1, 3
2 , 1 if the home repair is needed at date 2. Self 0’s

problem is that, because of hyperbolic discounting, self 1 prefers the consumption stream

4See Maskin and Sjöström (2002), Palfrey (2002), and Serrano (2004) for surveys.

2



3
2 , 1, 1 even if the home repair is not needed until date 2.5

Self 0 can overcome this problem as follows: he deposits 1
2 into a liquid checking account,

and uses 3 to buy an annuity that pays 1 at each of dates 1, 2, 3. Importantly, the annuity

contains an early redemption option: 2
3 of the date 3 payment can be accessed at date 2,

at a cost of 1
6 , so that annuity payments at the three dates become 1, 3

2 ,
1
3 .

To see why this arrangement achieves self 0’s desired consumption, suppose self 1

consumes both the 1
2 in the checking account and the 1 paid by the annuity, and consider

self 2’s behavior. If self 2 has to make the home repair then he exercises the annuity’s early

redemption option, consuming 3
2 and leaving 1

3 to self 3.6 But if self 1 already made the

home repair then self 2 finds early redemption too costly, despite his present-bias.7

Anticipating self 2’s behavior, if self 1 does not need to pay for the home repair then

he does not withdraw from the checking account, since he understands that if he does, self

2 will exercise the option of costly early redemption, hurting self 3.8 Self 2 then liquidates

the checking account at date 2 to cover the home repair. In contrast, if self 1 needs to pay

for the home repair, then he liquidates the checking account to pay for it. Note that self 2

never exercises the early redemption option in equilibrium.

In essence, the conflict between selves 0 and 1 is resolved by the new conflict that the

early redemption option creates between selves 1 and 2.

Example 2: In Example 1, the individual is able to commit to self 0’s desired consumption

plan. But suppose now that the expenditure shock takes a different form: either the indi-

vidual must pay home repairs of 1
4 at both dates 1 and 2, or else no home repair is necessary

at either date. Consequently, self 0 wants to commit to consumption 5
4 ,

5
4 , 1 if the home

5Formally, log 3
2

+ β log
(
1− 1

2

)
+ β log 1 = log

(
3

2
√
2

)
> log 1 + β log

(
3
2
− 1

2

)
+ β log 1.

6Formally, log
(
3
2
− 1

2

)
+ β log 1

3
= log

(
1√
3

)
> log

(
1− 1

2

)
+ β log 1.

7Formally, log 1 + β log 1 > log 3
2

+ β log 1
3

= log 3

2
√
3
.

8Formally, log 1 + β log
(
3
2
− 1

2

)
+ β log 1 > log 3

2
+ β log

(
3
2
− 1

2

)
+ β log 1

3
= log

(
3

2
√
3

)
. Note that we

compare only a full withdrawal of 1
2

from the checking account with no withdrawal at all. Intermediate
cases are covered by the analysis of Section 6.
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repairs are needed, but to 7
6 ,

7
6 ,

7
6 otherwise. Similar to Example 1, hyperbolic discounting

causes self 1 to prefer 5
4 ,

5
4 , 1 even if no repairs are needed, because this consumption stream

offers higher date-1 consumption.9

The key to combining commitment and flexibility in Example 1 is that it is possible to

offer self 2 an alternative consumption stream that he chooses if and only if self 1 overcon-

sumed, and that also hurts self 1. But this is impossible in Example 2, as follows. First, the

only consumption streams that raise self 2’s utility while lowering self 1’s utility are those

that increase date 2 consumption but decrease date 3 consumption. But second, if self 2

prefers this stream when no repairs are needed—which is when self 1 has overconsumed

in Example 2—then he also prefers such a stream when repairs are needed, since MU at

date 2 is higher in this case. Consequently, it is impossible to impose a state-contingent

punishment on self 1 for overconsumption. This point is formalized in Lemma 2 below.

Discussion: The key distinction between the two examples is that in Example 1 self 0’s

desired date 1 consumption is negatively correlated with MU at date 2, while in Example 2

these same quantities are positively correlated. We refer to the case of negative correlation

as preference reversal. As Example 1 illustrates, and as we establish in our formal results,

under preference reversal it is frequently possible for an individual to combine commitment

and flexibility, and to attain exactly the outcome desired by self 0. In contrast, this is

impossible if preference reversal is violated.

Closely related, commitment and flexibility can be combined in Example 1 because the

realization of uncertainty at date 1 reveals something about self 2’s preferences: specifically,

if self 1 does not need to make the home repair then he knows that MU at date 2 will be

high, and consequently, that self 2 will be prepared to punish him for overconsumption at

date 1 by increasing date 2 consumption at the expense of date 3. If instead self 1 learns

nothing about self 2’s preferences, then commitment and flexibility cannot be combined.

9Formally, log 5
4

+ β log 5
4

+ β log 1 > log 7
6

+ β log 7
6

+ β log 7
6

since
(
5
4

) 3
2 >

(
7
6

)2
.
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Under preference reversal, the key qualitative feature of contracts that allow self 0 to

combine commitment with flexibility is that they increase self 2’s discretion relative to the

discretion that he would have absent hyperbolic discounting. This is clear in Example 1,

where, absent hyperbolic discounting, all decisions could be delegated to self 1, since no

new information arrives at date 2. Moreover, and as our formal results establish, even

when new information does arrive at date 2, it remains the case that the combination of

preference reversal and hyperbolic discounting leads self 0 to increase self 2’s discretion.

Examples 1 and 2 are consumption-savings problems with uncertainty over future es-

sential expenditures. They are isomorphic to settings in which uncertainty is instead over

future income. Consumption-savings problems with uncertainty over taste shocks are also

closely related. Moreover, by switching to consumption of leisure instead of physical goods,

Examples 1 and 2 can instead be interpreted as procrastination problems, a setting heav-

ily studied in the literature (see footnote 1). Finally, Laibson (1996) considers uncertainty

over investment returns as well as over income. Variation in rates of return directly induces

correlation between self 0’s desired date 1 consumption and MU at subsequent dates. We

illustrate this with our final example, which concerns health “investments:”

Example 3 : An individual’s date 3 health is determined by how much he exercises at each

of dates 1 and 2, denoted i1 and i2. However, the benefits of exercise are lower if he has a

cold at date 1: his date 3 utility is log (i1 + i2) if he is cold-free, but only log
(

4
5 i1 + i2

)
if

he has a cold. He dislikes exercise: his utility at dates t = 1, 2 is log (1− it). Hence self 0

would like to commit to an exercise regime of i1 = i2 = 1
3 if he is cold-free at date 1, but

to a regime of i1 = 1
4 and i2 = 2

5 if he has a cold. Self 0’s problem is that self 1 prefers the

latter exercise regime even when he is cold-free.10

Self 0 can overcome this problem as follows: he publicly announces (e.g., via a smart-

10Formally, log
(
1− 1

4

)
+ β log

(
1− 2

5

)
+ β log

(
1
4

+ 2
5

)
= log

(
3
4

√
3
5

13
20

)
> log

(
1− 1

3

)
+ β log

(
1− 1

3

)
+

β log
(
1
3

+ 1
3

)
= log 4

9
.
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phone app such as Strava) an exercise goal of 1
3 at each of dates 1 and 2, with the under-

standing that if he exercises just i1 = 1
4 and so misses the date 1 goal, he can either largely

“catch up” at date 2 by exercising i2 = 2
5 (note that 1

3 + 1
3 ≈

1
4 + 2

5), or else he can quit and

do no exercise at date 2, where quitting has a psychic cost of 1
50 (e.g., the cost of missing

the publicly announced goal).

To see why this achieves self 0’s desired exercise regime, note that self 2 quits if and only

if self 1 cheated by underexercising when cold-free.11 The reason is that the health cost of

quitting is lower when he was cold-free at date 1, since any exercise he did at that date

was more effective in creating health “capital.” Foreseeing this, self 1 meets his exercise

goal of 1
3 at date 1 when cold-free, since he does not want self 2 to quit.12

2 Related literature

Central to our analysis is the idea that the commitment contract sets up a game between

selves. O’Donoghue and Rabin (1999a) demonstrate that this inter-self game has some

surprising properties; for example, “sophistication” may worsen self-control problems rel-

ative to “näıveté.”13 This previous paper focuses on a setting in which an individual must

take an action exactly once, and takes the costs and rewards of this action as exogenously

given. The basic commitment problem confronted by an individual in our paper is covered

by their analysis: for instance, in Example 1, the individual can take an immediate reward

of log 3
2 − log 1 at date 1, with the cost of this reward deferred until the future. Our main

results explore whether it is possible to design a contract (which determines costs and re-

wards) that deters the individual from taking the immediate reward at date 1. When such

11Formally, log
(
1− 1

50

)
+ β log 1

4
> log

(
1− 2

5

)
+ β log

(
1
4

+ 2
5

)
and log

(
1− 2

5

)
+ β log

(
4
5

1
4

+ 2
5

)
>

log
(
1− 1

50

)
+ β log 4

5
1
4
.

12Formally, log
(
1− 1

3

)
+ β log

(
1− 1

3

)
+ β log

(
1
3

+ 1
3

)
> log

(
1− 1

4

)
+ β log

(
1− 1

50

)
+ β log 1

4
.

13Following the literature, sophistication refers to the case in which self t correctly understands that selves
s > t have present-biased preferences. In contrast, näıveté refers to the case in which self t incorrectly
believes that selves s > t are not present-biased.
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a contract exists, it gives the individual the possibility of taking two rewards. Although

such a contract falls outside O’Donoghue and Rabin’s framework, because the number of

actions is not fixed, the basic flavor of our contract is related to their Example 4, in which

self 1 is deterred from taking the immediate reward by the knowledge that, if he does so,

self 2 will then also take an early reward.14

Our paper is closely related to Amador et al (2006). Like us, they study a hyperbolic

individual who is hit by unverifiable taste shocks, but consider only a two-date version

of the problem. This restriction immediately rules out the possibility of self 2 imposing a

state-contingent punishment on self 1 for deviating—the key feature of our setting—because

with two dates self 1 is effectively the only strategic agent.15 Consequently, the only way

to deter self 1 from deviating is to distort consumption in at least some states; the authors

characterize the least costly way to do so.

Like Amador et al (2006), DellaVigna and Malmendier (2004) restrict attention to

two dates, again ruling out the possibility of self 2 punishing self 1, and characterize the

contract that maximizes the profits of a monopolist counterparty facing a partially näıve

agent (Section 7 below discusses partial näıveté). In particular, they characterize the

combination of flat upfront fees and per-usage fees in the profit-maximizing contract.16

O’Donoghue and Rabin (1999b) analyze optimal contracts for procrastinators in a

multi-period environment, where the socially efficient date at which a task should be per-

formed is random. They explicitly rule out the use of contracts that induce an agent

to reveal his type, which are the focus of our paper. As they observe, this restriction is

without loss of generality in the main case they study, that of agents who are completely

14In addition, O’Donoghue and Rabin observe that present-biased preferences often violate independence
of irrelevant alternatives (their Proposition 5), a point they refer to as a “smoking gun.” This point—that
actions never taken on the equilibrium path may nonetheless affect equilibrium decisions—is illustrated by
Example 1, and is central to the design of contracts in our paper.

15Amador et al (2003) extend the analysis to three or more dates. They assume that shocks are indepen-
dent across dates (see subsection 4.4 below), so that self 1 learns nothing about self 2’s preferences.

16Similarly, Eliaz and Spiegler (2006) analyze profit maximization by a monopolist who deals with a
population of time-inconsistent individuals who differ in their degree of sophistication.

7



näıve about their future preferences. By contrast, we study sophisticated agents (again,

see Section 7 for a discussion of partial näıveté).

While we examine the use of external commitment devices, such as contracts, other

research considers what might be termed internal commitment devices. Krusell and Smith

(2003) and Bernheim, Ray, and Yeltekin (2015) consider deterministic models in which an

individual is infinitely lived, and show that equilibria exist in which the individual gains

some commitment ability from the fact that deviations will cause future selves to punish

him. Carrillo and Mariotti (2000) and Bénabou and Tirole (e.g., 2002, 2004) consider

models in which an individual can commit his future selves to some action by manipulating

their beliefs, respectively, through the extent of his own information acquisition, through

direct distortion of beliefs, or through self-signalling.

3 Model

At each of dates t = 1, 2, 3, a single agent consumes ct. At dates 1 and 2 his contem-

poraneous utility depends on state variables θ1 ∈ Θ1 and θ2 ∈ Θ2, realized at dates 1

and 2 respectively, and is given by u1 (c1; θ1) and u2 (c2; θ2). Without loss, Pr (θt) > 0

for all θt ∈ Θt. At date 3, contemporaneous utility is u3 (c3). Note that u3 (c3) can be

interpreted as a value function covering multiple future dates, i.e., the expected discounted

future utility of an agent inheriting wealth c3.17 The contemporaneous utility functions ut

are strictly increasing and strictly concave in ct. The total resources available to the agent

across the three dates are W , and are state-independent.18 This could either represent an

initial endowment of the agent, or the present value of future income.

17As stated, the value function interpretation of u3 depends on the distributions of any shocks from date
3 onwards being independent of θ1 and θ2. More generally, one could allow the distributions of future
shocks to depend on θ2, and write the date 3 value function as u3 (c3; θ2). In this case, one would then

replace date 2 MU in our analysis with the ratio
u′2(c2;θ2)
u′3(c3;θ2)

.
18However, the additive shock parameterization of our environment that we introduce below is equivalent

to allowing W to vary in an unverifiable way across states.
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The agent discounts the future quasi-hyperbolically: for t = 0, 1, 2, self t’s intertemporal

utility function is U t ≡ ut+β
∑3

s=t+1 us, so that β ∈ (0, 1] is the hyperbolic discount factor.

Note that the regular, i.e., non-hyperbolic, discount rate is normalized to zero; likewise,

the risk-free interest rate is zero. The agent is self-aware (i.e., sophisticated), in the sense

that at each date he correctly anticipates his preferences at future dates (we relax this in

Section 7). Finally, write V t =
∑3

s=t us for utility under exponential discounting.

To summarize: the economy is defined by a state space Θ1 × Θ2, a probability distri-

bution over Θ1 ×Θ2, preferences {ut}, endowment W and discount rate β.

Write C (θ1, θ2) = (C1 (θ1) , C2 (θ1, θ2) , C3 (θ1, θ2)) for a contract, which consists of a

sequence of date- and state-contingent consumption levels. Since our focus is on the effect

of hyperbolic discounting on intertemporal efficiency, not its effect on insurance across

states, we rule out transfers across states and impose the following resource constraint:

C1 (θ1) + C2 (θ1, θ2) + C3 (θ1, θ2) ≤W for all (θ1, θ2) ∈ Θ1 ×Θ2. (RC)

This assumption also facilitates comparison with the existing literature, which like us fo-

cuses on intertemporal efficiency.19 Moreover, it would be hard—and sometimes impossi-

ble—to insure the agent if self 0 had private information about the distribution of states.20

Note that RC covers even zero-probability realizations (θ1, θ2), a point we discuss below.

3.1 Incentive constraints

The central friction in our framework is that the states θ1 and θ2 are unverifiable. Un-

verifiability means that a contract must satisfy the following incentive compatibility (IC)

19Amador et al (2006) rule out transfers across states. O’Donoghue and Rabin (1999b) and DellaVigna
and Malmendier (2004) study risk-neutral agents, and so insurance across states is not a concern.

20Note that private information about the distribution of θ1 would not affect our analysis, which charac-
terizes when intertemporal efficiency is possible.
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constraints, which ensure that no self can gain by misrepresenting the state.21 Self 2’s IC

constraints are: for all θ1 ∈ Θ1 and θ2, θ̃2 ∈ Θ2,

U2 (C (θ1, θ2) ; θ2) ≥ U2
(
C
(
θ1, θ̃2

)
; θ2

)
. (IC2)

Self 1’s IC constraints are: for all θ1, θ̃1 ∈ Θ1,

E
[
U1 (C (θ1, θ2) ; θ1, θ2) |θ1

]
≥ E

[
U1
(
C
(
θ̃1, θ2

)
; θ1, θ2

)
|θ1

]
. (IC1)

3.2 Benchmark: State θ1 verifiable

Unverifiability of the state induces a potential trade-off between commitment and flexibility

for self 0, as discussed in the introduction. Our main results characterize when self 0 can

successfully combine commitment with flexibility with respect to date 1 shocks. That is,

we characterize when the constraint IC1 is non-binding in the maximization problem

max
C s.t. RC, IC1, IC2

E
[
U0 (C (θ1, θ2) ; θ1, θ2)

]
. (1)

IC1 is non-binding in (1) if self 0’s utility is the same in (1) and the benchmark relaxed

problem in which θ1 is verifiable,

max
C s.t. RC,IC2

E
[
U0 (C (θ1, θ2) ; θ1, θ2)

]
. (2)

21In principle, a contract could also condition on self 2’s report of the date 1 state, say θ21, so that the
contract would take the form C (θ1, θ2, θ21). However, given that self 2’s preferences are independent of

state θ1, the only way for a contract with C (θ1, θ2, θ21) 6= C
(
θ1, θ2, θ̃21

)
to be incentive compatible is

if self 2 is indifferent between C (θ1, θ2, θ21) and C
(
θ1, θ2, θ̃21

)
, and resolves the indifference differently

depending on the true realization θ1. We assume throughout that self 2 resolves indifference in the same
way in all states, and accordingly, write the contract and ICs as in the main text. In a discussion of the
same issue, Amador et al (2003) show that indifference is only possible in a finite number of states, so that
if there are a continuum of states, as in Section 4.5, this assumption is without loss.
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We focus on combining commitment and flexibility with respect to date 1 shocks because

the analogous trade-off at date 2 corresponds to the two-date problem analyzed by Amador

et al (2006), who establish that there is no way to fully resolve the date 2 conflict.

Definition 1 “Commitment and flexibility can be combined” if and only if IC1 is non-

binding in (1).

3.3 Preference assumptions and a preliminary result

Before formally stating assumptions on how the state (θ1, θ2) affects preferences, it is useful

to give two leading examples:

Example, multiplicative shocks: ut (ct; θt) = θtu (ct) for t = 1, 2 and θt ∈ Θt.
22

Example, additive shocks: ut (ct; θt) = u (ct − θt) for t = 1, 2, where u has non-increasing

absolute risk aversion (NIARA). This shock specification has a natural interpretation as

either essential expenditure shocks, as in Examples 1 and 2, or as income shocks.

Motivated by these examples, we make Assumptions 1-3:

Assumption 1 For t = 1, 2 and θt 6= θ̃t ∈ Θt, sign
(
u′t (ct; θt)− u′t

(
ct; θ̃t

))
is indepen-

dent of ct.

Given Assumption 1, we write θ̃2 > θ2 if and only if u′2

(
·; θ̃2

)
> u′2 (·; θ2), and θ̄2 and

θ2 for the maximal and minimal elements of Θ2 under this ordering. Without loss, we

assume u′2

(
·; θ̃2

)
6= u′2 (·; θ2) if θ̃2 6= θ2.

In addition, we impose the follow regularity condition, which is easily verified to be

satisfied by both multiplicative and additive shocks. It is used only in subsection 4.4.

Assumption 2 If θ̃2 > θ2 then
u′2(c2;θ2)

u′2(c2;θ̃2)
is either constant, or strictly increasing in c2.

To guarantee interior solutions, we impose the standard Inada condition, modified to

allow a state-contingent minimum consumption level (see, e.g., the case of additive shocks):

22Amador et al (2006) focus completely on this case.
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Assumption 3 For t = 1, 2 and θt ∈ Θt, there exists ct such that u′t (ct; θt) → ∞ as

ct → ct, and moreover, u′3 (c3)→∞ as c3 → 0.

Finally, we note the following straightforward and standard monotonicity result:23

Lemma 1 If θ̃2 > θ2 and C satisfies IC2 then C2

(
θ1, θ̃2

)
≥ C2 (θ1, θ2) for all θ1 ∈ Θ1.

3.4 Applications

We have described the model in terms of consumption of a good. But the model can also be

straightforwardly interpreted as consumption of leisure, enabling us to analyze incentives

for procrastinators. In this interpretation, the agent must complete a task that requires a

total of h hours of work.24 His total time endowment across the three dates is W +h. The

agent decides how much leisure ct to enjoy at each of dates 1,2,3, subject to the constraint

that he completes the task,
∑3

t=1 ct ≤W .

A second alternative interpretation relates to Amador et al’s (2006) analysis of a society

that wishes to constrain government spending, while recognizing that in some circumstances

higher government spending is socially desirable. Our model extends this setting to cover

both federal and local government spending. In this interpretation, the federal government

chooses spending c1; taking federal spending as given, the local government chooses spend-

ing c2; and the private sector consumes c3. Both federal and local governments want to

spend more than is socially optimal, corresponding to hyperbolic discounting.

4 Analysis

Our earlier examples illustrate that commitment and flexibility can be combined if states

in which self 0 wants high date 1 consumption are followed by low date 2 MU, a condition

23See Lemma 2 of Myerson (1981); or Chapter 2.3 of Bolton and Dewatripont (2005).
24In the additive shock parameterization, different states can interpreted as changes in the amount of

time required to complete the task.
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we term as preference reversal. Formalizing and generalizing:

Definition 2 Preference reversal holds if for some C solving self 0’s benchmark problem

(2), then for any θ1, θ̃1 ∈ Θ1 with C1

(
θ̃1

)
> C1 (θ1), the distribution of θ2 conditional on

θ1 strictly first-order stochastically dominates the distribution of θ2 conditional on θ̃1.

We establish that preference reversal25 is necessary for the combination of commitment

and flexibility, and give conditions under which it is also sufficient. We also characterize

how preference reversal affects the characteristics of the contract maximizing self 0’s utility

(problem (1)). We initially assume that Θ1 and Θ2 are binary, and then relax this in

subsection 4.5. Note that when Θ2 is binary, Θ2 =
{
θ2, θ̄2

}
.

4.1 Perfect correlation

We start by assuming that the shocks θ1 and θ2 are perfectly correlated, and so θ1 perfectly

forecasts θ2. Hence self 0’s benchmark problem (2) has a solution in which consumption

at all dates is determined solely by self 1’s report, i.e., C (θ1, ·) is constant, and self 2 has

no discretion. We denote this minimum discretion solution to (2) by C∗.

Absent hyperbolic discounting (i.e., β = 1), self 1 and 2’s preferences coincide, and

so the minimum discretion contract C∗ satisfies IC1. More generally, let β∗ be the cutoff

hyperbolic discount rate for which C∗ satisfies IC1:

β∗ = inf
{
β̃ ∈(0,1]: C∗ satisfies IC1 for all β ≥ β̃

}
. (3)

Hence for β ≥ β∗, self 0 can maximize utility by having self 1 make all decisions, with no

25The preference reversal condition may remind readers of Maskin’s (1999) monotonicity condition.
However, while preference reversal may fail in our setting, monotonicity is trivially satisfied as long
as some self’s preferences differ across the two states. In our setting, the social choice rule of inter-
est is F (θ1, θ2) = C (θ1, θ2). This social choice rule is monotonic if and only if for all (θ1, θ2) and
(θ′1, θ

′
2) 6= (θ1, θ2), U t (C (θ1, θ2) ; θ1, θ2) ≥ U t (x; θ1, θ2) and U t (C (θ1, θ2) ; θ′1, θ

′
2) < U t (x; θ′1, θ

′
2) for some

self t ∈ {1, 2, 3} (self 0 is non-strategic) and some x ∈ R3. As long as some self’s preferences differ across
the two states, this condition is satisfied
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discretion granted to self 2, and so commitment and flexibility are easily combined.

Our first result is Proposition 1, which establishes the point illustrated by our opening

examples, namely that even when β < β∗ it may still be possible to combine commitment

and flexibility, provided that preference reversal holds. Importantly, doing so requires

departing from the minimum discretion contract C∗, and giving self 2 additional discretion.

Proposition 1 Suppose β < β∗. Commitment and flexibility can be combined only if

preference reversal holds. Moreover, if preference reversal holds, there exists β̂ < β∗ such

that commitment and flexibility can be combined if β ≥ β̂.

Given perfect correlation, the following corollary of Proposition 1 is immediate:

Corollary 1 If preference reversal holds and β ≥ β̂ then self 0 attains the same utility as

if both θ1 and θ2 were verifiable.

We next discuss the economics behind Proposition 1. To aid exposition, we write

θ̄1 and θ1 for the realizations of θ1 such that C∗1
(
θ̄1

)
> C∗1 (θ1).26 Consequently, under

perfect correlation, preference reversal simplifies to the condition that θ̄1 is deterministically

followed by θ2, while θ1 is deterministically followed by θ̄2.

To establish the necessity of preference reversal, suppose that it is violated, i.e., θ̄1 is

deterministically followed by θ̄2, and θ1 is deterministically followed by θ2, as in Example

2. So IC1 in state θ1 for a contract C that delivers consumption C∗ in equilibrium is

u1 (C∗1 (θ1) ; θ1) + βV 2 (C∗ (θ1, θ2) ; θ2) ≥ u1

(
C∗1
(
θ̄1

)
; θ1

)
+ βV 2

(
C
(
θ̄1, θ2

)
; θ2

)
. (4)

The key contract terms are C2

(
θ̄1, θ2

)
and C3

(
θ̄1, θ2

)
, which determine consumption if self

1 falsely claims high consumption C∗1
(
θ̄1

)
in the low consumption state θ1, which is followed

26Note that the case of C∗1 constant over Θ1 is ruled out by the condition β < β∗, since C∗ certainly
satisfies IC1 if C∗1 is constant. Also, note that θ̄1 and θ1 are defined in terms of date 1 consumption, while
θ̄2 and θ2 are defined in terms of MU at date 2.
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by θ2 since preference reversal is violated. Because β < β∗, a necessary condition to satisfy

(4) is that V 2
(
C
(
θ̄1, θ2

)
; θ2

)
< V 2

(
C∗
(
θ̄1, θ̄2

)
; θ2

)
. In words, C must punish self 1 for

overconsuming at date 1 by delivering low continuation utility in state θ2. However, this

is impossible, by the following result which is central to our analysis, and shows that self

2 cannot be induced to impose an effective punishment in date 2 states with low MU.

Lemma 2 If C satisfies IC2 then for any θ1, θ2 and θ̃2 ≥ θ2,

V 2 (C (θ1, θ2) ; θ2) ≥ V 2
(
C
(
θ1, θ̃2

)
; θ2

)
. (5)

The proof of Lemma 2 is short, and we give it here. By Lemma 1, date 2 consumption

is lower in the low MU state θ2, i.e., C2 (θ1, θ2) ≤ C2

(
θ1, θ̃2

)
. So if V 2 (C (θ1, θ2) ; θ2) <

V 2
(
C
(
θ1, θ̃2

)
; θ2

)
, hyperbolic discounting means that self 2 will not pick C (θ1, θ2) in

state θ2, since the alternative C
(
θ1, θ̃2

)
is both more attractive to a non-hyperbolic agent,

and has greater immediate consumption, and so is certainly more attractive to a hyper-

bolic agent (formally, see Lemma A-1). Hence IC2 can only hold if inequality (5) holds.

Intuitively, the only way to get self 2 to punish self 1 is by having him consume heavily at

date 2, but he is prepared to do this only if his MU at date 2 is relatively high.

To summarize, commitment and flexibility can be combined only if self 2 can be in-

duced to punish self 1 after self 1 overconsumes in the low desired consumption state θ1.

Preference reversal is necessary for this because otherwise θ1 is followed by a date 2 state

with low MU, namely θ2, and by Lemma 2, punishment is impossible in this state.

We next discuss the sufficiency of preference reversal for combining commitment with

flexibility. To do so, suppose now that preference reversal holds, as in Example 1. So IC1

in state θ1 for a contract that implements consumption C∗ on the equilibrium path is

u1 (C∗1 (θ1) ; θ1) + βV 2
(
C∗
(
θ1, θ̄2

)
; θ̄2

)
≥ u1

(
C∗1
(
θ̄1

)
; θ1

)
+ βV 2

(
C
(
θ̄1, θ̄2

)
; θ̄2

)
. (6)
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Here, the key contract terms are C2

(
θ̄1, θ̄2

)
and C3

(
θ̄1, θ̄2

)
, which determine consumption

if self 1 falsely claims high consumption C∗1
(
θ̄1

)
in the low consumption state θ1, which

is followed by θ̄2 by preference reversal. As in the early redemption option of Example 1,

one can set these contract terms to induce a conflict between selves 1 and 2, by raising

C2

(
θ̄1, θ̄2

)
relative to C∗2

(
θ̄1, θ2

)
and lowering C3

(
θ̄1, θ̄2

)
relative to C∗3

(
θ̄1, θ2

)
. Precisely

because of hyperbolic discounting, it is possible to do this so that C
(
θ̄1, θ̄2

)
punishes self

1, i.e., V 2
(
C
(
θ̄1, θ̄2

)
; θ̄2

)
< V 2

(
C∗
(
θ̄1, θ2

)
; θ̄2

)
, and self 2 imposes the punishment, i.e.,

U2
(
C
(
θ̄1, θ̄2

)
; θ̄2

)
≥ U2

(
C∗
(
θ̄1, θ2

)
; θ̄2

)
.

One still needs to show that the above punishment can be made large enough to satisfy

(6). In particular, the requirement that RC hold even off-equilibrium at
(
θ̄1, θ̄2

)
precludes

punishing self 1 by setting C3

(
θ̄1, θ̄2

)
very low, while setting C2

(
θ̄1, θ̄2

)
very high to satisfy

IC2. Proposition 1 deals with this complication by establishing a result for β close to β∗.

In brief, for all β < β∗ one can reduce V 2
(
C
(
θ̄1, θ̄2

)
; θ̄2

)
below V 2

(
C∗
(
θ̄1, θ1

)
; θ̄2

)
by an

amount that is bounded away from 0. But as β approaches β∗, the size of the punishment

needed approaches 0, and so (6) can be satisfied.

To the extent to which empirical studies suggest that hyperbolic discounting is not too

extreme,27 Proposition 1 suggests that commitment and flexibility can be combined under

preference reversal even when self 0 cannot directly delegate all decisions to self 0 using the

minimum discretion contract C∗. Moreover, for some circumstances, the sufficiency half of

Proposition 1 can be extended to cover arbitrary levels of hyperbolic discounting.

Proposition 2 Suppose (I) limc→0 u3 (c) = −∞, (II) there exists κ such that u2

(
c; θ̄2

)
≡

u3 (c− κ) for all c, and (III) C∗3
(
θ̄1, θ2

)
≥ C∗3

(
θ1, θ̄2

)
. Commitment and flexibility can be

combined when β < β∗ if and only if preference reversal holds.

Condition (I) of Proposition 2 simply states that it is possible to impose arbitrarily

27For example, representative estimates include: Shui and Ausubel (2005), who estimate β ≈ 0.8; Laibson
et al (2007), who estimate β ≈0.7; and Augenblick et al (2015), who estimate β ≈ 0.9. The length of a time
period in these three studies is, respectively, a quarter, a year, and a week.
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large utility punishments on self 1. It is satisfied by many utility functions, including, for

example, those with constant relative risk aversion (CRRA) greater than 1. Condition (II)

holds if shocks are additive. It also holds, trivially, if u2

(
c; θ̄2

)
≡ u3 (c), which arises if the

date 2 shock lowers MU relative to a baseline. Although condition (III) is more demanding,

it is nonetheless satisfied in many cases, as discussed in the next subsection.

4.2 Sources of preference reversal

The preference reversal condition identified in Proposition 1 arises naturally in multiple

settings. Example 1 illustrates a leading case, namely timing shocks, in which a shock to

MU occurs either at date 1 or 2. In Example 1, this arises from uncertainty of the timing of

an essential expenditure; alternatively, self 0 may know that he will encounter an attractive

consumption opportunity at either date 1 or 2, but not both (e.g., an out-of-town friend

will visit at one of dates 1 and 2). Timing shocks generate preference reversal because they

leave C∗1 +C∗2 unchanged, and so high MU at date 2 is associated both with higher values

of C∗2 and lower values of C∗1 .

A second leading case in which preference reversal holds is that of one-period ahead

shocks, i.e., at date 1, self 1 learns about a shock that that affects MU at date 2. High date

2 MU raises C∗2 while reducing both C∗1 and C∗3 . In particular, the reduction in C∗1 means

that preference reversal holds. By continuity, preference reversal also holds if date 1 MU

is somewhat elevated in states in which self 1 learns date 2 MU will be high, provided the

effect on date 1 MU is not too pronounced. Note that condition (III) of Proposition 2 is

satisfied by both one-period ahead shocks and timing shocks.

In the public finance interpretation of subsection 3.4, preference reversal holds if date 0

uncertainty centers on the efficacy of local government spending. For this case, our analysis

suggests that it is possible to design a constitution that controls government spending (at

both federal and local levels), while still allowing flexibility to respond to shocks.
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Finally, Section 5 shows that preference reversal often arises naturally in investment

problems, as illustrated by Example 3.

4.3 Implementation

The key feature of contracts that allow commitment and flexibility to be combined (when

β < β∗) is that they grant self 2 discretion that would be unnecessary absent hyperbolic

discounting. The specific form of discretion is that self 2 is able to increase date 2 con-

sumption at the cost of decreasing date 3 consumption.

In practical terms, this discretion can be achieved by giving self 2 access to a partially

illiquid asset. As Example 1 illustrates, if date 3 consumption comes from an annuity,

but early redemption is possible, then this grants self 2 the discretion required. Similarly,

if date 3 consumption stems from the use of a durable asset, but this asset can be sold

(possibly at a discount) at date 2, then this again grants self 2 the discretion required.

The contracts used to combine commitment and flexibility in the proofs of Propositions

1 and 2 grant self 2 discretion only after high date 1 consumption. However, if condition

(III) of Proposition 2 holds, then self 2 can be granted discretion unconditionally:

Lemma 3 If C∗3
(
θ̄1, θ2

)
≥ C∗3

(
θ1, θ̄2

)
and commitment and flexibility can be combined,

then they combined using a contract C in which self 2 has the option to increase date 2

consumption by some amount X2 at the expense of decreasing date 3 consumption by some

amount X3 ≥ X2 regardless of self 1’s consumption choice.

In some leading cases, self 2’s discretion arises even without self 0 making any explicit

arrangements. This is the case in environments of the type illustrated by Example 1, in

which self 0 allocates an initial endowment over future dates, knowing he will need to incur

an essential expenditure at either date 1 or 2 (i.e., a timing shock). In this case, self 0’s

desired consumption has C∗
(
θ̄1, θ2

)
= (c+ x, c, c) and C∗

(
θ1, θ̄2

)
= (c, c+ x, c) for some

c, x > 0. This corresponds to self 0 using 3c of his initial endowment to purchase either an
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annuity or durable assets that deliver c each period, and x to purchase a liquid asset. If the

annuity/durable assets can be partially liquidated at date 2, then self 2’s discretion arises

out of the same arrangement that self 0 uses to spread consumption over time. Moreover,

by Lemma 3 self 2 does not exercise this discretion if date 1 consumption is low.

A second class of problems in which self 2’s discretion arises absent explicit arrange-

ments is if the agent has a per-period income of w, but anticipates the possibility of a

positive income shock of x at date 2, with self 1 learning whether this shock will oc-

cur (i.e., a one-period ahead shock). So self 0’s desired consumption has C∗
(
θ̄1, θ2

)
=(

w + x
3 , w −

2x
3 , w + x

3

)
and C∗

(
θ1, θ̄2

)
= (w,w,w). Exactly these consumption streams

arise if, when self 1 receives good news about date 2 income, he buys, on credit, a durable

asset at price x that yields consumption of x
3 per period, and this purchase is made using

a one-period debt contract that entails a repayment of x at date 2. And as above, the

discretion that must be granted to self 2 to ensure that self 1 does not buy the durable

asset on credit when he receives bad news about date 2 income arises almost automatically:

once the durable asset is purchased, self 2 can then sell it, potentially at a discount.

For settings in which self 0 must divide an initial endowment across states in the face

of one-period ahead shocks, a different but still simple implementation is feasible. First,

self 0 deposits into illiquid certificates of deposit (CD) the minimum level of consumption

he will need at date 1 (i.e., C∗1 (θ1)) and the maximum level of consumption he will need at

date 3 (i.e., C∗3
(
θ̄1, θ2

)
), with the remainder of his initial endowment (i.e., W − C∗1 (θ1)−

C∗3
(
θ̄1, θ2

)
) deposited into a date 2 CD. In addition, he arranges for a one-period line of

credit of C∗1
(
θ̄1

)
− C∗1 (θ1) that may be drawn either at date 1 or 2. It is straightforward

to check that if the credit line is drawn at date 1, the resulting consumption stream is

C∗
(
θ̄1, θ2

)
, while if it is drawn at date 2, the resulting consumption stream is C∗

(
θ1, θ̄2

)
.28

28This calculation makes use of the fact that for one-period ahead shocks, C∗3
(
θ̄1, θ2

)
− C∗3

(
θ1, θ̄2

)
=

C∗1
(
θ̄1
)
− C∗1 (θ1). More generally, this construction works for any shock specification if the credit line is

made contingent on the date it is drawn, and in particular, is equal to C∗1
(
θ̄1
)
− C∗1 (θ1) if drawn at date

1, and to C∗3
(
θ̄1, θ2

)
− C∗3

(
θ1, θ̄2

)
if drawn at date 2.
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Finally, the date 3 CD is only partially illiquid, and in particular can be accessed (at cost)

at date 2, thereby giving self 2 the discretion to punish self 1 for overconsumption.

So to summarize, in many cases the partial illiquidity that gives self 2 the required

discretion arises very naturally. It is also worth noting that this partial illiquidity plays a

different role than illiquidity plays in commitment schemes discussed in the existing litera-

ture (see especially Strotz (1956) and Laibson (1997)). In the prior literature, illiquid assets

are used by early selves to bind later selves to a particular consumption stream. In contrast,

self 2’s access to partially illiquid assets allows him to punish self 1 for overconsumption.29

Turning to the procrastination interpretation of our model, commitment and flexibility

can be combined with a “suggestive” date 1 deadline that is costless to miss; but if the date

1 deadline is missed, then missing a date 2 deadline is costly, because it raises the total

amount of work that must be completed by date 3. This is consistent with norms in many

work environments. A more explicit example of such a scheme is a teacher-imposed rule on

a permissible number of excused absences, in which absences beyond the excused number

are costly to the student.30 Likewise, some gyms impose a penalty charge on clients who

accumulate too many unexcused absences from pre-paid group classes.

4.4 Imperfect correlation

Under perfect correlation, θ2 is perfectly forecastable at date 1, and so the only reason to

grant self 2 discretion is so he can punish self 1 for overconsumption. Propositions 1 and

2 give conditions under which self 2 can be induced to punish self 1 so effectively that self

1 is deterred from overconsumption, and so commitment and flexibility can be combined.

In contrast, under imperfect correlation, θ2 may still be uncertain at date 1, and so

self 2 is granted some discretion even in the benchmark problem (2). So here, we analyze

29Note that the date 1 and 2 CDs in the last example are fully illiquid, and play the same role as in the
prior literature.

30The classroom example is consistent with the observation we make in Section 7 that partial näıveté
may necessitate a benevolent principal imposing a contract on the individual.
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whether it is useful to give self 2 discretion over and above this benchmark.

We must first deal with a complication: the definition of the minimum discretion con-

tract C∗ requires more care under imperfect correlation. The reason is that, in solving the

benchmark problem (2), the choice of date 1 consumption C1 (θ1) sets the conditions for

the subproblem of dividing the remaining resources W −C1 (θ1) across dates 2 and 3 while

satisfying IC2. As such, to show that the solution to (2) uniquely determines date 1 con-

sumption, we must show the date 2 value function associated with resources W − C1 (θ1)

is concave. Moreover, because β enters IC2, the date 2 value function depends on β, and

so the solution to (2) depends on β.

The following result takes care of these details, and moreover, establishes continuity

with respect to β: recall that the proof of Proposition 1 depends on the magnitude of self

1’s temptation to overconsume being continuous as a function of β, and the results below

make use of an analogous property.

Lemma 4 Let C solve problem (2). Date 1 consumption C1 (θ1) is uniquely determined

and continuous in β. For any state (θ1, θ2) such that Pr (θ1, θ2) 6= 0, utility V 2 (C (θ1, θ2) ; θ2)

is likewise uniquely determined and continuous in β.

Given Lemma 4, define the minimum discretion solution C∗ (·;β) to the benchmark

problem (2) in the same way as for the case of perfect correlation;31 and then β∗ by (3),

as before. Moreover, whenever C∗1 (·;β∗) is non-constant in θ1, define θ̄1 and θ1 as the

elements of Θ1 such that C∗1
(
θ̄1;β∗

)
> C∗1 (θ1;β∗).

The following very mild assumption, which holds generically in probabilities, is enough

to ensure that θ̄1 and θ1 can be defined whenever θ1 and θ2 are non-independent:

31That is, for any θ1 such that the date 2 state following θ1 is deterministic, let C∗ (·;β) be the solution
to (2) in which C (θ1, ·) is constant. Note that Lemma 4 ensures that C∗1 (θ1;β) and V 2 (C∗ (θ1, θ2;β) ; θ2)
are uniquely determined. For (θ1, θ2) such that Pr (θ2|θ1) ∈ (0, 1), it is possible that there are multiple
solutions to (2) that differ in consumption at dates 2 and 3. In such cases, let C∗ (·;β) be any minimum
discretion solution to (2). This indeterminacy does not affect any of the analysis below.
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Assumption 4 If θ1 and θ2 are non-independent then any solution to maxC s.t. RCE
[
U0 (C (θ1, θ2) ; θ1, θ2)

]
has C1 non-constant in θ1.

Lemma 5 If θ1 and θ2 are non-independent then C∗1 (θ1;β∗) is non-constant in θ1.

The following result then generalizes Proposition 1:

Proposition 3 If the minimum discretion contract C∗ (·;β) violates IC1, commitment and

flexibility can be combined only if preference reversal holds. Moreover, if (i) θ1 and θ2 are

non-independent; (ii) the state following θ̄1 is deterministic; and preference reversal holds

for β in the neighborhood below β∗, then there exists β̂ < β∗ such that commitment and

flexibility can be combined for all β ≥ β̂.

As in Proposition 1, preference reversal is necessary to induce self 2 to punish self 1 for

overconsumption. Moreover, under some conditions, preference reversal is sufficient as well

as necessary. Condition (i) ensures that θ̄1, θ1 are well-defined. If condition (ii) is violated,

the contract after θ̄1 is fully determined by the solution to the benchmark problem (2),

making it impossible for self 2 to punish self 1 for dishonestly reporting θ̄1 in θ1 without

self 0 suffering some utility cost—regardless of whether or not preference reversal holds.

When condition (ii) fails, we accordingly turn instead to characterizing the solution to

(1). Let Cs (·;β) be a solution to (1). We show that Cs (·;β) shares two key features with

the contracts used to combine commitment and flexibility in Propositions 1-3.

Specifically, these results show that if θ̄1 is deterministically followed by θ2, then utility

V 2
(
C
(
θ̄1, θ̄2

)
; θ̄2

)
is set to a low level, in order to punish self 1 for overconsumption in

state θ1. Moreover, this low utility level is achieved by giving self 2 discretion to consume

more than C2

(
θ̄1, θ2

)
. Proposition 4 establishes that both properties hold under preference

reversal, even when uncertainty remains after the date 1 state θ̄1. In contrast, if preference

reversal is strictly violated—i.e., the distribution of θ2 conditional on θ̄1 strictly first-order

stochastically dominates the distribution of θ2 conditional on θ1—then exactly the reverse
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is true: V 2
(
C
(
θ̄1, θ̄2

)
; θ̄2

)
is set to a higher level than it would otherwise be, and self 2’s

discretion after high date 1 consumption is reduced rather than increased.

To state these results formally, define Ĉ (·, ·;β) as the consumption profile that maxi-

mizes self 0’s utility, taking as given date 1 consumption Cs1 (·;β):

Ĉ (·, ·;β) = arg max
C s.t. IC2,RC,C1(·)=Cs1(·;β)

E
[
U0 (C (θ1, θ2) ; θ1, θ2)

]
.

The consumption difference Ĉ2

(
θ̄1, θ̄2

)
− Ĉ2

(
θ̄1, θ2

)
is the benchmark level of discretion

that self 0 would allocate to self 2 if he were not concerned about self 1’s incentives, where

date 1 consumption is fixed at the same level as the solution to (1), Cs1
(
θ̄1;β

)
. Our next

result compares this benchmark level of discretion to the discretion that self 0 in fact grants

to self 2 under Cs (·;β), i.e., Cs2
(
θ̄1, θ̄2

)
− Cs2

(
θ̄1, θ2

)
.

Proposition 4 Suppose θ1, θ2 are non-independent, and for some θ2 with Pr
(
θ̄1, θ2

)
6= 0,

V 2
(
C∗
(
θ̄1, θ2;β∗

)
; θ2

)
< max

c2
V 2
(
c2,W − C∗1

(
θ̄1;β∗

)
− c2; θ2

)
. (7)

(A) If preference reversal holds for β in the neighborhood below β∗, then there exists β̂ < β∗

such that if β ∈ [β̂, β∗) and C∗ (·;β) violates IC1, the contract Cs increases discretion and

strictly decreases V 2
(
Cs
(
θ̄1, θ̄2;β

)
; θ̄2

)
relative to the benchmark Ĉ.

(B) If preference reversal is strictly violated for β in the neighborhood below β∗, then there

exists β̂ < β∗ such that if β ∈ [β̂, β∗) and C∗ (·;β) violates IC1, the contract Cs decreases

discretion and strictly increases V 2
(
Cs
(
θ̄1, θ̄2;β

)
; θ̄2

)
relative to the benchmark Ĉ.

Condition (7) says that given state θ̄1 and date 1 consumption C∗1
(
θ̄1

)
, self 0’s preferred

division of W−C∗1
(
θ̄1

)
across dates 2 and 3 violates IC2. The condition is needed to ensure

that the provision of incentives to self 1 entails a non-trivial trade-off between distorting

date 1 consumption and distorting state-contingent date 2 consumption.s32

32If (7) does not hold, then for β close to β∗ the contract Cs distorts date 1 consumption, but does not

23



The results on the continuation utility levels V 2 are intuitive. Self 0 must distort future

consumption in order to prevent self 1 from overconsuming in state θ1. Under preference re-

versal, this is achieved by lowering V 2
(
Cs
(
θ̄1, θ̄2;β

)
; θ̄2

)
while raising V 2

(
Cs
(
θ̄1, θ2;β

)
; θ2

)
,

since doing so reduces self 1’s expected continuation utility from falsely reporting state θ̄1

in state θ1, while doing as little damage as possible to continuation utility when self 1

truthfully reports θ̄1.

The results on self 2’s discretion follow from the results on continuation utility (formally,

see Lemma A-3 in the appendix). The need to satisfy IC2 leads to consumption C
(
θ̄1, θ2

)
that allocates too many of the available resources W − Cs1

(
θ̄1

)
to date 2, relative to

the full information first-best. Because a higher continuation utility V 2
(
C
(
θ̄1, θ2

)
; θ2

)
is

associated with less distortion of consumption across dates 2 and 3, this corresponds to

lower date 2 consumption. But lowering C2

(
θ̄1, θ2

)
in turn makes self 2 more tempted

to falsely report θ̄2, and hence C
(
θ̄1, θ̄2

)
must be distorted more, which corresponds to

raising C2

(
θ̄1, θ̄2

)
. Hence higher values of V 2

(
C
(
θ̄1, θ2

)
; θ2

)
are associated with greater

date 2 discretion, as measured by C2

(
θ̄1, θ̄2

)
− C2

(
θ̄1, θ2

)
.33

Finally, we consider the case in which θ1 and θ2 are independently distributed (see

Amador et al 2003). If C∗1 (·;β) is non-constant, preference reversal is violated, and so by

Proposition 3 commitment and flexibility cannot be combined.34 So as in Proposition 4,

consumption must be distorted. But in this case, self 1 does not learn anything about the

distribution of θ2 from seeing θ1, and so there is no reason for this distortion to take the

form of changing self 2’s discretion. Instead, and as noted in Amador et al (2003), it is

distort consumption at dates 2 and 3 (conditional on date 1 consumption).
33Note that this discussion is all for the case in which β is moderate. For strong hyperbolic discounting

(low β), self 0 removes all discretion from self 2, so that Cs
(
θ̄1, θ2;β

)
is independent of state θ2 (this

extends Proposition 1 of Amador et al (2006) to the more general class of preferences covered here). In this
case, the discretion results in Proposition 4 hold with equality.

34If C∗1 (·;β) is constant then IC1 holds and commitment and flexibility are straightforwardly combined.
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sufficient to simply destroy resources, while leaving self 2’s discretion unperturbed.35 The

reason is that contract terms from date 2 onwards enter both the objective and IC1 only

through E
[
V 2 (C (θ1, θ2) ; θ2)

]
, and any reduction in E

[
V 2 (C (θ1, θ2) ; θ2)

]
that is achieved

via manipulating self 2’s discretion can instead be achieved by destroying resources.

4.5 Continuum of states

We next allow θ1 and θ2 to take a continuum of different values: specifically, Θ1 and Θ2 are

compact and convex subsets of <. We focus on the case in which the date 2 state following

θ1 is deterministic (subsection 4.1). We define the minimum discretion contract C∗ that

solves the benchmark problem (2) as before. Since all uncertainty is resolved at date 1, C∗

removes all discretion from self 2, i.e., is constant in θ2; and is independent of β.

Our existing definition of preference reversal is global. In addition, we say local prefer-

ence reversal holds if, for every θ1 ∈ Θ1, there exists ε > 0 such that preference reversal

holds over (θ1 − ε, θ1 + ε)∩Θ1. Local preference reversal does not imply preference reversal.

Write φ (θ1) for the date 2 state that deterministically follows θ1. We assume φ is

differentiable, and utility ut (ct; θt) is twice differentiable in ct and jointly differentiable in

ct and θt. Note that C∗ violates IC1 for any β < 1: because C∗ (θ1, φ (θ1)) is continuous

in θ1, for any β < 1 self 1 gains by misreporting θ1 so as to slightly increase date 1

consumption, since this generates a first-order gain for self 1, while introducing only second-

order distortions in the intertemporal allocation of consumption.36

Our main result is the following analogue of Proposition 1:

Proposition 5 If β < 1, commitment and flexibility can be combined only if local prefer-

ence reversal holds. Moreover, if preference reversal holds, and maxθ1,θ̃1∈Θ1

∣∣∣C∗ (θ1, φ (θ1))− C∗
(
θ̃1, φ

(
θ̃1

))∣∣∣
35Formally, there is a solution Cs to (1) such that, for all θ1, there exists k (θ1) ≤W −Cs1 (θ1) such that

(Cs2 (θ1, ·;β) , Cs3 (θ1, ·;β)) = arg max
C s.t. IC2 and C2 (θ1, θ2) + C3 (θ1, θ2) ≤ k (θ1)

E
[
U0 (C (θ1, θ2) ; θ1, θ2)

]
.

36The proof of Proposition 5 formalizes this argument.
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is sufficiently small, then commitment and flexibility can be combined.

The economic forces behind Proposition 5 are the same as for prior results. In partic-

ular, if local preference reversal does not hold, then combining commitment and flexibility

would require punishing self 1 in some date 2 states with low MU, but by Lemma 2 this

is impossible. In contrast, if preference reversal does hold, then self 1 must be punished in

date 2 states with high MU, and this is potentially achievable.

The new element handled by Proposition 5 is that self 1 can overconsume to various de-

grees. Often, greater overconsumption necessitates a more severe punishment, i.e., holding

fixed a misreport θ̃1, and denoting the true state by θ1, the punishment needed is increasing

in overconsumption C∗1

(
θ̃1

)
−C∗1 (θ1). The contract C must be designed so that after self

1 lies and reports θ̃1, self 2 picks the punishment appropriate to the true state θ1.

We relegate most details to the appendix, and mention just a few key elements of the

construction here. Consider a particular report by self 1, θ̃1. To combine commitment

with flexibility, we clearly need to set C
(
θ̃1, φ

(
θ̃1

))
= C∗

(
θ̃1, φ

(
θ̃1

))
. Next, consider

a particular realization of the true date 1 state, θ1 say, with C∗1 (θ1) < C∗1

(
θ̃1

)
. So

the contract terms C
(
θ̃1, φ (θ1)

)
may need to impose a punishment on self 1 to deter

him from overconsuming C∗1

(
θ̃1

)
in state θ1. To do so, we design a contract such that

U1
(
C
(
θ̃1, φ (θ1)

)
; θ1, φ (θ1)

)
= U1 (C∗ (θ1, φ (θ1)) ; θ1, φ (θ1)). As before, this is achieved

by having C
(
θ̃1, φ (θ1)

)
offer greater date 2 consumption than C∗

(
θ̃1, φ

(
θ̃1

))
, but lower

date 3 consumption, so that V 2
(
C
(
θ̃1, φ (θ1)

)
;φ (θ1)

)
< V 2

(
C∗
(
θ̃1, φ

(
θ̃1

))
;φ (θ1)

)
.

Also as before, such a construction is potentially possible because, by preference reversal,

MU is higher in φ (θ1) than φ
(
θ̃1

)
. Finally, to ensure that self 2 truthfully reports θ2 =

φ (θ1), for any θ̃1 we design C
(
θ̃1, θ2

)
so that C2 is increasing in θ2, and C2 and C3 satisfy

the standard differential form of IC2, namely

u′2

(
C2

(
θ̃1, θ2

)
; θ2

) ∂C2

(
θ̃1, θ2

)
∂θ2

+ βu′3

(
C3

(
θ̃1, θ2

)) ∂C3

(
θ̃1, θ2

)
∂θ2

= 0. (8)
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The condition on maxθ1,θ̃1∈Θ1

∣∣∣C∗ (θ1, φ (θ1))− C∗
(
θ̃1, φ

(
θ̃1

))∣∣∣ in the sufficiency half

of Proposition 5 plays the same role as the condition on β in Proposition 1, and ensures that

the contract construction just described satisfies RC. The condition would be unnecessary

if RC were allowed to be violated off the equilibrium path. Alternatively, the following

result gives conditions that ensure that the contract described satisfies RC:

Proposition 6 Suppose preference reversal holds, and in addition, (I)

(u1 (c1; θ1) , u2 (c2; θ2) , u3 (c3)) =
(
u (c1 + ζ (θ1)) , u (c2 − θ2) , nu

(c3

n

))

for some n ≥ 1, function ζ, and CRRA utility function u, (II)
∂ζ(φ−1(θ2))

∂θ2
∈ [0, 1

4), and

(III) β is sufficiently close to β∗ = 1. Then commitment and flexibility can be combined.

Condition (I) says that shocks are additive. The restriction on u3 nests the value

function interpretation noted earlier, i.e., if self 2 bequeaths c3 to the future, then absent

further shocks, self 2 allocates consumption of c3/n to each of n future dates. Condition

(II) says that higher date 2 MU is associated not just with lower date 1 consumption (i.e.,

preference reversal), but also with weakly lower date 1 MU. In particular, (II) nests the case

of one-period ahead additive shocks, i.e., ζ constant. The proof of Proposition 6 contains

the explicit lower bound on β used in Condition (III). For one-period ahead shocks, and a

relative risk aversion of γ, the lower bound is n−γ (n+ 1)−γ , which is less than 1
2 if γ ≥ 1.

5 Investment problems

We next extend our analysis to cover investment problems, illustrated by Example 3. In

an investment problem, investment rather than consumption is observable, and states θ1

and θ2 determine how investment affects subsequent “wealth.” Investment problems very

naturally deliver correlation between desired date 1 investment and marginal utilities at
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dates 2 and 3, since the return on investment affects wealth at later dates.

Let i1 and i2 denote investment at dates t = 1, 2. In addition, let ` ≥ 0 be an additional

deadweight cost that a contract can stipulate at date 2. The following framework is general

enough to encompass several applications: utilities at dates 1, 2, 3 are given by

u1 (W − ii) ;u2 ((1− λ) i1R (θ2) + λW − i2 − `) ;u3 (λi1R (θ2) + i2) .

The parameter λ determines the maturity of the date 1 investment. On the one hand, λ = 1

corresponds to long-term date 1 investments, in which the return from date 1 investment is

experienced at date 3. In particular, this case corresponds to the health investment setting

of Example 3, in which both i1 and i2 directly affect long-term (i.e., date 3) health. On

the other hand, λ = 0 corresponds to short-term date 1 investments, in which the return

to date 1 investment arrives at date 2.

To map investment problems into our basic model, fix θ̂2 ∈ Θ2, and define

c1 = W − i1; c2 = (1− λ)i1R
(
θ̂2

)
+ λW − i2 − `; c3 = λi1R

(
θ̂2

)
+ i2.

So utilities at dates 1, 2, 3 are

u1 (c1) ;u2

(
c2 + (1− λ) (W − c1)

(
R (θ2)−R

(
θ̂2

)))
;u3

(
c3 + λ (W − c1)

(
R (θ2)−R

(
θ̂2

)))
.

Moreover, the constraint ` ≥ 0 is equivalent to

R
(
θ̂2

)
c1 + c2 + c3 ≤

(
R
(
θ̂2

)
+ λ
)
W,

which coincides with constraint RC in our basic model. Hence the only differences relative

to our basic model are that θ2 may affect MU at date 3 as well as at date 2, and moreover,

this dependence is affected by c1. However, it is straightforward to show that our main
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results still hold, with date 2 MU replaced with the ratio of date 2 MU to date 3 MU.

For conciseness, we focus on the case in which the return R (θ2) is known to self 1 when

he chooses i1. This corresponds to perfect correlation of θ1 and θ2 in the basic model.

The return R (θ2) affects desired date 1 consumption via both substitution and income

effects. For long-term investment (λ = 1), preference reversal arises when the substitution

effect dominates, so that lower R (θ2) is associated both with higher desired c1 and higher

date 3 MU, and hence a lower ratio of date 2 MU to date 3 MU. This case is illustrated

by Example 3.

For short-term investment (λ = 0), preference reversal instead arises when the income

effect dominates, so that higher R (θ2) is associated both with higher desired c1 and lower

date 2 MU. Here, the income effect dominates the substitution effect when the elasticity

of intertemporal substitution (EIN) is below 1. Although there is a range of empirical

estimates for the EIN, many estimates put the EIN substantially below 1 (e.g., Hall 1988).

6 Private savings

Thus far, we have assumed that the agent cannot save outside the contract. This assump-

tion fits some applications well. For example, this is the case in procrastination problems

where an agent’s work is observable. This assumption also approximates the case in which

private saving is possible, but only at a very disadvantageous interest rate.

In order to evaluate the consequences of relaxing this assumption, we have fully ana-

lyzed our environment for the case in which private savings are possible,37 and the state

space is binary with perfect correlation (i.e., the subsection 4.1 case). For conciseness,

we summarize the results here: full details are contained in an earlier draft of the paper.

Moreover, we focus here on the case of additive shocks (results for more general classes

of shocks are likewise contained in an earlier draft). We define the minimum discretion

37See, for example, Kocherlakota (2004), Doepke and Townsend (2006), and He (2009).
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contract C∗ exactly as before, and to focus on the interesting case we assume that C∗

violates an incentive constraint for at least some values of β. This implies that C∗1 must

vary across states, and we define θ̄1 and θ1 as previously.

The possibility of private saving does not affect self 0’s most-preferred consumption,

but it places additional constraints on self 0’s ability to actually attain this consumption.

As such, it is immediate that preference reversal remains a necessary condition for combin-

ing commitment with flexibility, and so for the remainder of this section we assume that

preference reversal holds, i.e., θ̄1 is followed by θ2 and θ1 is followed by θ̄2.

If self 1 falsely reports state θ̄1 in θ1, the possibility of private savings allows him to

pass some of the extra consumption C∗1
(
θ̄1

)
− C∗1 (θ1) on to self 2. By doing so, self 1

reduces MU at date 2, and hence self 2’s incentives to punish him for overconsumption.

Moreover, the more self 1 privately saves, the lower are self 2’s incentives to punish.

Suppose that the minimum discretion contract C∗ is in place, and that self 1 overcon-

sumes by reporting θ̄1 in θ1. A key object for the analysis of private savings is the savings

level s∗1 (β) at which self 1 is just indifferent between misreporting θ̄1 in θ1 and then pri-

vately saving s∗1 (β); and truthfully reporting θ1. Intuitively, s∗1 (β) is the maximum amount

of private savings that is relevant for the analysis.38

Our first result is that if commitment and flexibility cannot be combined using C∗, then

they can be combined only if θ2 ≤ θ̄2−s∗1 (β), a condition we term strong preference reversal

(SPR), and that is stricter than preference reversal (simply θ2 < θ̄2).39 The economics

38Formally, first define self 2’s private savings choice as a function of self 1’s private savings choice s1,

ŝ2 (s1;β) ≡ arg max
s2≥0

u2

(
s1 + C∗2

(
θ̄1, θ2

)
− s2; θ̄2

)
+ βu3

(
C∗3
(
θ̄1, θ2

)
+ s2

)
.

Then s∗1 (β) is defined by

s∗1 (β) = sup{s1 ≥ 0 : U1 (C∗ (θ1, θ̄2) ; θ1, θ̄2
)
< u1

(
C∗1
(
θ̄1
)
− s1; θ1

)
+ βu2

(
s1 + C∗2

(
θ̄1, θ2

)
− ŝ2 (s1;β) ; θ̄2

)
+ βu3

(
C∗3
(
θ̄1, θ2

)
+ ŝ2 (s1;β)

)
},

where s∗1 (β) = 0 if the above set is empty.
39If commitment and flexibility cannot be combined using C∗ then s∗1 (β) > 0, so SPR is indeed a stricter

condition than preference reversal.
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behind condition SPR is that self 2 must be induced to punish self 1 for choosing C∗1
(
θ̄1

)
in state θ1, even if self 1 saves up to s∗1 (β). His date 2 MU in this case is determined by

θ̄2 − s∗1 (β), where θ̄2 follows from preference reversal, which is reduced by private savings

of s∗1 (β). State-contingent punishment requires higher MU in the punishment state than

in the non-punishment state, where date 2 MU is simply θ2. This is exactly condition SPR.

Under conditions analogous to those of Proposition 1, SPR is sufficient as well as

necessary. Specifically, define β∗p analogously to β∗ as the hyperbolic discount rate such

that if β ≥ β∗p, allocating all decisions to self 140 delivers self 0’s most preferred outcome,

while this is not the case for β just below β∗p. If SPR holds strictly at β = β∗p, then

commitment and flexibility can be combined for all β sufficiently close to β∗p.

Finally, we show that condition SPR is equivalent to condition (III) in Proposition 2,

which as discussed in subsection 4.2 is satisfied by important classes of shocks.

7 Partial näıveté about future preferences

To analyze the impact of (partial) näıveté, we follow O’Donoghue and Rabin (2001) and

let β̃ ≥ β be self t’s belief about the value of β that enters the preferences of future selves,

i.e., self t’s preferences are given by U t ≡ ut+β
∑3

s=t+1 us while he believes the preferences

of any future self t′ > t are given by Ũ t
′ ≡ ut′ + β̃

∑3
s=t′+1 us. Thus far, we have assumed

that the agent is fully self-aware (sophisticated), i.e., β̃ = β.

For discount rates β < β∗, under preference reversal and sophistication self 0 can

combine commitment with flexibility by writing a contract that induces self 2 to punish

self 1 for overconsumption. Self 2 imposes the punishment because by doing so he increases

date 2 consumption, which because of hyperbolic discounting he values heavily. The chief

problem introduced by näıveté β̃ > β is that it may lead self 1 to believe that he can

40Because private saving is possible, self 2 always has at least the discretion to save and pass resources
from date 2 to date 3.
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overconsume at date 1 without self 2 punishing him, because self 1 underestimates self 2’s

preference for date 2 consumption.

Table 1 presents numerical simulations that shed light on the impact of näıveté. All

simulations use CRRA preferences with risk aversion parameter γ. Panel (A) considers

one-period ahead additive shocks, specifically, u1 ≡ u3 ≡ u2 (·; θ2) = u and u2

(
c2; θ̄2

)
=

u
(
c2 − θ̄2

)
for a CRRA function u. Preference reversal holds here. For each level of risk

aversion γ and shock size θ̄2, in row (i) we report β∗, the hyperbolic discount rate at which

it becomes impossible to combine commitment and flexibility simply by using the minimum

discretion contract C∗. But—absent näıveté—from Proposition 2 we know that for any

β < β∗ there exists a contract that nonetheless combines commitment and flexibility. Then,

in each of rows (ii), (iii), (iv) we fix the degree of hyperbolic discounting at the empirically

reasonable values of β = 0.9, 0.8, 0.7 respectively,41 and calculate the maximum degree of

näıveté for which commitment and flexibility can still be combined. For example, for γ = 1,

θ̄2 = 0.05 and β = 0.9, such a contract exists if self 1’s belief β̃ about self 2’s hyperbolic

discount rate is 0.947 or less.

Panels (B) and (C) present the results for parallel analysis of timing shocks (B) and

investment problems (C). For timing shocks, Pr
(
θ2|θ̄1

)
= Pr

(
θ̄2|θ1

)
= 1, u1

(
c; θ̄1

)
=

u2

(
c; θ̄2

)
= u

(
c− θ̄2

)
where θ̄2 is as reported, and u1 (·; θ1) ≡ u2 (·; θ2)≡ u3≡ u. For invest-

ment problems, we focus on long-term investments (see Example 3) with maxθ2 R (θ2) = 1.

The table reports minθ2 R (θ2). For investment problems the case of risk-aversion γ = 4

is omitted, since in this case the substitution and income effects approximately offset each

other and hence desired date 1 investment is approximately independent of θ2.

From Table 1, one can see, first, that for many parameterizations there is an empirically

reasonable range of hyperbolic discount rates under which a fully sophisticated (β̃ = β)

agent can combine commitment with flexibility by granting discretion to self 2. Moreover,

41See footnote 27 for estimates of β. Recall that the time period associated with these estimates is one
week (the 0.9 estimate), one quarter (the 0.8 estimate) and one year (the 0.7 estimate).
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this conclusion continues to hold for at least moderate levels of näıveté: except for cases

in which the shock is small and risk aversion is low, there is a reasonably large range of

näıveté levels for which there exists a contract implementing equilibrium consumption C∗.

Although commitment and flexibility can often be combined under partial näıveté, there

is now the problem that self 0 may pick the wrong contract at date 0.

There are two related issues here. First, as in Heidhues and Kőszegi (2010), an agent’s

näıveté means that self 0 may agree to a contract that increases date 1 consumption

relative to C∗, but that distorts consumption at dates 2 and 3. In brief, self 0 finds the

contract attractive because he incorrectly believes that he can increase both date 1 and

total consumption by borrowing at a below-market rate; while the counterparty is happy

to agree to the contract because he correctly understands that self 2 will choose repayment

terms that correspond to the market rate.

Second, under partial näıveté self 0 may incorrectly believe that he does not have a

commitment problem. In these circumstances, there is scope for a benevolent government

to improve welfare (at least for self 0) by imposing a commitment contract.

However, it also important to note that while a government-mandated commitment con-

tract can improve the welfare of a partially näıve agent, it can actually hurt a very näıve

agent, relative to the alternative of simply allowing self 1 to choose freely between self 0’s

desired consumption streams C∗
(
θ̄1, θ2

)
and C∗

(
θ1, θ̄2

)
. First, note that the punishment

component C
(
θ̄1, θ̄2

)
of the contract must satisfy V 2

(
C
(
θ̄1, θ̄2

)
; θ̄2

)
< V 2(C∗

(
θ̄1, θ2

)
; θ̄2),

since otherwise the punishment would not deter self 1 from overconsuming in state θ. Con-

sequently, at date 1 a completely näıve agent (i.e., β̃ = 1) will claim the high consumption

state θ̄1 when the true state is θ1, believing that self 2 will then report θ2, delivering

consumption C∗
(
θ̄1, θ2

)
. However, after self 1 claims the high consumption state θ̄1, self

2 in fact reports θ̄2, delivering consumption C
(
θ̄1, θ̄2

)
, so that self 0’s equilibrium utility

in
(
θ1, θ̄2

)
is U0

(
C
(
θ̄1, θ̄2

)
; θ1, θ̄2

)
. But because V 2

(
C
(
θ̄1, θ̄2

)
; θ̄2

)
< V 2(C∗

(
θ̄1, θ2

)
; θ̄2),
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this is strictly less than the utility self 0 would get from a contract allowing self 1 to choose

freely between C∗
(
θ̄1, θ2

)
and C∗

(
θ1, θ̄2

)
, namely U0

(
C∗
(
θ̄1, θ2

)
; θ1, θ̄2

)
.42 Consequently,

although there is scope for government paternalism to improve welfare if the government

has a reasonably precise estimate of the degree of näıveté, such paternalism is dangerous

if agents are instead much more näıve than the government believes.43

8 Conclusion

We characterize when an agent with hyperbolic discounting can resolve the tension between

commitment and flexibility. When this is possible, hyperbolic discounting has no impact on

equilibrium consumption. The key condition we identify is preference reversal: high desired

consumption at date 1 is associated with low MU at date 2. As discussed in Subsection

4.2 and Section 5, preference reversal arises naturally in a number of economic settings.

We have focused throughout on how unverifiability affects the individual’s ability to

combine commitment with flexibility. In doing so, we have abstracted from other possible

impediments, such as a lack of exclusivity in contracting, a lack of commitment by contract

counterparties, or other frictions in the contracting process. In this sense, our analysis

provides an upper bound on an individual’s ability to combine commitment with flexibility.

However, our analysis of the impact of private savings, summarized in Section 6, deals with

arguably the most important issue related to exclusivity, namely the possibility of using

savings instruments outside the contract.

In this paper, we focus on one particular form of time-inconsistent preferences, namely

42The argument here is closely related to Heidhues and Kőszegi (2010). Self 2 effectively borrows on
expensive terms that self 1 näıvely believed he would not agree to.

43Eliaz and Spiegler (2006) analyze profit maximization by a monopolist who deals with a population of
time-inconsistent individuals who differ in their degree of sophistication. The problem noted in the main text
suggests that the parallel question of welfare maximization for a population of differentially sophisticated
time-inconsistent individuals would also be interesting. We leave this topic for future research. Also related
is the problem of designing a contract for a population of partially näıve agents who differ in the strength
of their hyperbolic discounting, e.g., β varies across agents while β̃/β is constant. Again, we leave this
interesting question for future research.
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the present-bias generated by hyperbolic discounting. However, our key insight—that

time-inconsistent preferences not only generate commitment problems, but also allow their

possible solution, since the preferences of later selves can be exploited to punish undesirable

behavior by earlier selves—is more widely applicable. In particular, consider any source

of time-inconsistent preferences that an individual is self-aware enough to anticipate. For

example, an individual may understand today that, in the future, he will misinterpret

the relevance of a small number of data points. Just as in the current setting, he can

potentially commit to a course of action that avoids this bias, while at the same time

maintaining flexibility to respond to shocks.
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Results omitted from main text

Lemma A-1 If c̃2 ≥ c2 and V 2 (c̃; θ2) ≥ V 2 (c; θ2), then U2 (c̃; θ2) ≥ U2 (c; θ2), with

strict inequality if either c̃2 > c2 or V 2 (c̃; θ2) > V 2 (c; θ2). Likewise, if c̃1 ≥ c1 and

V 1 (c̃; θ1, θ2) ≥ V 1 (c; θ1, θ2), then U1 (c̃; θ1, θ2) ≥ U1 (c; θ1, θ2), with strict inequality if

either c̃1 > c1 or V 1 (c̃; θ1, θ2) > V 1 (c; θ1, θ2).

Proof of Lemma A-1: We prove the first statement; the second statement has a parallel

proof. Rewriting V 2 (c̃; θ2) ≥ V 2 (c; θ2) and U2 (c̃; θ2) ≥ U2 (c; θ2) gives, respectively,
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u2 (c̃2; θ2)−u2 (c2; θ2) ≥ u3 (c3)−u3 (c̃3) and u2 (c̃2; θ2)−u2 (c2; θ2) ≥ β (u3 (c3)− u3 (c̃3)).

The result is then immediate. QED

Lemma A-2 If C satisfies IC2

(
θ1, θ2, θ̃2

)
with equality and sign

(
C2 (θ1, θ2)− C2

(
θ1, θ̃2

))
=

sign
(
θ2 − θ̃2

)
then C satisfies IC2

(
θ1, θ̃2, θ2

)
, and does so strictly if C2 (θ1, θ2) 6= C2

(
θ1, θ̃2

)
.

Proof of Lemma A-2: Since IC2

(
θ1, θ2, θ̃2

)
holds with equality, u2 (C2 (θ1, θ2) ; θ2) −

u2

(
C2

(
θ1, θ̃2

)
; θ2

)
= β

(
u3

(
C3

(
θ1, θ̃2

))
− u3 (C3 (θ1, θ2))

)
. If either C2 (θ1, θ2) ≥

C2

(
θ1, θ̃2

)
and θ2 > θ̃2, or C2 (θ1, θ2) ≤ C2

(
θ1, θ̃2

)
and θ2 < θ̃2, then u2

(
C2 (θ1, θ2) ; θ̃2

)
−

u2

(
C2

(
θ1, θ̃2

)
; θ̃2

)
≤ β

(
u3

(
C3

(
θ1, θ̃2

))
− u3 (C3 (θ1, θ2))

)
, which is equivalent to IC2

(
θ1, θ̃2, θ2

)
.

QED

Lemma A-3 Define v̄2 (k, θ2) = maxc2 V
2 (c2, k − c2; θ2), and c̄k2 and ck2 as the maximizers

of V 2
(
c2, k − c2; θ̄2

)
and V 2 (c2, k − c2; θ2). For v ∈

(
V 2 (0, 0; θ2) , v̄2 (k, θ2)

]
, define

f (v; k, β) ≡ max
c̄2,c̄3,c2,c3

V 2
(
c̄2, c̄3; θ̄2

)
(A-1)

s.t. V 2 (c2, c3; θ2) = v

and U2 (c2, c3; θ2) ≥ U2 (c̄2, c̄3; θ2) (A-2)

and U2
(
c̄2, c̄3; θ̄2

)
≥ U2

(
c2, c3; θ̄2

)
(A-3)

and c̄2 + c̄3 ≤ k and c2 + c3 ≤ k.

Fix k, β. For v ≥ V 2
(
c̄k2, k − c̄k2; θ2

)
, the following is true of the solution to problem (A-1):

(A) The IC constraint (A-3) does not bind. If moreover f (v; k, β) < v̄2
(
k, θ̄2

)
, then (B)

consumption (c2, c3) is uniquely defined, with c2 + c3 = k and c2 strictly decreasing in v,

and (C) if
u′2(c;θ2)

u′2(c;θ̄2)
6= β for some c, then c̄2−c2 is non-negative, increasing in v, and strictly

increasing if c̄2 − c2 > 0.

Proof of Lemma A-3: Note that c̄k2 ≥ ck2. To establish (A), let (c̄2, c̄3, c2, c3) solve the

relaxed version of problem (A-1) in which constraint (A-3) is not imposed. We show that
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(A-3) is nonetheless satisfied. The inequalities v ≥ V 2
(
c̄k2, k − c̄k2; θ2

)
and c̄k2 ≥ ck2 together

imply c2 ≤ c̄k2. If c̄2 = c̄k2, it is immediate from Lemma A-1 that (A-3) holds. Accordingly,

for the remainder of the proof of (A) we consider the case c̄2 6= c̄k2. Since c̄2 6= c̄k2, the IC

constraint (A-2) must hold with equality. Similarly, the resource constraint c2 + c3 ≤ k

must hold with equality, and c2 ≥ ck2, since if instead c2 < ck2 it is possible to increase c2

and decrease c3 to leave V 2 (c2, c3; θ2) unchanged while strictly increasing U2 (c2, c3; θ2),

thereby relaxing the IC constraint (A-2).

It follows that c̄2 ≥ c2, since if instead c̄2 < c2, then V 2
(
c̄2, c̄3; θ̄2

)
≤ V 2

(
c̄2, k − c̄2; θ̄2

)
<

V 2
(
c2, c3; θ̄2

)
, where the second inequality uses c2 ≤ c̄k2 and c2 + c3 = k. Since setting

(c̄2, c̄3) = (c2, c3) satisfies all constraints in the relaxed problem, this gives a contradiction.

From c̄2 ≥ c2 and the fact that the IC (A-2) holds with equality, Lemma A-2 implies that

the IC (A-3) holds, completing the proof of (A).

Statement (B) is immediate from the observations above that c2 ∈
[
ck2, c̄

k
2

]
and c2 +c3 =

k if c̄2 6= c̄k2.

For statement (C), we have already shown that c̄2 − c2 ≥ 0 if c̄2 6= c̄k2. It remains to

establish that c̄2 − c2 is increasing. Since the IC constraint (A-2) holds with equality,

V 2
(
c̄2, c̄3; θ̄2

)
= V 2

(
c2, c3; θ̄2

)
+ u2

(
c̄2; θ̄2

)
− u2

(
c2; θ̄2

)
+ u3 (c̄3)− u3 (c3)

= V 2
(
c2, c3; θ̄2

)
+ u2

(
c̄2; θ̄2

)
− u2

(
c2; θ̄2

)
− 1

β
(u2 (c̄2; θ2)− u2 (c2; θ2))

= V 2
(
c2, c3; θ̄2

)
+ u2

(
c̄2; θ̄2

)
− 1

β
u2 (c̄2; θ2)−

(
u2

(
c2; θ̄2

)
− 1

β
u2 (c2; θ2)

)
.

Fix a value of v such that the solution to problem (A-1) has c̄2 − c2 > 0. To establish the

result, we show that a small upwards perturbation in v strictly raises c̄2 − c2.

There are two cases. First, consider the case c̄2 + c̄3 < k. In this case, Assumption

2 and the condition that
u′2(c;θ2)

u′2(c;θ̄2)
6= β for some c imply that c̄2 is uniquely defined by the

condition u′2
(
c2; θ̄2

)
− 1

βu
′
2 (c2; θ2) = 0. Hence c̄2 is invariant to small changes in v.

40



Second, consider the case c̄2 + c̄3 = k. Observe that u′2
(
c̄2; θ̄2

)
− 1

βu
′
2 (c̄2; θ2) ≥ 0,

since if instead u′2
(
c̄2; θ̄2

)
− 1

βu
′
2 (c̄2; θ2) < 0 one can increase V 2

(
c̄2, c̄3; θ̄2

)
by reducing

both c̄2 and c̄2 + c̄3 to leave U2 (c̄2, c̄3; θ2) unchanged (this uses c2 < c̄2 and (A-2) at

equality). Assumption 2 and the condition that
u′2(c;θ2)

u′2(c;θ̄2)
6= β for some c then imply that

u′2
(
c2; θ̄2

)
− 1

βu
′
2 (c2; θ2) > 0 for all c2 < c̄2. Consider now a small upwards perturbation

in v, to v+ say; from (B), this is associated with a small decrease in c2. This tightens

constraint (A-2) (again using c2 < c̄2 and (A-2) at equality). One way to keep (A-2)

satisfied is to leave c̄2 unchanged and reduce c̄3. In contrast, any candidate solution in

which c̄2 is lowered delivers a lower value of V 2
(
c̄2, c̄3; θ̄2

)
. Hence the solution at v+

certainly entails a weakly higher choice of c̄2, completing the proof. QED

Lemma A-4 Let v̄2 (k, θ2), c̄k2, and f (v; k, β) be as defined in Lemma A-3. For v ∈[
V 2
(
c̄k2, k − c̄k2; θ2

)
, v̄2 (k, θ2)

]
, the function f is continuous in (v, k, β) and concave in

(v, k).44 Moreover, f is strictly concave and differentiable in v at any value such that

f (v; k, β) < v̄2
(
k, θ̄2

)
.

Proof of Lemma A-4: Continuity follows from the Theorem of the Maximum. To

establish concavity, we first rewrite f using a change of variables and Lemma A-3(A):

f (v; k, β) ≡ max
ū2,ū3,u2,u3

ū2 + ū3 (A-4)

s.t. u2 + u3 = v (A-5)

and u2 + βu3 ≥ u2

(
u−1

2

(
ū2; θ̄2

)
; θ2

)
+ βū3 (A-6)

and u−1
2

(
ū2; θ̄2

)
+ u−1

3 (ū3) ≤ k, u−1
2 (u2; θ2) + u−1

3 (u3) ≤ k. (A-7)

To establish concavity of f with respect to (v, k), it is sufficient to show that the constraint

44Amador et al (2003) state a related result for a continuous state space and multiplicative shocks.
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set defined by (A-5), (A-6) and (A-7) is convex in (ū2, ū3, u2, u3, v, k). Note first that

∂

∂w
u2

(
u−1

2

(
w; θ̄2

)
; θ2

)
= u′2

(
u−1

2

(
w; θ̄2

)
; θ2

) (
u−1

2

)′ (
w; θ̄2

)
=
u′2
(
u−1

2

(
w; θ̄2

)
; θ2

)
u′2
(
u−1

2

(
w; θ̄2

)
; θ̄2

) .
By Assumption 2, the ratio

u′2(c2;θ2)

u′2(c2;θ̄2)
is increasing in c2, and hence u2

(
u−1

2

(
w; θ̄2

)
; θ2

)
is

convex in w. Moreover, u−1
2 (·; θ2) and u−1

3 are certainly strictly convex (they are inverses

of strictly concave and increasing functions). Hence the constraint set is convex.

Strict concavity with respect to v follows straightforwardly, using the same arguments.

Finally, to establish differentiability of f at a point v0 it is sufficient (given concavity)

to exhibit a differentiable function g such that g (v) ≤ f (v; k, β) in the neighborhood of

v0, with equality at v0.45 Let (c̄2, c̄3, c2, c3) be the solution to (A-1) at v0. From Lemma

A-3, (c2, c3) is differentiable as a function of v. To construct the function g, there are two

cases. First, if u′2 (c̄2; θ2)−βu′3 (c̄3) 6= 0, define g (v) = u2

(
c̄2; θ̄2

)
+u3 (c̄3) by perturbing c̄2

and c̄3 in equal but opposite directions to satisfy (A-2) with equality. Second, consider the

case of u′2 (c̄2; θ2)− βu′3 (c̄3) = 0. This case can only arise if u′2
(
c̄2; θ̄2

)
− u′3 (c̄3) = 0, which

by the condition that f (v; k, β) < v̄2
(
k, θ̄2

)
implies that c̄2 + c̄3 < k. In this case, define

g (v) = u2

(
c̄2; θ̄2

)
+ u3 (c̄3) by holding c̄2 fixed and perturbing c̄3 to leave (A-2) satisfied

at equality. This completes the proof of differentiability. QED

Proofs of main text results (excluding Propositions 2 and 6)

Proof of Lemma 1: From IC2, U2
(
C
(
θ1, θ̃2

)
; θ̃2

)
≥ U2

(
C (θ1, θ2) ; θ̃2

)
and U2 (C (θ1, θ2) ; θ2) ≥

U2
(
C
(
θ1, θ̃2

)
; θ2

)
, which imply u2

(
C2

(
θ1, θ̃2

)
; θ̃2

)
−u2

(
C2 (θ1, θ2) ; θ̃2

)
≥ u2

(
C2

(
θ1, θ̃2

)
; θ2

)
−

u2 (C2 (θ1, θ2) ; θ2), which by θ̃2 > θ2 implies C2

(
θ1, θ̃2

)
≥ C2 (θ1, θ2). QED

Proof of Proposition 1: Necessity is established in the main text. Here, we estab-

45Since f is concave, its one-sided derivatives both exist. Denote these one-sided derivatives by f− and
f+, and note that, by concavity f− ≥ f+. If the function g exists, then at v0 we have f+ ≥ g′ ≥ f−.
Hence f− = f+, establishing differentiability.
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lish the existence of β̂. Let θ̄1 and θ1 be as defined in the main text. Define a contract

C by C (θ1, θ2) = C∗ (θ1, θ2) if (θ1, θ2) 6=
(
θ̄1, θ̄2

)
. It remains to define C2

(
θ̄1, θ̄2

)
and

C3

(
θ̄1, θ̄2

)
. Note first that if C

(
θ̄1, θ̄2

)
is set equal to C∗

(
θ̄1, θ2

)
then at β = β∗ con-

straint IC1

(
θ1, θ̄1

)
holds with equality. Moreover, u′2

(
C∗2
(
θ̄1, θ2

)
; θ2

)
= u′3

(
C∗3
(
θ̄1, θ2

))
,

so certainly u′2
(
C∗2
(
θ̄1, θ2

)
; θ̄2

)
> u′3

(
C∗3
(
θ̄1, θ2

))
. Choose C

(
θ̄1, θ̄2

)
so that, at β = β∗,

U2
(
C
(
θ̄1, θ̄2

)
; θ̄2

)
= U2

(
C∗
(
θ̄1, θ2

)
; θ̄2

)
and C2

(
θ̄1, θ̄2

)
> C∗2

(
θ̄1, θ2

)
and C2

(
θ̄1, θ̄2

)
+

C3

(
θ̄1, θ̄2

)
≤ C∗2

(
θ̄1, θ2

)
+ C∗3

(
θ̄1, θ2

)
. By Lemma A-1, we know V 2

(
C
(
θ̄1, θ̄2

)
; θ̄2

)
<

V 2
(
C∗
(
θ̄1, θ2

)
; θ̄2

)
. So IC1

(
θ1, θ̄1

)
holds strictly at β = β∗, and moreover, by continuity

there exists some interval [β1, β
∗] such that IC1

(
θ1, θ̄1

)
holds for all β in this interval.

Because C2

(
θ̄1, θ̄2

)
> C∗2

(
θ̄1, θ2

)
, IC2

(
θ̄1, θ̄2, θ2

)
is satisfied for all β ≤ β∗. By Lemma

A-2, IC2

(
θ̄1, θ2, θ̄2

)
holds strictly at β = β∗, and so by continuity there exists some interval

[β2, β
∗] such that IC2

(
θ̄1, θ2, θ̄2

)
holds over this interval. IC2(θ1, ·, ·) holds trivially. Finally,

Lemma A-1, the fact C∗ solves (2), the fact that C∗1
(
θ̄1

)
≥ C∗1 (θ1) together imply that C

satisfies IC1

(
θ̄1, θ1

)
. Defining β̂ = max {β1, β2} completes the proof. QED

Proof of Lemma 3: Since commitment and flexibility can be combined, either β ≥ β∗,

and so the result holds trivially; or else preference reversal holds, i.e., Pr
(
θ̄1, θ̄2

)
=

Pr (θ1, θ2) = 0. Let C be a contract combining commitment and flexibility. By IC2,

u2

(
C2

(
θ̄1, θ̄2

)
; θ̄2

)
− u2

(
C2

(
θ̄1, θ2

)
; θ̄2

)
≥ βu3

(
C3

(
θ̄1, θ2

))
− βu3

(
C3

(
θ̄1, θ̄2

))
. (A-8)

First, note that there exists C such that (A-8) holds with equality. To see this, note that

Lemma 1 implies C2

(
θ̄1, θ̄2

)
≥ C2

(
θ̄1, θ2

)
and C3

(
θ̄1, θ̄2

)
≤ C3

(
θ̄1, θ2

)
; and consequently,

one can set (A-8) to equality by lowering C2

(
θ̄1, θ̄2

)
, while continuing to satisfy all other

IC constraints. Given this, assume directly that C satisfies (A-8) with equality.

Define X2 = C2

(
θ̄1, θ̄2

)
− C2

(
θ̄1, θ2

)
and X3 = C3

(
θ̄1, θ2

)
− C3

(
θ̄1, θ̄2

)
. So (A-8) at
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equality is equivalent to

u2

(
C2

(
θ̄1, θ2

)
+X2; θ̄2

)
−u2

(
C2

(
θ̄1, θ2

)
; θ̄2

)
= βu3

(
C3

(
θ̄1, θ2

))
−βu3

(
C3

(
θ̄1, θ2

)
−X3

)
.

By assumption C3

(
θ̄1, θ2

)
≥ C3

(
θ1, θ̄2

)
, and so C2

(
θ̄1, θ2

)
< C2

(
θ1, θ̄2

)
. So by concavity

of u2 and u3 it follows that

u2

(
C2

(
θ1, θ̄2

)
+X2; θ̄2

)
−u2

(
C2

(
θ1, θ̄2

)
; θ̄2

)
< βu3

(
C3

(
θ1, θ̄2

))
−βu3

(
C3

(
θ1, θ̄2

)
−X3

)
.

Hence under the contract C, self 2 does not wish to change consumption at dates 2 and

3 by (X2,−X3) after self 1 truthfully reports θ1. Finally, it is irrelevant whether or not

self 2 would change consumption at dates 2 and 3 by (X2,−X3) after self 1 misreports

θ1 in state θ̄1, since by the same argument as in the proof of Proposition 1, self 1 never

misreports in this way. QED

Proof of Lemma 4: Let v̄2 (k, θ2), c̄k2, and f (v; k, β) be as defined in Lemma A-3. For

any θ1 and β, define g (k, β; θ1) by

g (k, β; θ1) ≡ max
v∈(V 2(0,0;θ2),v̄2(k,θ2)]

Pr
(
θ̄2|θ1

)
f (v; k, β) + Pr (θ2|θ1) v. (A-9)

The maximizing choice of v in (A-9) satisfies v ≥ V 2
(
c̄k2, k − c̄k2; θ2

)
, since f

(
V 2
(
c̄k2, k − c̄k2; θ2

)
; k, β

)
=

v̄2
(
k, θ̄2

)
. From Lemma A-4, the function g is continuous in (k, β) and concave in k.

Any solution C to (2) must have

C1 (θ1) ∈ arg max
c1

u1 (c1; θ1) + g (W − c1, β; θ1) . (A-10)

The uniqueness of C1 (θ1) follows from the strict concavity of the objective in (A-10).

Uniqueness of V 2 (C (θ1, θ2) ; θ2) for Pr (θ1, θ2) 6= 0 then follows from the strict concavity

of f (v; k, β) in v (see Lemma A-4).
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Because the objective in (A-10) is strictly concave in c1, and continuous in β, it follows

that C1 (θ1) is continuous in β. For Pr (θ2|θ1) ∈ (0, 1), the strict concavity of f in v

and its continuity in k and β imply that V 2 (C (θ1, θ2) ; θ2) is continuous in β; while for

Pr (θ2|θ1) = 1 this is immediate. QED

Proof of Lemma 5: By the definition of β∗ and Lemma 4, at least one constraint in IC1

must hold with equality at β = β∗ and C = C∗, i.e., for some θ̌1, θ̃1, E
[
U1
(
C∗
(
θ̌1, θ2;β∗

)
; θ̌1, θ2

)
|θ̌1

]
=

E
[
U1
(
C∗
(
θ̃1, θ2;β∗

)
; θ̌1, θ2

)
|θ̌1

]
. Suppose that, contrary to the claimed result, C∗1

(
θ̌1;β∗

)
=

C∗1

(
θ̃1;β∗

)
. Hence

E
[
V 2
(
C∗
(
θ̌1, θ2;β∗

)
; θ2

)
|θ̌1

]
= E

[
V 2
(
C∗
(
θ̃1, θ2;β∗

)
; θ2

)
|θ̌1

]
. (A-11)

There are two subcases. In the first subcase, V 2
(
C∗
(
θ̌1, θ2;β∗

)
; θ2

)
< maxc2 V

2
(
c2,W − C∗1

(
θ̌1;β∗

)
− c2; θ2

)
for some θ2 such that Pr

(
θ̌1, θ2

)
6= 0. Note that this subcase can only arise if both

Pr
(
θ̌1, θ̄2

)
6= 0 and Pr

(
θ̌1, θ2

)
6= 0. From strict concavity of the objective in (A-9) in

the proof of Lemma 4, and the differentiability of f established in Lemma A-4, it follows

that V 2
(
C∗
(
θ̌1, θ2;β∗

)
; θ2

)
6= V 2

(
C∗
(
θ̃1, θ2;β∗

)
; θ2

)
for any θ2 with Pr

(
θ̃1, θ2

)
6= 0.

It then follows from the strict concavity of (A-9) that E
[
V 2
(
C∗
(
θ̌1, θ2;β∗

)
; θ2

)
|θ̌1

]
>

E
[
V 2
(
C∗
(
θ̃1, θ2;β∗

)
; θ2

)
|θ̌1

]
, contradicting (A-11).

In the second subcase, V 2
(
C∗
(
θ̌1, θ2;β∗

)
; θ2

)
= maxc2 V

2
(
c2,W − C∗1

(
θ̌1;β∗

)
− c2; θ2

)
for all θ2 such that Pr

(
θ̌1, θ2

)
6= 0. It then follows that for any θ2 such that Pr

(
θ̃1, θ2

)
6= 0,

V 2
(
C∗
(
θ̃1, θ2;β∗

)
; θ2

)
= maxc2 V

2
(
c2,W − C∗1

(
θ̃1;β∗

)
− c2; θ2

)
. (This is straightfor-

ward if the state following θ̌1 is non-deterministic. If instead θ̌1 is followed determin-

istically by some θ̌2 ∈ Θ2, the argument is as follows. Equality (A-11) implies that

V 2
(
C∗
(
θ̃1, θ̌2;β∗

)
; θ̌2

)
= maxc2 V

2
(
c2,W − C∗1

(
θ̃1;β∗

)
− c2; θ̌2

)
. Let θ̃2 6= θ̌2, and

note that we must have Pr
(
θ̃1, θ̃2

)
6= 0. We must have V 2

(
C∗
(
θ̃1, θ̃2;β∗

)
; θ̃2

)
=

maxc2 V
2
(
c2,W − C∗1

(
θ̃1;β∗

)
− c2; θ̃2

)
, since otherwise it is straightforward to construct

a perturbation to C∗ that increases self 0’s utility, a contradiction.) It then further fol-
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lows that C∗ (·, ·;β∗) solves maxC s.t. RCE
[
U0 (C (θ1, θ2) ; θ1, θ2)

]
, since otherwise one can

straightforwardly construct a perturbation that strictly increases self 0’s utility while sat-

isfying RC and IC2, by either increasing date 1 consumption and decreasing date 3 con-

sumption, or decreasing date 1 consumption and increasing date 2 consumption (this uses

Lemma A-3(A)). Since C∗1
(
θ̌1;β∗

)
= C∗1

(
θ̃1;β∗

)
, this contradicts Assumption 4. QED

Proof of Proposition 3: Necessity: To establish the result, suppose that C∗ (·;β) vio-

lates IC1 and that preference reversal is violated, but that commitment and flexibility can

nonetheless be combined. Note that since C∗ is a solution to (2), for any θ̌1, θ̃1,

u1

(
C∗1
(
θ̌1;β

)
; θ̌1

)
+E

[
V 2
(
C∗
(
θ̌1, θ2;β

)
; θ2

)
|θ̌1

]
≥ u1

(
C∗1

(
θ̃1;β

)
; θ̌1

)
+E

[
V 2
(
C∗
(
θ̃1, θ2;β

)
; θ2

)
|θ̌1

]
.

If C∗1
(
θ̌1;β

)
≥ C∗1

(
θ̃1;β

)
then, by Lemma A-1, C∗ (·;β) satisfies IC1 in θ̌1. So by suppo-

sition, let θ̌1, θ̃1 be such that C∗1

(
θ̃1;β

)
> C∗1

(
θ̌1;β

)
and C∗ (·;β) violates IC1 in θ̌1:

u1

(
C∗1
(
θ̌1;β

)
; θ̌1

)
+βE

[
V 2
(
C∗
(
θ̌1, θ2;β

)
; θ2

)
|θ̌1

]
< u1

(
C∗1

(
θ̃1;β

)
; θ̌1

)
+βE

[
V 2
(
C∗
(
θ̃1, θ2;β

)
; θ2

)
|θ̌1

]
.

(A-12)

The LHS of this inequality takes the same value in any solution to (2) (see Lemma 4). If

both states θ2 and θ̄2 have positive probability after θ̃1, then the same is true of the RHS,

and consequently, any solution to (2) violates IC1, and commitment and flexibility cannot

be combined (regardless of whether or not preference reversal holds), giving a contradiction.

So the only remaining case to consider is that in which θ̃1 is deterministically followed

by θ̄2: if θ̃1 were instead deterministically followed by θ2, then Pr
(
θ̌1, θ̄2

)
6= 0, and pref-

erence reversal holds. Lemma 2 implies V 2
(
C
(
θ̃1, θ2

)
; θ2

)
≥ V 2

(
C∗
(
θ̃1, θ̄2

)
; θ2

)
. By

inequality (A-12), it follows that any solution to (2) violates IC1, giving a contradiction

and completing the proof.

Sufficiency: By the arguments above, if C∗ (·;β) violates IC1 for β in the neighborhood of

β∗, then it violates IC1 in state θ1. Moreover, by Lemma 4, the quantity E
[
U1 (C∗ (θ1, θ2;β) ; θ1, θ2) |θ1

]
−
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E
[
U1
(
C∗
(
θ̄1, θ2;β

)
; θ1, θ2

)
|θ1

]
is continuous in β. The remainder of the proof parallels

that of Proposition 1. QED

Proof of Proposition 4: We prove part (A), i.e., Pr
(
θ̄2|θ1

)
> Pr

(
θ̄2|θ̄1

)
. The proof of

part (B) is parallel. The case Pr
(
θ̄2|θ̄1

)
= 0 is covered by Proposition 3; accordingly, we

assume below that Pr
(
θ̄2|θ̄1

)
6= 0. Let f (v; k, β) be as defined in Lemma A-3.

Preliminaries: By the Theorem of the Maximum, E
[
U0 (C∗ (θ1, θ2;β)) ; θ1, θ2

]
and E

[
U0 (Cs (θ1, θ2;β)) ; θ1, θ2

]
are continuous in β. By the definition of β∗, they coincide for β ≥ β∗. Consequently,

E
[
U0 (C∗ (θ1, θ2;β) ; θ1, θ2)

]
− E

[
U0 (Cs (θ1, θ2;β) ; θ1, θ2)

]
→ 0 as β → β∗. (A-13)

From (A-13) and Lemma 4, it follows that for all (θ1, θ2) such that Pr (θ1, θ2) 6= 0,

C∗1 (θ1;β)− Cs1 (θ1;β)→ 0 as β → β∗ (A-14)

V 2 (C∗ (θ1, θ2;β) ; θ2)− V 2 (Cs (θ1, θ2;β) ; θ2)→ 0 as β → β∗. (A-15)

For θ2 = θ2, θ̄2, define vθ2 = V 2
(
Cs
(
θ̄1, θ2;β

)
; θ2

)
.

We next establish that for β in the neighborhood of β∗,

vθ̄2 = f
(
vθ2 ;W − Cs1

(
θ̄1;β

)
, β
)
. (A-16)

Suppose to the contrary that vθ̄2 < f
(
vθ2 ;W − Cs1

(
θ̄1;β

)
, β
)
. Since

Pr(θ2|θ̄1)
Pr(θ̄2|θ̄1)

6= Pr(θ2|θ1)

Pr(θ̄2|θ1)
,

there exists a perturbation that strictly increases E
[
U0 (Cs (θ1, θ2;β) ; θ1, θ2)

]
while pre-

serving IC1

(
θ1, θ̄1

)
and IC2. Moreover, from (A-14), (A-15) and Lemma A-1 it follows that

IC1

(
θ̄1, θ1

)
is satisfied. But then the perturbation contradicts the definition of Cs.
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By condition (7), and (A-14), for β in the neighborhood of β∗:

Pr
(
θ2|θ̄1

)
+ Pr

(
θ̄2|θ̄1

)
f ′
(
V 2
(
C∗
(
θ̄1, θ2;β

)
; θ2

)
;W − C∗1

(
θ̄1

)
, β
)

= 0 (A-17)

Pr
(
θ2|θ̄1

)
+ Pr

(
θ̄2|θ̄1

)
f ′
(
V 2
(
Ĉ
(
θ̄1, θ2;β

)
; θ2

)
;W − Cs1

(
θ̄1

)
, β
)

= 0. (A-18)

By supposition C∗ violates IC1. Specifically, this must happen in θ1 (see proof of Propo-

sition 3). Because Pr
(
θ2|θ̄1

)
6= 0 for θ2 = θ2, θ̄2,

E
[
U0 (Cs (θ1, θ2;β) ; θ1, θ2)

]
< E

[
U0 (C∗ (θ1, θ2;β) ; θ1, θ2)

]
. (A-19)

Main step: We show, by contradiction, that for β in the neighborhood of β∗,

Pr
(
θ2|θ̄1

)
+ Pr

(
θ̄2|θ̄1

)
f ′
(
vθ2 ;W − Cs1

(
θ̄1

)
, β
)
< 0. (A-20)

First, suppose that

Pr
(
θ2|θ̄1

)
+ Pr

(
θ̄2|θ̄1

)
f ′
(
vθ2 ;W − Cs1

(
θ̄1

)
, β
)

= 0. (A-21)

Consequently, an infinitesimal perturbation in vθ2 with a corresponding change to vθ̄2

to preserve (A-16) leaves E
[
U0 (Cs (θ1, θ2;β) ; θ1, θ2)

]
unchanged and IC2 intact while,

since Pr
(
θ̄2|θ1

)
6= Pr

(
θ̄2|θ̄1

)
, strictly relaxing IC1. By (A-19), one can use the newly-

created slack in the constraints to a construct a perturbation that increases the objective

E
[
U0 (Cs (θ1, θ2;β) ; θ1, θ2)

]
, giving a contradiction. Second, suppose instead that

Pr
(
θ2|θ̄1

)
+ Pr

(
θ̄2|θ̄1

)
f ′
(
vθ2 ;W − Cs1

(
θ̄1

)
, β
)
> 0. (A-22)
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Let ṽθ2 > vθ2 be such that

Pr
(
θ2|θ̄1

)
ṽθ2+Pr

(
θ̄2|θ̄1

)
f
(
ṽθ2 ;W − Cs1

(
θ̄1

)
, β
)

= Pr
(
θ2|θ̄1

)
vθ2+Pr

(
θ̄2|θ̄1

)
f
(
vθ2 ;W − Cs1

(
θ̄1

)
, β
)
.

(A-23)

Note that ṽθ2 is well-defined by the continuity and concavity of f (Lemma A-4), together

with (A-14), (A-15), (A-17). From (A-23), and using Pr
(
θ̄2|θ1

)
> Pr

(
θ̄2|θ̄1

)
,

Pr (θ2|θ1)
Pr
(
θ̄2|θ̄1

)
Pr
(
θ̄2|θ1

) (ṽθ2 − vθ2) < Pr
(
θ2|θ̄1

) (
ṽθ2 − vθ2

)
= Pr

(
θ̄2|θ̄1

) (
f
(
vθ2 ;W − Cs1

(
θ̄1

)
, β
)
− f

(
ṽθ2 ;W − Cs1

(
θ̄1

)
, β
))
,

i.e.,

Pr (θ2|θ1) ṽθ2+Pr
(
θ̄2|θ1

)
f
(
ṽθ2 ;W − Cs1

(
θ̄1

)
, β
)
< Pr (θ2|θ1) vθ2+Pr

(
θ̄2|θ1

)
f
(
vθ2 ;W − Cs1

(
θ̄1

)
, β
)
.

Hence switching from vθ2 to ṽθ2 strictly relaxes IC1 while preserving both IC2 and self 0’s

utility, again leading to a contradiction.

Completing the proof: Given the concavity of f , (A-18) and (A-20) imply that vθ2 >

V 2
(
Ĉ
(
θ̄1, θ2;β

)
; θ2

)
. It follows that vθ̄2 < V 2

(
Ĉ
(
θ̄1, θ̄2;β

)
; θ̄2

)
, as claimed; and Lemma

A-3 implies Cs2
(
θ̄1, θ̄2

)
− Cs2

(
θ̄1, θ2

)
≥ Ĉ2

(
θ̄1, θ̄2

)
− Ĉ2

(
θ̄1, θ2

)
. QED

Proof of Proposition 5: Necessity: Fix β < 1, and suppose C solves (2) but local

preference reversal does not hold, i.e., there exists θ0
1 such that, for any ε > 0, preference

reversal does not hold over
(
θ0

1 − ε, θ0
1 + ε

)
∩Θ1. Note that U1 (C (θ1, φ (θ1)) ; θ1, φ (θ1)) =

(1− β)u1 (C1 (θ1) ; θ1) + βV 1 (C (θ1, φ (θ1)) ; θ1, φ (θ1)), and so, since C solves (2) and

C (θ1, φ (θ1)) is differentiable in θ1, for any θ̂1, ∂
∂θ1

U1
(
C (θ1, φ (θ1)) ; θ̂1, φ

(
θ̂1

))∣∣∣
θ1=θ̂1

=

(1− β)u1

(
C1

(
θ̂1

)
; θ̂1

)
∂
∂θ1

C1 (θ1)
∣∣∣
θ1=θ̂1

. Hence one can find θ̌1, θ̃1 close to θ0
1 such that

C1

(
θ̃1

)
> C1

(
θ̌1

)
, φ
(
θ̃1

)
≥ φ

(
θ̌1

)
, and U1

(
C
(
θ̃1, φ

(
θ̃1

))
; θ̌1, φ

(
θ̌1

))
> U1

(
C
(
θ̌1, φ

(
θ̌1

))
; θ̌1, φ

(
θ̌1

))
.

By Lemma 2, if C solves (2) then U1
(
C
(
θ̃1, φ

(
θ̌1

))
; θ̌1, φ

(
θ̌1

))
≥ U1

(
C
(
θ̃1, φ

(
θ̃1

))
; θ̌1, φ

(
θ̌1

))
.

But then U1
(
C
(
θ̃1, φ

(
θ̌1

))
; θ̌1, φ

(
θ̌1

))
> U1

(
C
(
θ̌1, φ

(
θ̌1

))
; θ̌1, φ

(
θ̌1

))
, contradicting
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IC1 and completing the proof.

Sufficiency: Because of preference reversal, φ is invertible.46 For any θ1 ∈ Θ1, define the

contract C by C (θ1, θ2) = C∗ (θ1, φ (θ1)) if θ2 < φ(θ1); while if θ2 ≥ φ(θ1), define C by

C1 (θ1) = C∗1 (θ1) and the pair of differential equations (8) and

(1− β)u′2 (C2 (θ1, θ2) ; θ2)
∂C2 (θ1, θ2)

∂θ2
= max

{
0,

∂

∂θ2
u1

(
C1 (θ1) ;φ−1 (θ2)

)
+ β

∂

∂θ2
u2 (C2 (θ1, θ2) ; θ2)

− d

dθ2
U1
(
C∗
(
φ−1 (θ2) , θ2

)
;φ−1 (θ2) , θ2

)}
, (A-24)

subject to the boundary condition that C (θ1, θ2) = C∗ (θ1, φ (θ1)) at θ2 = φ (θ1).

The differential equations (8) and (A-24) imply that, for any θ̃1 and θ2 ≥ φ
(
θ̃1

)
,

d

dθ2
U1
(
C
(
θ̃1, θ2

)
;φ−1 (θ2) , θ2

)
≤ d

dθ2
U1
(
C∗
(
φ−1 (θ2) , θ2

)
;φ−1 (θ2) , θ2

)
.

Given the boundary condition, it follows that, for any θ̃1 and θ2 ≥ φ
(
θ̃1

)
,

U1
(
C
(
θ̃1, θ2

)
;φ−1 (θ2) , θ2

)
≤ U1

(
C∗
(
φ−1 (θ2) , θ2

)
;φ−1 (θ2) , θ2

)
.

Changing variables to θ1 = φ−1 (θ2), for any θ̃1 and φ (θ1) ≥ φ
(
θ̃1

)
,

U1
(
C
(
θ̃1, φ (θ1)

)
; θ1, φ (θ1)

)
≤ U1 (C∗ (θ1, φ (θ1)) ; θ1, φ (θ1)) .

Hence IC1

(
θ1, θ̃1

)
holds if φ (θ1) ≥ φ

(
θ̃1

)
.

Next, we show that IC1

(
θ1, θ̃1

)
holds if φ (θ1) < φ

(
θ̃1

)
. By the construction of

C, C (θ1, φ (θ1)) = C∗ (θ1, φ (θ1)) and C
(
θ̃1, φ (θ1)

)
= C∗

(
θ̃1, φ

(
θ̃1

))
. Preference re-

46Suppose to the contrary that φ (θ1) = φ
(
θ̃1
)

for some θ1 6= θ̃1, and that C solves (2). If C1 (θ1) 6=

C1

(
θ̃1
)

then preference reversal is violated. If instead C1 (θ1) = C1

(
θ̃1
)

then (since φ (θ1) = φ
(
θ̃1
)

)

u′1 (·; θ1) ≡ u′1
(
·; θ̃1

)
and θ1 = θ̃1.
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versal implies C∗1 (θ1) ≥ C∗1

(
θ̃1

)
. Since C∗ solves (2), V 1 (C∗ (θ1, φ (θ1)) ; θ1, φ (θ1)) ≥

V 1
(
C∗
(
θ̃1, φ

(
θ̃1

))
; θ1, φ (θ1)

)
. Lemma A-1 implies U1 (C∗ (θ1, φ (θ1)) ; θ1, φ (θ1)) ≥ U1

(
C∗
(
θ̃1, φ

(
θ̃1

))
; θ1, φ (θ1)

)
,

establishing IC1

(
θ1, θ̃1

)
.

Next, we show that IC2 is satisfied. By construction, C satisfies (8), and C2 is increasing

in θ2. Note that

dU2
(
C
(
θ1, θ̃2

)
; θ2

)
dθ̃2

= u′2

(
C2

(
θ1, θ̃2

)
; θ2

) ∂C2

(
θ1, θ̃2

)
∂θ̃2

+ βu′3

(
C3

(
θ1, θ̃2

)) ∂C3

(
θ1, θ̃2

)
∂θ̃2

=
(
u′2

(
C2

(
θ1, θ̃2

)
; θ2

)
− u′2

(
C2

(
θ1, θ̃2

)
; θ̃2

)) ∂C2

(
θ1, θ̃2

)
∂θ̃2

.

Hence U2
(
C
(
θ1, θ̃2

)
; θ2

)
is indeed maximized at θ̃2 = θ2.

Finally, RC is certainly satisfied for θ2 ≤ φ (θ1). For θ2 > φ (θ1), observe that, by (8),

∂C2 (θ1, θ2)

∂θ2
+
∂C3 (θ1, θ2)

∂θ2
=

(
1− 1

β

u′2 (C2 (θ1, θ2) ; θ2)

u′3 (C3 (θ1, θ2))

)
∂C2 (θ1, θ2)

∂θ2
.

At θ2 = φ (θ1), u′2 (C2 (θ1, θ2) ; θ2) = u′3 (C3 (θ1, θ2)) by the definition of C∗, so the term

1− 1
β
u′2(C2(θ1,θ2);θ2)
u′3(C3(θ1,θ2))

is strictly negative. The condition stated in Proposition 5 ensures that

this expression remains negative for all θ2 ∈
(
φ (θ1) , θ̄2

)
. By construction, ∂C2(θ1,θ2)

∂θ2
≥ 0.

Hence ∂C2(θ1,θ2)
∂θ2

+ ∂C3(θ1,θ2)
∂θ2

≤ 0, implying that RC is satisfied for all θ2 ∈ (φ (θ1) , θ̄2].

QED
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Table 1: Results of numerical simulations, as described in Section 7

Panel (A): One-period ahead shocks
θ̄2 = 0.05 θ̄2 = 0.1

γ 1 2 4 1 2 4

(i) β∗ 0.951 0.905 0.822 0.903 0.818 0.679

(ii) Cutoff β̃ for β = 0.9 0.947 0.996 n/a 0.998 n/a n/a

(iii) Cutoff β̃ for β = 0.8 0.840 0.885 0.980 0.887 0.982 n/a

(iv) Cutoff β̃ for β = 0.7 0.736 0.773 0.858 0.776 0.861 n/a

Panel (B): Timing shocks

θ̄2 = 0.05 θ̄2 = 0.1

γ 1 2 4 1 2 4

(i) β∗ 0.950 0.903 0.816 0.902 0.813 0.660

(ii) Cutoff β̃ for β = 0.9 0.947 0.996 n/a 0.998 n/a n/a

(iii) Cutoff β̃ for β = 0.8 0.841 0.885 0.980 0.887 0.984 n/a

(iv) Cutoff β̃ for β = 0.7 0.736 0.773 0.857 0.775 0.861 n/a

Panel (C): Investment

minθ2 R (θ2) = 0.8 minθ2 R (θ2) = 0.6

γ 1 2 1 2

(i) β∗ 0.901 0.892 0.786 0.757

(ii) Cutoff β̃ for β = 0.9 0.979 n/a n/a n/a

(iii) Cutoff β̃ for β = 0.8 0.875 0.972 n/a n/a

(iv) Cutoff β̃ for β = 0.7 0.772 0.860 0.772 0.946
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