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Abstract

Recent progress in artificial intelligence raises the prospect that, asymptotically,
all tasks will be automated. We characterize the consequences for capital and labor
markets of such automation when capital returns and wages are determined by stan-
dard economic forces. We obtain a simple condition for whether the capital share
asymptotes to one (capital dominance). Our model provides a natural setting for pol-
icy analysis; the negative consequences of capital dominance are better ameliorated
via taxation-funded “basic income” than by deliberate automation retardation. The
capital-dominance condition maps to observables, and a first-pass calibration suggests
that current automation rates will not generate capital dominance.
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1 Introduction

Technological advance has allowed the automation of many tasks historically performed by workers,

and conversely, expanded the set of tasks for which capital is useful. Recent progress in artificial

intelligence raises the prospect that, asymptotically, all tasks will be automated. Such developments

hold the potential to profoundly alter the relative importance of capital and labor markets in the

economy. In particular, there is widespread speculation1 that asymptotically full automation will

result in a society entirely populated by a combination of, on the one hand, affluent rentiers, and on

the other hand, unemployed and impoverished households. In this scenario, the return on capital

will rise relative to today’s value, capital markets will grow in importance, and on the production

side, firms’ cost structures will be dominated by capital.

In this paper, we characterize the implications of asymptotically full automation for capital

returns and wages in a model built entirely around standard economic forces. In particular, we

characterize conditions under which asymptotic automation does—and does not—lead to capital

dominance of the economy of the form described above.

We further study the effects on inequality of automation-induced shifts in national income shares

from labor to capital. To analyze the role of capital markets in mediating this first-order conse-

quence of automation, we introduce minimal heterogeneity by allowing households to differ in their

investment abilities (e.g., Fagereng et al., 2020; Bach et al., 2020; Smith et al., 2023). These lead

to differences in capital accumulation and labor supply, creating endogenous populations of “capi-

talists” and “workers.” Under capital dominance, workers face asymptotic (relative) immiseration.

Whether capital dominance emerges depends on the rate of capital accumulation relative to the

rate of automation (Aghion et al., 2019). The prospect of capital dominance prompts policies2 to

ameliorate its effects—in particular, capital taxation and the deliberate retardation of automation.

Both policies change the relative rate of capital accumulation and automation, and both lower the

overall growth rate. Our analysis speaks naturally to the efficacy of these policies, and implies that

the taxation and redistribution of capital income is the better policy. In the same spirit, labor regu-

lations that cap hours worked (potentially motivated as a way to share a shrinking pool of available

jobs among working households) are likewise dominated by capital-taxation-and-redistribution.

Throughout, we refer to heterogeneity in investment returns as stemming from financial frictions,

though this term should be interpreted broadly. One interpretation is that these are intermediation

1For example, Brookings (Jul 3, 2024) reports “According to one survey, about half of Americans think
that the increased use of AI will lead to greater income inequality and a more polarized society. Roughly
two thirds think the government should take action to prevent the loss of jobs due to AI.” Similarly, Elon
Musk comments: “There is a pretty good chance we end up with a universal basic income, or something like
that, due to automation” (CNBC, Nov 4, 2016); and Sam Altman “[expects] ... some change required to the
social contract given how powerful we expect this technology to be.” (AI for Good Summit, May 30, 2024)

2E.g., Costinot and Werning (2022); Guerreiro et al. (2022). In 2017, to slow an automation-induced
rise in unemployment, South Korea amended the corporate tax code to discourage capital investments in
technology. Public debate about taxing robots to slow automation has emerged in the US, too; Bill Gates:
“The robot that takes your job should pay taxes.” (Quartz, Feb 17, 2017).
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rents paid by some households and earned by others (Philippon, 2015), although the effects we doc-

ument arise irrespective of whether the cost of these frictions is deadweight or earned by capitalists.

Moreover, differences in investment ability are mathematically isomorphic to differences in time

preference rates (e.g., Lawrance, 1991; Epper et al., 2020), which are often associated with wealth

inequality (e.g., Ramsey, 1928; Krusell and Smith, 1998). Empirically, high-income households earn

higher risk-adjusted returns, meaning this channel is applicable to our model (which abstracts from

risk).3 We assume that this heterogeneity is persistent, and, with the exception of Section 6.1,

unaffected by the technological developments that drive automation.4

Greater financial frictions make capital dominance (weakly) more likely, in addition to un-

dermining the ability of workers to effectively turn themselves into capitalists. Roughly speaking,

greater financial frictions push workers to save more to offset these frictions, and to reduce both con-

sumption and leisure (the two are complements). The associated increase in labor depresses wages,

pushing towards capital dominance. Consequently, government policies or market developments

that reduce financial frictions help workers both directly, and via the equilibrium effect of whether

capital dominance occurs. Examples of such developments may be the rise of cost-effective passive

investment vehicles and increased household stock-market participation. On the other hand, the

rise in (unsuccessful) active retail stock market trading as well as the proliferation of private asset

classes, such as Private Equity, Private Credit, and Venture Capital, may aggravate heterogeneity

in investment returns.

As already hinted at, capital dominance is not inevitable. The dynamics of the return to capital

and of wages reflect the Baumol and Bowen (1965) insight that complementarity of different tasks

means that automation of some tasks increases the marginal product of labor in yet-to-be-automated

tasks. If automation rates are slow then this implies that workers’ income rises in line with overall

GDP, even as workers enjoy increasing leisure. In this case, capital dominance does not occur. In

contrast, for faster automation rates the supply of labor-per-unautomated task grows fast enough

to offset the increasing value of labor. In this case, labor income grows slower than the overall

economy, leading to capital dominance. This aggregate observation is inherited from Aghion et al.

(2019), on whose framework we build. Aside from breaking the representative-agent setting and

endogenizing labor supply and savings, with the results outlined in the previous paragraphs, we

analytically derive the capital dominance threshold and relate it to observables.5

3Heterogeneity in risk aversion, background risk, or ability to diversify wealth would generate sim-
ilar effects. For evidence on heterogeneity in time preference and risk aversion among investors, see
Cronqvist and Siegel (2015) and references therein. Since our framework does not distinguish between in-
vestments in asset markets and direct investment of capital within a non-financial firm, heterogeneity could
further stem from differences in entrepreneurial skill.

4For empirical evidence that return heterogeneity across households is persistent, even across generations,
see Fagereng et al. (2022, 2021). Moreover, return heterogeneity will survive technological progress if, for
instance, the proliferation of AI in financial markets takes the form of an arms race among sophisticated
investors, or if the adoption of highly sophisticated robo-advisors by retail investors is bounded by, for
example, behavioral frictions (see Greig et al. (2024) for evidence). See also Section 6.1.

5Footnote 8 in Aghion et al. (2019) acknowledges the existence of a threshold in the speed of automation
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A first-pass calibration of the fully-characterized capital dominance threshold suggests that the

current speed of automation in the US is below this threshold, and accordingly, that the current

path of automation won’t result in the kind of profound changes associated with capital dominance.

Instead, and to a perhaps surprising extent, the economy will continue to resemble its current form,

even as full automation is asymptotically approached. But the existence of a threshold rate also

highlights why the prospect of increasing rates of automation should be taken seriously.

For the case in which the speed of automation does accelerate by enough to trigger capital

dominance, one possibility is that automation will cure its own ills by narrowing the investment-

return wedge between capitalists and workers. But even in this case, the return wedge is likely to

disappear only gradually, with worker-capitalist inequality growing in the meantime. The calibrated

version of our model casts quantitative light on this, and suggests a substantial rise in worker-

capitalist inequality even in this (relatively rosy) scenario (see 6.1).

Our aim in this paper is to take seriously the prospect that all tasks will eventually be automated,

and to analyze the consequences for the economy. As such, we take the speed of automation as

exogenous; the key endogenous objects are capitalists’ and workers’ savings and labor responses,

and the associated equilibrium capital return rates and wages. In subsections 5.3 and 6.3 we

briefly describe the likely consequences of endogenous automation for our analysis. Similarly, we

deliberately study the effects of asymptotic automation in a standard model with minimal frictions;

our main interest is to characterize how asymptotic automation plays out in the context of widely

accepted economic forces.

Related literature:

Our conceptualization of the automation process directly follows the insightful work of Aghion et al.

(2019). Further to the deviations highlighted above, we also endogenize both savings and labor sup-

ply and show how these endogenous behaviors, on their own or interacted with financial frictions,

contribute to or hinder capital dominance. (In work that postdates ours, Korinek and Suh (2024)

similarly endogenize savings, but focus instead on the importance of full automation in finite time

vs asymptotic full automation.)6

Following earlier models of automation, we view technological progress as a gradual replacement

of labor with capital as a production factor (Zeira, 1998; Acemoglu and Restrepo, 2018a,b). In this

view, automation extends beyond artificial intelligence to major sources of economic growth since

the Industrial Revolution.

Our formulation of the capital-labor complementarity is distinct from the literature explaining

changes in skill premia through skill-biased technological change, that is, capital-skill complemen-

without characterizing it further.
6Differently from us, Korinek and Suh (2024) study a representative agent economy with exogenous labor

supply. Guerreiro et al. (2022) and Ray and Mookherjee (2022) study settings in which it is technologically
possible to automate all routine tasks immediately, and only the cost of automation (“robots”) prevents this
from happening. Instead, a crucial assumption for the Baumol-force to operate is that at any finite time
some tasks cannot be automated, though the number of such tasks asymptotes to zero.
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tarity in production (e.g., Acemoglu, 1998; Krusell et al., 2000; Autor et al., 2003). Instead, we do

not take a stance on the types of tasks that remain unautomated for longer, meaning the wages

from those tasks may be earned by nurses, teachers, athletes, or—as Baumol and Bowen (1965)

would have it—performing artists.

Acemoglu (2024) finds that the impact of AI on productivity is more equally distributed across

demographic groups than that of earlier forms of automation, and consequently predicts a smaller

effect on inequality. Like the above literature on skill-biased technological change, this argument

focuses on intra-labor inequality. Instead, we note that, like other forms of automation, AI shifts

income from labor to capital, and we model the distributional effects of this shift in a world with

heterogeneous investment returns. Acemoglu (2024) also estimates the likely AI-driven automation

rate over the next ten years and we use these estimates in our calibration.

Acemoglu and Restrepo (2018b) endogenize automation and the invention of new tasks in which

labor has a comparative advantage. They find that long-run factor shares are stable if the long-run

rental rate of capital is sufficiently high. Intuitively, automation reduces the cost of labor, thereby

discouraging further automation and encouraging the development of new tasks. In our case, the

labor share stabilizes despite exogenous automation of all tasks in the limit. Our mechanism works

through complementarity between tasks (the Baumol effect) and between consumption and leisure.

We note that the two channels operate independently from one another.

In Moll et al. (2022), automation increases inequality via returns to wealth and by facilitating

stagnant wages. As in their model, returns to capital rise with the speed of automation (up to

the capital-dominance threshold), and capital income tends to generate inequality in consumption

growth and consumption shares. Unlike in their model, where inequality is driven idiosyncratic

heterogeneity in realized returns, our result is obtained from systematic financial frictions motivated

by the empirically observed differences in average returns to capital that interact with the economic

force of automation in reallocating factor shares. That is, we take a first-order consequence of

automation to offer a perspective on automation-induced inequality that is complementary to the

discussion of intra-labor inequality in the literature on skill-biased technological change. We also

find that automation can reduce wages, but only does so under very specific circumstances. With

a low-to-medium speed of automation, wage growth increases with the rate of automation.

Trammell and Korinek (2023) synthesize the literature on AI-driven automation. They empha-

size the importance of considering frameworks in which the long-run equilibrium differs from the

“Kaldor Facts that described growth over the past century or two.” Like Jones and Liu (2024),

our model features capital-embodied technical change (automation) that is labor-augmenting in the

aggregate and able to generate balanced growth. Relative to Jones and Liu (2024), we endoge-

nize labor supply and show that automation can facilitate balanced growth in capital, output, and

consumption while allowing for the empirically observed decline in hours worked.

Irie (2024) studies the effect of financing frictions on top wealth inequality. Allowing en-

trepreneurs to finance a larger share of their firm with outside capital improves their ability to
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diversify wealth and reduces their savings motive (making extreme wealth accumulation less likely)

but allows them to scale more aggressively (making extreme wealth accumulation more likely).

Similarly, in our model, lowering financial frictions improves investment returns for workers and

reduces their savings motive, but, unlike in Irie (2024), this happens at the lower end of the wealth

distribution and can lead to a rise in wealth inequality. For wealth inequality to rise, the reduction

in savings motive has to outweigh the improvement in investment returns and this happens only if

it simultaneously lowers consumption inequality.7

Our analysis is predominantly concerned with the limit of full automation and the asymptotic

factor shares. Nonetheless, the key forces driving our mechanism also speak to three long-run

empirical trends: (i) the decline in hours worked (Boppart and Krusell, 2020), (ii) the falling labor

share (Karabarbounis and Neiman, 2014; Barkai, 2020), which our model naturally connects to a

decline in TFP growth (Philippon, 2023), and (iii) a reallocation in output shares towards services

(Boppart, 2014). We discuss these trends in the context of the model in Subsection 6.4.

Because the rate of automation in our analysis is exogenously constant, the growth rate of the

economy converges in the long-run. In this sense, our analysis does not generate a “singularity”

in which the growth rate accelerates over time (see Nordhaus (2021), and references therein). It

does, however, suggest that if, for whatever reason, the rate of automation climbs sufficiently high,

it overwhelms the economic forces stemming from the complementarity of different tasks and the

complementarity of consumption and leisure, and the labor share of the economy converges to zero.

Some of the results above depend on consumption and leisure being (gross) complements. The

opposite assumption of (gross) substitutes implies—for many parameter values—increasing labor

over time, a prediction at odds with time-series and cross-country evidence (e.g., Becker, 1965;

Huberman and Minns, 2007; Feenstra et al., 2015).8 Bick et al. (2018) further find that for most

countries, the amount of hours worked is decreasing in the wage.

2 Model

2.1 Preferences and endowments

There is a unit mass of infinitely lived economic agents, each of whom continuously consumes,

works, and adjusts capital holdings. Population growth equals 0 (we have verified that, as in the

standard neoclassical growth model, steady state outcomes are independent of population growth).

Each agent discounts the future at rate ρ. There is no uncertainty.

7Specifically, if the complementarities across tasks and between consumption and leisure are sufficiently
strong, a reduction in financial frictions can shift the economy from a capital-dominant equilibrium in which
workers hold capital but have lower consumption growth than capitalists into one in which the labor share
is stable, and in which workers do not hold capital but in which consumption growth is equal across agents.

8Keynes (1930) famously predicted a 15-hour workweek for his grandchildren thanks to rising productivity.
Boppart and Krusell (2020) write: “As it turned out, Keynes was wildly off quantitatively, but he was right
qualitatively (on this issue).”
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Agents are either “workers” or “capitalists” (denoted by subscript ‘o’ for “owners”) with respective

measures λw and λo. The only difference between the two groups is that capitalists are more effective

at holding capital. Let Ki,t, Li,t, and Ci,t respectively denote the date t capital holding, time spent

working, and consumption of an agent of type i = w, o. Moreover, let Wt and Rt denote the date

t wage rate and return on capital (not including depreciation and other holding costs). Capital

accumulation for a type-i agent is

K̇i,t = RtKi,t +WtLi,t − δiKi,t − Ci,t,

where δi is the combined depreciation and holding costs experienced by type-i agents. We assume

throughout that9

δw > δo.

One interpretation of this crucial assumption is that workers make investment mistakes, e.g., due

to inertia or lack of awareness. This behavioral interpretation is closely related to the observation

that a difference in δ is mathematically isomorphic to a spread in time preference rates, ρ.

Importantly, we assume that the frictions that give rise to the difference in δs cannot be overcome

by intermediation, e.g., with capitalists investing frictionlessly on behalf of workers. In this spirit,

a second interpretation is that financiers extract intermediation rents from workers. We do not

model financiers explicitly, meaning that these rents can take the form of a deadweight cost, or, if

capitalists act as financiers, a transfer from workers to capitalists. In the limits we study, these turn

out to be equivalent. To see this, denote by ι > 0 the rate of intermediation rent paid on worker

capital. Then write δw = δ+ ι and δo = δ− ιKw

Ko
to reflect the expense of workers and, respectively,

the financier income of capitalists. To capitalists, this income is independent of their capital choice,

but expressed relative to Ko to compress notation into the depreciation rate. In all equilibria that

we study limt→∞

Kw

Ko
= 0, and so this interpretation is equivalent to one in which workers pay a

deadweight cost that raises their depreciation rate above that of capitalists.

Each agent’s flow endowment of time is 1, so that flow leisure is 1 − Li,t. Regardless of type,

each agent’s flow utility is

1

1− γ

(

C
η−1

η

i,t + ω (1− Li,t)
η−1

η

)
1−γ

1− 1
η .

Here, ω parameterizes the relative importance of leisure and consumption; η is the elasticity of

substitution between consumption and leisure; while γ is the standard coefficient from power utility

functions. In the special case of ω = 0, the intertemporal elasticity of substitution is 1
γ
.

Capital holdings must be non-negative:

Ki,t ≥ 0. (1)

9See Appendix C for an analysis of the (easier) representative agent case.
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We further impose the standard transversality condition

lim
t→∞

Ki,t

ˆ t

0
e−(Rs−δi)ds = 0. (2)

2.2 Technology

Following existing literature (see introduction), we conceptualize output as a single, composite

consumption good that is composed of a unit measure of complementary “tasks,” with the elasticity

of substitution across any pair of tasks equal to σ. A “task” should be interpreted generally. In

contrast to Acemoglu and Restrepo (2018b), we think of tasks as being fundamental “needs” such

as food, shelter, entertainment, transport etc., so that the set of tasks remains fixed over time (see

also Aghion et al. (2019)).

Importantly, we assume that tasks are gross complements, i.e., σ < 1. It is this assumption that

allows the Baumol force to potentially operate. Given our output formulation, the interpretation

of σ < 1 nests both preference-based complementarity across different consumption goods and

technology-based complementarity in production processes that combine intermediate tasks into

ultimate output goods.

Let αt be the fraction of tasks that has been automated at date t. Non-automated tasks are

executed using only labor. For automated tasks, capital and labor are perfect substitutes. In equi-

librium, capital grows without bound, so capital becomes abundant relative to labor; consequently,

in equilibrium automated tasks are (eventually) executed using only capital.

Let Kt and Lt denote aggregate capital and labor:

Kt = λwKw,t + λoKo,t

Lt = λwLw,t + λoLo,t.

Hence date t output is

Yt = F (Kt, Lt;αt) =

(

αt

(

AK
Kt

αt

)
σ−1

σ

+ (1− αt)

(

AL
Lt

1− αt

)
σ−1

σ

)

σ
σ−1

=

(

α
1

σ
t (AKKt)

σ−1

σ + (1− αt)
1

σ (ALLt)
σ−1

σ

)
σ

σ−1

. (3)

That is: each of the αt automated tasks receives capital Kt

αt
, and each of the 1− αt non-automated

tasks receives labor L
1−αt

. Parameters AK and AL determine the productivity of capital and labor.

For calibration (Section 7), note that the elasticity of substitution across tasks, σ, coincides with

the elasticity of substitution between capital and labor, which is estimated by a sizeable literature.
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The marginal products of capital and labor are

FK,t =
∂

∂Kt
F (Kt, Lt;αt) = α

1

σ
t A

σ−1

σ

K K
−

1

σ
t Y

1

σ
t (4)

FL,t =
∂

∂Lt
F (Kt, Lt;αt) = (1− αt)

1

σ A
σ−1

σ

L L
−

1

σ
t Y

1

σ
t . (5)

As time passes, more and more tasks are automated. Our focus is on the consequences of

automation, so we take the automation process as exogenous, reflecting an inexorable “march of

progress.” Every instant, a constant share, θ > 0, of previously unautomated tasks gets automated:

α̇t = (1− αt) θ.

While we do not model individual firms, this march of progress is consistent with both within-firm

automation (Hubmer and Restrepo, 2024) and rising capital intensity among newly entering firms

(Barkai and Panageas, 2024). Asymptotically all tasks are automated; but at any finite time t,

some tasks remain non-automated.

Looking ahead, faster automation is associated with lower relative wages in equilibrium, i.e.,

lower
FL,t

FK,t
. Consequently, the likely effects of endogenizing the pace of automation hinge on whether

innovation is labor- or capital-intensive. Labor-intensive automation would amplify the effects of

exogenous variation in automation rates. In contrast, capital-intensive automation—often invoked

in “singularity” discussions—would dampen the effects of exogenous variation.

In Section 7 we also discuss how labor-augmenting technological change (AL growing over time)

would affect our results.

2.3 Equilibrium

An equilibrium consists of paths {Ki,t, Ci,t, Li,t} for i = w, o and rental rates and wages {Rt,Wt}

such that {Ki,t, Ci,t, Li,t} is individually optimal for each agent given the path of {Rt,Wt}, while

rental rates and wages are determined by the competitive conditions

Rt = FK (Kt, Lt;αt)

Wt = FL (Kt, Lt;αt) .

2.4 Parameter assumptions

To capture the Baumol effect, and consistent with empirical estimates, we assume that tasks are

gross complements,

σ < 1.
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We further assume that consumption and leisure are gross complements,

η < 1.

Under the alternative assumption (η > 1), many parameter configurations deliver equilibria in

which leisure converges to 0, while observed trends indicate increases in leisure. These trends also

motivate our deviation from KPR-preferences (King et al., 1988) which generate stable labor supply.

Appendix D analyzes the case of η = 1, in which preferences are Cobb-Douglas and, thus, KPR.

Our main results continue to hold but hours worked do not decline.

Throughout, we assume that for i = o, w

AK − δi > ρ > (1− γ) (AK − δi) . (6)

The first inequality ensures capital growth in a benchmark economy with production AKKt, while

the second inequality ensures the transversality condition is satisfied in the same benchmark.

3 Labor share dynamics and capital dominance

We first define our notions of a stable labor share and capital dominance; note some important

implications of these definitions; and derive laws of motion for key aggregate quantities. This

section uses only the definition of the production function (3).

The date-t labor share of the economy is

Xt ≡
LtFL,t

Yt
= 1−

KtFK,t

Yt
. (7)

From (3), we can also express the ratio of factor shares as

1−Xt

Xt
=

(

αt

1− αt

)
1

σ
(

Lt

Kt

)
σ−1

σ

. (8)

The above illustrates the Baumol force of automation highlighted by Aghion et al. (2019). Straight-

forwardly, a ceteris-paribus rise in the share of automated tasks, α, reduces the labor share. However,

as capital accumulates relative to the fixed stock of labor, automated tasks become relatively abun-

dant, and the gross complementarity across tasks (σ < 1) ensures that the price effect outweighs

the quantity effect, thus exerting upward pressure on the labor share.

Definition 1 We say that capital dominance occurs if limt→∞Xt = 0. If instead limt→∞Xt > 0,

we say that the labor share is stable.

Throughout, we write lim for limt→∞, and typically omit time subscripts when characterizing

asymptotic behavior.
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Let gR and gW denote the growth rates of return-on-capital Rt and wages Wt, with parallel

notation for growth rates of other quantities. From (4) and (5),

gR,t =
1

σ

(

gY,t − gK,t + θ
1− αt

αt

)

, (9)

gW,t =
1

σ
(gY,t − gL,t − θ) , (10)

Hence capital and labor shares 1−X and X evolve according to

g1−X,t = gK,t + gR,t − gY,t = (1− σ) gR,t + θ
1− αt

αt
. (11)

gX,t = gL,t + gW,t − gY,t = (1− σ) gW,t − θ. (12)

So capital dominance occurs if

lim gW <
θ

1− σ
,

while a stable labor share requires

lim gW =
θ

1− σ
. (13)

Lemma 1 Output evolves according to

gY,t = (1−Xt) gK,t +XtgL,t +
θ

1− σ

(

1−
1−Xt

αt

)

. (14)

We characterize the economy as the fraction of automated tasks αt approaches 100%. We focus

on equilibria in which the capital share has a well-defined and strictly positive limit. From (9) and

(11) it is immediate that, asymptotically, output and capital grow at the same rate:

lim gY = lim gK . (15)

From (9), the rental rate FK,t asymptotically converges; define

F̄K ≡ limFK .

The capital share is straightforwardly a function of the rental rate:

1−Xt = αt

(

FK,t

AK

)1−σ

, (16)

and so in particular the limiting capital share is

lim (1−X) =

(

F̄K

AK

)1−σ

. (17)
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In a capital-dominant equilibrium,

lim
Y

K
= F̄K = AK . (18)

Finally, the bounded nature of labor Li and leisure 1 − Li means that, provided labor has a well-

defined asymptotic value, the asymptotic growth rates of leisure and labor are weakly negative:

lim g1−L ≤ 0 (19)

lim gL ≤ 0. (20)

Moreover, at least one of (19) and (20) holds with equality.

4 Analysis

4.1 Optimality conditions

The marginal utilities of consumption and leisure are

MUCi,t = C
−

1

η

i,t

(

C
η−1

η

i,t + ω (1− Li,t)
η−1

η

)
1−ηγ
η−1

(21)

MU1−Li,t = ω (1− Li,t)
−

1

η

(

C
η−1

η

t + ω (1− Li,t)
η−1

η

)
1−ηγ
η−1

. (22)

The intratemporal and intertemporal optimality conditions are

WtC
−

1

η

i,t ≤ ω (1− Li,t)
−

1

η , (23)

∂

∂t
lnMUCi,t ≤ − (Rt − δi − ρ) , (24)

with (23) at equality if labor is strictly positive (Li,t > 0), and (24) at equality if capital-holding is

strictly positive (Ki,t > 0).

Looking ahead: The fact that workers and capitalists differ in δi makes the corners of no-work

and no-capital relevant.

If type-i agents work then, from (23),

gCi
− g1−Li

= ηgW ; (25)

and,

MUC,t = C−γ
t

(

1 + ωηW 1−η
t

)
1−ηγ
η−1

. (26)
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Consequently, if type-i agents work their marginal utility grows according to

∂

∂t
lnMUCi

= −γgCi
− (1− ηγ)

ωηgW
W η−1 + ωη

, (27)

while if they are at the no-work corner,

∂

∂t
lnMUCi

= −
1

η
gCi

+
1− ηγ

η

gCi
C

η−1

η

i

C
η−1

η

i + ω

= −gCi

γC
η−1

η

i + ω
η

C
η−1

η

i + ω

. (28)

The assumption that capital is sufficiently productive to drive long-run growth (6), together with

the complementarity of consumption and leisure (η < 1), ensure that in all equilibria:

Lemma 2 Asymptotically, the leisure growth rate of both groups is 0, lim g1−Li
= 0; and wages and

consumption of both groups grow at a strictly positive rate.

4.2 Factor segmentation

Because asymptotic leisure growth is 0, if both workers and capitalists work asymptotically then

their consumption growth rates would coincide, by (25). In this case, it is impossible to satisfy the

intertemporal optimality condition (24) with equality for both groups. Consequently:

Corollary 1 At least one group must be either at the no-capital corner or the no-labor corner.

By Lemma 2, consumption grows without bound for both groups, as does the wage rate. From

(27) and (28), it follows that regardless of whether or not a group i = o, w works

lim
∂

∂t
lnMUC,i = −

1

η
lim gCi

, (29)

and the asymptotic intertemporal condition is

lim gCi
≥ η

(

F̄K − δi − ρ
)

, (30)

with equality for any group that holds capital.

Our next result characterizes which of the no-work and no-capital corners are relevant. It also

justifies our terminology of “workers” and “capitalists.”

Lemma 3 Capitalists always hold capital and workers always work. In a capital-dominant equilib-

rium, capitalists do not work. In a stable labor share equilibrium, workers do not hold capital.

Since workers work, and their leisure asymptotes to its upper bound, the fact that both workers

and capitalists’ labor choices satisfy intratemporal optimality ((23) and (25)) implies:

12



Corollary 2 Asymptotically, wages grow strictly faster than workers’ consumption,

lim gW =
1

η
lim gCw ; (31)

and capitalists’ consumption grows weakly faster than workers’ consumption:

lim gCo ≥ lim gCw . (32)

Since capitalists are advantaged in holding capital, and since their consumption grows at least as

fast as that of workers:

Lemma 4 Asymptotically, output, capitalists’ consumption, and capitalists’ capital-holdings all

grow at the same rate,

lim gY = lim gCo = lim gKo .

Inequality (1) imposes the natural requirement that capital holdings are non-negative. Lemma 3

raises the question of whether workers would want to borrow from capitalists, effectively obtaining

a negative capital position via financial markets. The answer is no. Specifically, workers won’t

borrow from capitalists provided that

∂

∂t
lnMUC,w ≥

∂

∂t
lnMUC,o. (33)

It is immediate that the no-borrowing condition (33) holds for t far enough in the future either

if both workers and capitalists hold capital, or if both work.10 Moreover, (33) also holds in the

remaining case in which workers don’t hold capital and capitalists don’t work; from (29) and (31)

the growth rate of workers’ marginal utility approaches −gW , while the growth rate of capitalists’

marginal utility is lower, reflecting the fact that they choose not to work.

4.3 Capital-dominant equilibria

From Lemma 3, in a capital-dominant equilibrium capitalists do not work, and hence workers must

do so. One possibility is that both capitalists and workers hold capital:

Proposition 1 A capital-dominant equilibrium in which workers hold capital exists if

θ ≥ (1− σ) (AK − δw − ρ) + η (δw − δo) . (34)

Consumption growth of group i satisfies

lim gCi
= η (AK − δi − ρ) . (35)

10If workers and capitalists both hold capital then intertemporal optimality (24) for each group implies
that condition (33) holds strictly. If workers and capitalists both work then expression (27) and the growth
rate comparison (32) directly implies (33).
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Labor converges to 0 according to

lim gLw = (η − σ) (AK − δw − ρ) + η (δw − δo)− θ.

The second possibility is that workers do not hold capital:

Proposition 2 A capital-dominant equilibrium in which workers do not hold capital exists if com-

plementarities are weak,11 σ + η > 1, and

θ ∈ [(1− σ) (AK − δo − ρ) , (1− σ) (AK − δw − ρ) + η (δw − δo)] . (36)

Capitalists’ consumption growth satisfies (35), while workers’ consumption growth satisfies

lim gCw = η
lim gCo − θ

σ + η − 1
< lim gCo . (37)

Labor converges to 0 according to

lim gLw =
η − 1

η
lim gCw . (38)

From Propositions 1 and 2, capital dominance emerges when the rate of automation is sufficiently

high.12 In particular, the Baumol effect, arising from task-complementarity (σ < 1) pushes against

capital dominance. Capital accumulation, which is asymptotically proportional to AK − δo − ρ in a

capital-dominant equilibrium, likewise pushes against capital dominance because it increases wages

relative to the return on capital. Capital dominance emerges when automation advances sufficiently

rapidly relative to the extent of complementarity and the rate of capital accumulation.

Corollary 3 The return on capital in a capital-dominant equilibrium exceeds today’s rate.

Capital dominance is associated with the immiseration of workers relative to capitalists. This

is immediate if workers do not hold capital (Proposition 2). But even when workers hold capital,

they are disadvantaged relative to capitalists in doing so (δw < δo). At the same time: Even in

a capital-dominant equilibrium workers’ consumption grows without bound, even as their leisure

approaches its upper bound.

11If complementarities are strong (σ + η < 1) then an unstable equilibrium in which workers do not hold
capital exists for automation speeds above the threshold (39) but below the threshold (34). This equilibrium
is unstable because a drop in worker consumption is self-reinforcing; see the heuristic argument for the
existence of multiple equilibria in Section 4.5, though in this case the argument is precise because workers
do not hold capital and so optimize period-by-period.

12See footnote 8 of Aghion et al. (2019) for a related statement in a representative-agent model with
exogenous capital accumulation and labor supply.
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4.4 Stable labor share equilibria

If instead automation proceeds more slowly, a stable labor share emerges. In this case, workers’ and

capitalists’ consumption grow at the same rate.

Proposition 3 A stable labor share equilibrium exists if

θ < (1− σ) (AK − δo − ρ) . (39)

Consumption of capitalists and workers grows at same rate,

lim gCo = lim gCw =
ηθ

1− σ
. (40)

Labor converges to 0 according to (38). The labor share converges to

limX = 1−

(

δo + ρ+ θ
1−σ

AK

)1−σ

. (41)

4.5 Equilibrium summary

Together, Propositions 1-3 span the parameter space, and are illustrated by Figure 1. The left panel

depicts the equilibrium under weak complementarities, that is, η + σ > 1, which boils down to the

threshold condition (39) on the automation rate derived in Proposition 3. To reiterate, the intuition

is that capital dominance arises depending on whether automation is sufficiently fast to outpace

capital accumulation and keep capital scarce relative to labor.

Given the roles of capital accumulation and labor supply, it is noteworthy that the preference

parameters γ (the power utility parameter) and η (elasticity of substitution between consump-

tion and leisure) do not feature in the threshold condition (39). The reason is that the IES and

consumption-leisure substitutability enter the threshold condition only via their ratio. Further,

regardless of the specific equilibrium, consumption grows without bound while leisure approaches

its upper bound. It follows that the asymptotic marginal utility of consumption is determined

by consumption-leisure substitutability η (specifically, is proportional to C
−

1

η

i ), and hence the IES

converges to consumption-leisure substitutability η. Consequently, the asymptotic ratio of the IES

to η is exactly 1. Appendix D analyzes the equilibrium under balanced-growth preferences, which

arise if η = 1. In this case, labor doesn’t shrink, and the ratio of the IES to η is no longer equal to

1 (see Proposition D-6).

When the combined complementarity of tasks (σ) and of consumption and leisure (η) is strong,

stable labor share and capital-dominant equilibria coexist for some parameters (Propositions 1

and 3). Heuristically, coexistence arises because capital dominance is associated with lower worker

consumption,13 which is in turn self-reinforcing: complementarity of consumption and leisure implies

13Formally, Propositions 1 and 3 involve growth rates rather than levels. But here we give a heuristic
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that low consumption is associated with workers supplying a lot of labor; and this association is

especially strong when η is low. The large quantity of labor supplied is in turn associated with

low wages. Because task complementarity is strong, the net effect of more labor but lower wages is

lower labor income—which in turn leads to low worker consumption.

Our equilibrium characterization establishes that economic growth is (weakly) increasing in

the speed of automation, as one would expect. The central concern around automation is its

distributional impact. The remainder of this section addresses this topic.

4.6 Will the benefits of automation be widely shared?

Propositions 1-3 address the question of whether the benefits of automation will be widely shared.

When automation (θ) is sufficiently slow, and task complementarities (σ) are sufficiently strong,

the answer is yes. Even as all tasks are asymptotically automated, workers’ share of the economy

remains stable, measured either by income or consumption. Moreover, local increases in the speed

of automation benefit workers by increasing their consumption growth, and by the same amount as

GDP growth.

In contrast, automation speeds above a threshold threaten workers. In the case of weak com-

plementarities, workers’ consumption growth is decreasing in the rate of automation—and strictly

so for an interval of automation speeds. Income and consumption inequality both explode, with

workers’ share of the economy asymptoting to zero. More positively: workers’ consumption growth

nonetheless remains positive, and as time passes they work vanishingly little, so even in this case

workers’ absolute living standards improve as more and more tasks are automated.

For strong complementarities, multiple equilibria exist—one with a stable labor share, and one

with capital dominance. Workers’ consumption growth is strictly higher in the former, even though

both GDP and capitalists’ consumption grows strictly faster in the latter:

Lemma 5 If stable labor share and capital-dominant equilibria coexist then workers’ consumption

grows strictly faster, their labor shrinks to zero strictly faster, and capitalists’ consumption grows

strictly more slowly,14 in the stable labor share equilibrium than in the capital-dominant equilibrium.

4.7 Workers’ income under capital dominance and the effect of fi-

nancial frictions

Capital-dominant equilibria, which by definition feature a vanishing labor share, raise the question of

how workers obtain income to consume. The answer depends on the strength of complementarities;

the speed of automation; and the strength of financial frictions, broadly defined, and as measured

by δw.

argument.
14Capitalists’ consumption grows at the same rate in the two equilibria if (39) holds with equality.
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Automation θ
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gY and gCo

gCw

Labor share X

Stable

labor

share

Capital dominance

Automation θ

(1− σ) (AK − δw − ρ) + η (δw − δo)

(1− σ) (AK − δo − ρ)

gY and gCo

gCw

Stable

labor

share

Capital dominance

Labor share X

Figure 1: Asymptotic growth rates and labor share as a function of the automation speed θ.
The left and right panels show the cases of weak complementarities (σ + η > 1) and strong
complementarities (σ+η < 1). Dashed and solid lines correspond to multiple equilibria that
arise for intermediate automation speeds.

Consider first the case of strong complementarities (σ+η < 1). In this case, workers hold capital

in any (stable) capital-dominant equilibrium (Propositions 1 and 2). Moreover, their consumption

is asymptotically entirely funded by capital income:

Corollary 4 In any equilibrium in which workers hold capital, workers’ capital income grows strictly

faster than their labor income.

Because workers hold capital to protect themselves from the consequences of automation in

capital-dominant equilibria, an increase in δw naturally reduces the growth rate of their consumption

(Proposition 1).

Moreover, workers are potentially further harmed by an increase in δw because it expands the

range of automation speeds for which a capital-dominant equilibrium coexists with a stable labor

share one (Lemma 5). In this case, small increases in financial frictions potentially cause large

drops in workers’ consumption growth, highlighting the importance of the efficiency of the financial

system, and (depending on interpretation of the origins of δw − δo) financial literacy.

Next, consider the case of weak complementarities. When automation is fast enough to deliver

capital dominance, there are two subcases to consider. If the rate of automation is very high then

labor income falls so quickly that workers again hold capital to protect themselves; by Corollary

4, their consumption is asymptotically entirely funded by capital income. Conversely, if the rate

of automation is more moderate then workers do not hold capital, and fund consumption entirely

from labor income. Even though the labor share of the economy shrinks, labor income nonetheless

grows in absolute terms, enabling strictly positive consumption growth without capital income.

When complementarities are weak, an increase in δw is again bad for workers:
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Corollary 5 An increase in financial frictions from δw to δ̃w > δw strictly reduces workers’ con-

sumption growth if workers hold capital at the initial value δw, and has no effect otherwise.

5 Policy: Tax-and-redistribute vs automation retarda-

tion

Consider the case in which automation is sufficiently fast that capital dominance arises. As we noted,

capital dominance is associated with (asymptotically) all of national income flowing to capitalists.

In contrast, both wages and capital income received by workers constitute a vanishingly small

fraction of capital income. What can a government that wishes to avoid the (relative) immiseration

of workers do?

We compare the efficacy of two commonly-discussed possibilities. First, a government can tax

income and redistribute the proceeds. Second, a government can take steps to directly impede the

pace of automation.

Let X be the ratio of workers’ consumption to national income that a policy targets, i.e.,

X = lim
λwCw,t

Yt
.

We focus on the case in which capitalists are a small fraction of the population (λo ≈ 0), which we

take to be the relevant case.

5.1 Tax-and-redistribute

The government must raise tax revenue of

XYt.

Because capitalists are a small fraction of the population, the government can then redistribute this

revenue via a “basic income” policy of paying XYt to each household.

Asymptotically, all income takes the form of a return to capital held by capitalists, and so the

government must raise this revenue via a tax τ on capital, satisfying

τKt = XYt.

Under capital dominance, lim AKKt

Yt
= 1, and so

τ = AKX .

(Equivalently, the government could tax the return to capital at rate X .)

Taxation of capital is equivalent to a level-increase in δo and δw. This reduces incentives to

18



accumulate capital, and accordingly lowers the growth of both capital and national income. The

effective increase in δo and δw also pushes the economy towards capital dominance (see the threshold

condition (39)). The reason is that capital-taxation reduces the growth rate of capital, making it

scarcer, and raising its equilibrium return. As discussed following Proposition 2, the net effect is to

promote capital dominance (given task-complementarity σ < 1).

From Propositions 1 and 2, the end result is that, given a target X , the post-redistribution

consumption of workers grows at rate

η (AK (1−X )− δo − ρ) . (42)

5.2 Automation retardation

Alternatively, a government can take steps to directly reduce the pace of automation (pejoratively,

“Luddite” policies). Specifically, if the government lowers the automation rate θ—or, equivalently,

the rate of automation adoption—to below the threshold (39) then an equilibrium with a stable labor

share arises. Because capitalists are a small fraction of the population, the labor share coincides

with the ratio of workers’ consumption to national income (recall that workers don’t hold capital,

while capitalists may or may not work). The more the automation rate is slowed, the greater the

labor share is, though at the expense of lower growth rates. Specifically, from (40) and (41), the

stable labor share is related to the consumption growth rate via

limX = 1−

(

δo + ρ+
gCw

η

AK

)1−σ

.

Hence the consumption growth rate associated with a target worker share of X is

η
(

AK (1−X )
1

1−σ − δo − ρ
)

. (43)

5.3 Comparison

Both the taxation of capital and the retardation of automation introduce distortions that lower the

growth rate of national income. Nonetheless, the comparison of (42) and (43) is straightforward,

and implies that a government interested in ensuring that workers’ consumption-share remains at

X prefers to tax capital rather than retard automation.

A rough intuition is as follows. From (17), reducing the asymptotic capital share below 1 via

automation-retardation entails reducing the asymptotic return to capital F̄K below its maximal

value of AK . But this is an expensive way to reduce the capital share, as follows. On the one hand,

each percentage point reduction in F̄K reduces asymptotic consumption growth (of both capitalists

and workers) by η percentage points; see the intertemporal optimality condition (24). But on

the other hand, a reduction in F̄K is naturally associated with an increase in the capital-output
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ratio K
Y

. Because the asymptotic capital share is, by definition, F̄K lim K
Y

, this means that there

is incomplete pass-through of a reduction in F̄K on the capital share. In contrast, a percentage

point of capital taxation has same effect of reducing consumption growth by η percent, but enjoys

complete pass-through in terms of its effect on capitalists’ share of the economy.

Like the rest of the paper, this analysis assumes that the fraction of unautomated tasks for which

automation becomes feasible (θ) is exogenous. Nonetheless, the government can slow down the

decline in the share of labor-performed tasks through employment-favoring policies (e.g., requiring

that certain tasks are performed by humans). Such policies drive a wedge between the fraction of

tasks that can be automated at any point in time (αt) and those that are (α̃t).
15

If the innovation that drives automation is endogenous and embedded in capital, then capital-

taxation may additionally reduce θ. Our analysis has the benefit of cleanly separating this effect

from those arising from endogenous factor returns. In this case, however, the tax-and-redistribute

policy is bundled with automation retardation in practice. We note two things in this context.

First, this channel only affects the above discussion if capital taxation lowers θ below the capital-

dominance threshold. Otherwise, FK = AK and the above analysis goes through. Second, if capital

taxation does reduce θ below the capital-dominance threshold, the above policy comparison remains

unchanged. Heuristically, the tax-and-redistribute policy then becomes bundled with automation

retardation and the required tax rate falls because some of the redistributive effect is achieved

through the (more expensive) retardation channel. But the cost of this policy is then a weighted

average of that of the two channels and, thus, smaller than the cost of pure automation retardation.

6 Discussion

6.1 Automation, “robo-advising,” and the return wedge δw − δo

Automation raises aggregate growth rates. As we have emphasized, the concern with higher rates

of automation is that the benefits flow disproportionately to capitalists. Recall that workers differ

from capitalists only in their lower ability to hold capital, captured by the financial frictions wedge

δw − δo. It is precisely this wedge that prevents workers from fully benefiting from faster rates of

automation.

These observations raise the intriguing possibility that automation itself will provide the cure to

the ills it generates, via a reduction in the financial frictions wedge δw−δo. As we have emphasized,

“financial frictions” should be broadly interpreted. For example: if the wedge δw − δo stems from

differences in knowledge and expertise, low-cost and high-quality robo-advising would reduce and

perhaps even eliminate the wedge. Alternatively, automation holds the potential to lower the cost of

financial intermediation, leveling the playing field between low- and high-δ households. And if the

15In practice, policies targeted at increasing employment have often taken the form of investment incentives.
In the data, these achieve the opposite effect in that they accelerate the substitution of routine labor with
capital (Tuzel and Zhang, 2021), mirroring an acceleration in automation or its adoption in our framework.
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wedge δw − δo stems from differences in self-control, automation again holds the potential to allow

high-δ households to delegate their financial decisions to a digital household “manager,” thereby

ameliorating the consequences of self-control differences.

To formally address this possibility, we generalize our baseline model to one in which the worker-

depreciation rate δw is time-varying, reflecting automation of financial services along the lines dis-

cussed above,

δw,t ≡ δo +∆t. (44)

For transparency, we continue to assume the capitalist-depreciation rate δo is time-invariant.

The question we are interested in is whether the automation-induced dynamics of the financial

frictions wedge ∆t ameliorate the problems associated with capital dominance. Accordingly, for

the remainder of this section we assume that the economy’s parameters are such that if the wedge

∆t remains fixed at its current value then the economy will asymptote to capital dominance.16

From Propositions 1 and 2, workers avoid relative immiseration only if the wedge ∆t asymptotically

vanishes.

While various assumptions are possible for how automation will affect the wedge ∆t, a natural

one in the context of the rest of the paper is that the wedge will shrink exponentially towards zero,

in common with the set of unautomated production tasks. Thus, suppose that for some χ > 0

g∆,t =
∂

∂t
ln (∆t) = −χ. (45)

From intertemporal optimality (24), at any time t at which workers hold capital, the difference in

growth rates of marginal utility coincides with financial friction wedge,

∂

∂t
lnMUCw,t −

∂

∂t
lnMUCo,t = δw,t − δo = ∆t. (46)

Recall from (29) that because leisure approaches its upper bound, this difference in marginal-utility

growth rates can be expressed directly as a difference in consumption growth rates,

gCo,t − gCw,t → ∆t. (47)

Let date 0 be an arbitrary reference date. A worker’s consumption as a fraction of a capitalist’s

16For the case of strong complementarities (σ + η < 1) we assume, moreover, that capital dominance is
the unique equilibrium outcome under current parameter values. Section 4.7 already analyzes the case in
which capital dominance and a stable labor share co-exist as equilibrium outcomes, and establishes that even
modest declines in the wedge ∆t potentially eliminate the capital dominance equilibrium.
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consumption,
Cw,t

Co,t
, equals

Cw,0

Co,0
exp

(
ˆ t

0
(gCw,s − gCo,s) ds

)

≈
Cw,0

Co,0
exp

(

−

ˆ t

0
∆sds

)

=
Cw,0

Co,0
exp

(

−∆0

ˆ t

0
exp (−χs) ds

)

. (48)

Importantly, the final expression is bounded away from 0 even asymptotically, implying that, if

financial frictions shrink towards zero exponentially, workers escape relative immiseration.

Although (48) implies that workers avoid immiseration, it is still that case that capital dominance

potentially leads to a high degree of worker-capitalist inequality. To see this, note that evaluation

of (48) as t → ∞ delivers

lim
Cw

Co
=

Cw,0

Co,0
exp

(

−
∆0

χ

)

. (49)

A reasonable starting point to quantify (49) is to assume that technological progress eliminates

financial frictions at the same speed as it automates labor-produced tasks, that is, χ = θ. Looking

ahead, we argue in Section 7 that capital dominance would require a speed of automation θ of

approximately 2.4% (assuming σ ≈ 0.5) or more; and moreover, that this speed is considerably

above estimates of the current rate. We also argue that the current level of ∆t is on the order of

2%. Consequently, if the speed of automation rises enough to potentially trigger capital dominance,

(49) suggests that the technology-driven asymptotic elimination of financial frictions would stabilize

worker consumption as a fraction of capitalist consumption at approximately exp
(

− 2
2.4

)

≈ 43% of

its current level.

In summary: there is some hope that automation will cure its own ills by exponentially shrinking

the frictions underlying the return difference between capitalists and workers. However, even if

complete (relative) immiseration is avoided, capital dominance still implies a considerable rise in

worker-capitalist consumption inequality.

As a final point: The asymptotic disappearance of the financial frictions wedge ∆t is neces-

sary but not sufficient for workers to escape immiseration. From (48), the avoidance of worker

immiseration requires
ˆ t

0
∆sds < ∞. (50)

Condition (50) is satisfied if the wedge ∆t approaches 0 at exponential speed. Conversely, however,

condition (50) fails if the wedge ∆t approaches 0 at rate 1/t; and in this case, workers again end

up with a vanishingly small share of the economy. As a specific instance of a force that may

slow the speed at which automation reduces the wedge ∆t, Greig et al. (2024) empirically study

robo-advising, and identify frictions to its adoption.
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6.2 The role of declining hours worked

Regardless of whether the labor share asymptotically vanishes, equilibrium hours worked do. In

this, our analysis is consistent with naïve predictions based on the idea that no jobs will remain for

human workers, and that neglect the countervailing effect of the increasing value of human labor in

non-automated tasks.

Although one might be tempted to conclude that the asymptotic vanishing of hours-worked

makes it more likely that the labor share shrinks to zero, the reverse is in fact true. To see this,

consider briefly a perturbed version of our model, in which we exogenously specify workers’ labor

supply, instead of allowing it to be determined by households’ optimizing decisions. Specifically,

we suppose that the growth rate of workers’ labor supply is exogenously set to gLw ≤ 0, while

capitalists’ labor supply is exogenously set to zero, Lo,t ≡ 0. The case of constant labor supply by

workers is simply the special case gLw = 0.

Proposition 4 If labor choices are exogenous, the economy has a stable labor share if and only if

θ < (1− σ) (η (AK − δo − ρ)− gLw) . (51)

Proposition 4 establishes that the faster workers’ labor supply shrinks the more likely it is that the

economy asymptotes to a stable labor share. That is: the equilibrium shrinkage of hours worked in

our main anaylsis pushes against capital dominance, as opposed to engendering it. Economically:

Just as capital dominance is hindered by faster capital accumulation (see above), it is promoted by

faster labor growth (i.e., labor that shrinks towards 0 more slowly).

These observations prompt consideration of an additional policy for heading off capital domi-

nance, namely regulation that caps the number of hours worked, with the cap shrinking over time.

Such a regulation would resemble France’s 35-hour work-week, with the added stipulation that the

35-hour limit gradually fall.

Specifically, suppose the rate of automation θ is above the threshold rate (1− σ) (AK − δo − ρ)

that triggers capital dominance. By Proposition 4, a labor regulation that implements a sufficiently

negative gLw would shift the economy to one with a stable labor share. The proof of Proposition

4 establishes that, by suitable choice of gLw , a government can attain any asymptotic level of

capital return F̄K < AK that it desires. The capital return F̄K in turn determines the growth rate

of the economy via the capitalists’ intertemporal condition gY = gKo = η
(

F̄K − δo − ρ
)

and the

asymptotic labor and capital shares via (16).

Two points are worth stressing here. First, for any choice of gLw that is aggressive enough to

avoid capital dominance, a government faces a trade-off between the growth rate of the economy

(increasing in F̄K) and the share of output flowing to workers (decreasing in F̄K). Second, the

combinations of economic growth lim gY and the labor share limX that can be attained via labor

regulations of this type exactly coincide with those attainable via “Luddite” policies to directly slow

θ of the type discussed in Section 5. To see this, simply note that Luddite policies similarly pin
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down F̄K and in turn lim gY and labor share limX. Because of this equivalence, labor-regulation

policies are dominated by taxation-and-redistribution in the same way that Luddite policies are.

6.3 Endogenous automation and overlapping generations

In light of our focus on the long-run limit as αt → 1, two of our assumptions deserve further

discussion: the exogenous speed of automation and the characteristics of the (infinitely-lived) agents

in our model. We discuss these assumptions in turn.

Our assumption that the rate of automation, θ, is exogenous reflects a benchmark case marked

by an inexorable “march of progress,” and allows us to focus on the long-run consequences of

automation. How would our conclusions change if instead the rate of automation were endogenous?

A key consideration is whether innovation in automating further tasks is capital or labor-intensive.

If innovation is labor-intensive, then the rate of automation will tend to rise in the ratio of marginal

products of capital and labor,
FK,t

FL,t
. In this case, endogenous automation would amplify exogenous

variation in automation rates. Specifically, high exogenous rates of automation are associated with

capital dominance and high ratios
FK,t

FL,t
, thereby endogenously further increasing the automation

rate. Conversely, low rates of automation are associated with a stable labor share and low ratios
FK,t

FL,t
, thereby endogenously further decreasing the automation rate.

However, if instead innovation is capital-intensive, then parallel arguments suggest that endog-

enizing automation dampens exogenous variation in automation rates.

Regarding the economic agents in our model, we assume that these are infinitely-lived and keep

their exogenous types (δo or δw) forever. This set-up is isomorphic to an overlapping-generations

model with stochastic death, perfect bequest motives, and perfect persistence in types. Relaxing

the bequest motive is equivalent to raising the time-preference rate ρ in our set-up. A higher rate of

time preference reflects stochastic mortality and would lead to lower individual savings and slower

aggregate capital accumulation. Thus, an OLG-setting with imperfect bequest motive makes capital

dominance more likely than in our set-up.

Relaxing persistence in types implies that in every generation, some worker-type agents have

inherited wealth from their capitalist parents. Thus, the wealth-weighted average rate of deprecia-

tion rate that enters the capital-dominance condition rises to δ̃ > δo. Thus, weakening persistence

in types, either by letting δi follow a Markov process for an infinitely-lived agent, or by modeling

agents as overlapping generations with imperfectly heritable types, also makes capital dominance

more likely than in our set-up.

6.4 Observable trends

While we predominantly examine asymptotic factor shares in the full-automation limit, the key

forces in our analysis also speak to three long-run empirical trends: (i) the decline in hours worked,

(ii) the recent rise in the capital share, which our model naturally connects to a decline in TFP
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growth, as well as its previous stability, and (iii) a reallocation in output shares towards services.

Time spent working converges to zero in all equilibria of our model, both for workers and cap-

italists. As such, our analysis predicts a long-term decline in hours worked, even away from the

limit, consistent with empirical observation (Boppart and Krusell, 2020, and references therein).

The prediction stems in part from the preference-specification with consumption and leisure as

complements, η < 1, which does not belong to the class proposed by King et al. (1988) to gener-

ate stable hours worked despite consumption growth. Another driving force, which interacts with

consumption-leisure complementarity, is task complementarity (σ < 1). As the economy accumu-

lates capital but the per-capita time endowment stays fixed, labor-produced tasks become scarce

and wages rise. That is, with task complementarity, automation is labor-augmenting (see also

Aghion et al., 2019) and generates wage growth. With consumption-leisure complementarity, wage

growth translates partially to leisure growth.

Regarding a rising capital share and falling TFP-growth, Lemma 1 implies that TFP growth in

our economy is given by

gTFP =
θ

1− σ

(

1−
1−Xt

αt

)

. (52)

Philippon (2023) argues that, empirically, TFP has grown linearly, which implies that gTFP has

dropped. The last term in (52) implies that our model features declining TFP growth if the capital

share grows faster than the share of automated tasks, αt. Observe first that the share of automated

tasks grows at a rate gα,t = θ(1 − αt)/αt. It follows from equation (11) that (given σ < 1) the

capital share grows faster than the share of automated tasks, and hence the growth rate of TFP

declines, if and only if the marginal product of capital rises. US growth rates of capital, output,

and the capital share from 1970-2019 satisfy this condition (see Table 1).

Regarding the stable factor shares observed in the immediate post-WWII period, we note that

the labor share in our model depends crucially on the relative growth rates of capital and labor.

This growth differential was around 1 percentage point larger in the 1950-1970 period than between

1970 and 2019. Our model is thus consistent with a period of labor-share stability prior to its

eventual decline (see Appendix E).

Lastly, our analysis has implications for the fraction of GDP stemming from each non-automated

task or “sector” prior to its automation, namely, Xt/(1− αt). Hence, the growth rate of each non-

automated task’s GDP share prior to automation is

gX,t + θ. (53)

It follows that non-automated sectors grow faster than the overall economy whenever θ outweighs

the rate of decline in the labor share at any point in time. (Note that, at least asymptotically,

this condition is weaker than the condition for a stable labor share. That is: Even with capital

dominance, the growth rate of as-yet non-automated sectors may exceed that of the overall economy.)

In the preliminary calibration we present in the following section, expression (53) is indeed
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positive for the US in the 1970-2019 period. It is natural to think of non-automated tasks largely

as services, which Boppart (2014) shows have seen steadily rising expenditure shares in the US.

Among the industries that have outgrown the overall economy at the fastest pace in recent decades,

many naturally come to mind as examples of non-automated tasks, such as education, healthcare,

restaurants, or performing arts. The industry with the biggest relative decline is manufacturing.17

6.5 r, g, and capitalist-worker inequality

Ceteris paribus, higher rates of return on capital favor capitalists at the expense of workers, a

point emphasized by Piketty (2017). Here, we briefly discuss our analysis’s implications for the

asymptotic relation between the net return on capital, which we label r = R− δo;
18 the growth rate

of the economy, gY ; and capitalist-worker consumption inequality. From (16) and our equilibrium

characterization: in a stable labor share equilibrium

r = ρ+
θ

1− σ
and

r

gY
=

ρ+ θ
1−σ

ηθ
1−σ

while in a capital-dominant equilibrium

r = AK − δo and
r

gY
=

AK − δo
η (AK − δo − ρ)

.

The asymptotic interest rate is increasing in the speed of automation, since faster automation

keeps capital scarcer. Moreover, by Corollary 3, the interest rate in a capital-dominant equilibrium

would exceed today’s rate, since AK ≥ FK,t.

Thus, on the one hand, faster rates of automation are associated both with higher values of r

and with greater capitalist-worker consumption inequality, consistent with the partial equilibrium

reasoning that higher rates of return on capital favor capitalists.

On the other hand, faster rates of automation are associated with lower ratios of r to gY .

The reason is simply that faster automation increases output growth proportionately more than it

increases the return to capital. Combined with the fact that r exceeds gY (as it must in any setting

in which capital and output grow at the same rate, and the transversality condition (2) holds), it

follows that while both r and gY increase in the rate of automation θ, the ratio r/gY decreases.

Consequently, the ratio r/gY is negatively related to capitalist-worker inequality, at least asymp-

totically. This is true both as one varies the automation rate θ, and also as one moves across the

different equilibria that co-exist in the case of strong complementarities (σ + η < 1).

17Using BEA data by industry Manufacturing lags total cumulative growth in value added between 1998
and 2021 by 32%, while Food services (25%), Performing arts, spectator sports, and related activities (25%),
Health care (26%), and Educational services (31%) have all grown faster than total value added. Hubmer
(2023) confirms quantitatively that these sectors—unlike manufacturing—have above-average labor shares.

18We evaluate r using the capitalists’ δi = δo as capitalists asymptotically hold all capital in all equilibria.
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7 A preliminary calibration

We make a first pass at calibrating our analysis, and in particular, assessing whether the economy

is in the stable labor share or the capital dominance region. By its nature, this exercise is highly

speculative. But with that caveat, our calibration suggests that the current speed of automation is

too slow to generate capital dominance.

Recall that capital dominance arises as a unique equilibrum if and only if:

θ

1− σ
> AK − δo − ρ. (54)

In addition, a capital-dominant equilibrium coexists with a stable labor share equilibrium if com-

plementarities are strong (σ + η < 1) and

θ

1− σ
+

1− σ − η

1− σ
(δw − δo) > AK − δo − ρ. (55)

7.1 Capital dominance as a unique equilibrium?

We first assess whether capital dominance arises as a unique equilibrium, i.e., whether (54) holds.

Evaluation of the RHS of (54) requires an estimate of AK . Our main approach is to use the fact

that AK is bounded below by the marginal product of capital (see Corollary 3), which can in turn

be estimated from observables:

AK ≥ FK,t =
1−Xt

Kt

Yt

. (56)

Turning to the LHS, we first note that substitution of (10) into (12) and straightforward manipula-

tion links the automation rate θ to observable growth rates of output, labor, and labor share, and

to the elasticity of substitution across tasks (σ):

θ = (1− σ)(gY,t − gL,t)− σgX,t. (57)

As noted, the elasticity σ coincides with the production-based elasticity of substitution between

capital and labor, and a significant literature is devoted to its estimation (e.g., Chirinko, 2008;

Oberfield and Raval, 2021). Viewing the output aggregation into a single good through a consump-

tion lens, the relevant elasticity of substitution is one across consumption goods (e.g., Nordhaus,

2021). Consequently, (57) links θ to observables and existing estimates of the elasticity σ.

For inputs, we use the following from National Income Accounts (as of 2019) and the US Census

Bureau, all scaled by the working population (see Appendix B for details):

(

gY , gL, gK , gX , g1−X , X,
K

Y
, δo, ρ

)

= (1.36%,−0.19%, 0.99%,−0.17%, 0.28%, 59.7%, 3.63, 4.32%, 2%)

Our model abstracts from trends in the productivity parameters AL and AK ; but we note that the
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outcome of the calibration, that is, whether (54) holds, is invariant to growth in labor productivity,

AL, because such growth shifts both the estimate of θ and the capital-dominance threshold by equal

amounts.

Figure 2 displays the rate of automation θ (calculated from (57)) and the key ratio θ
1−σ

as

a function of σ. Based on this speculative exercise, our analysis implies that the economy will

not asymptote to a unique capital-dominant equilibrium, and that, instead a stable labor share

equilibrium will exist, as follows. First, the lower bound (56) for AK implies

AK − δo − ρ ≥
40.3%

3.63
− 4.32%− 2% = 4.79%. (58)

From Figure 2, the ratio θ
1−σ

only approaches this bound if the elasticity parameter σ is close to 1

(it exceeds the bound for σ ≥ 0.95), that is, outside the typical range of empirical estimates.19

Acemoglu (2024) estimates that approximately 5% of GDP will be disrupted by AI in the next

10 years. We conclude this subsection by using this estimate to give a conceptually distinct estimate

of the speed of automation θ, and its relation to the threshold speed required for capital dominance.

In our notation (writing t for the current time period), tasks αt+10 −αt will be automated over

the next 10 years, and the current GDP share of these tasks is

(αt+10 − αt)
Xt

1− αt
. (59)

The share of tasks 1−αt+10 still unautomated in 10 years is related to today’s share of unautomated

tasks 1− αt by

1− αt+10 = (1− αt) exp (−10θ) ,

which straightforwardly rewrites as

exp (−10θ) = 1−
(αt+10 − αt)

Xt

1−αt

Xt
.

Substituting in the current labor share of Xt ≈ 60% and Acemoglu’s estimate of (59) of ≈ 5% yields

θ ≈ 0.9%,

which matches the value estimated using (57) and an input of σ ≈ 0.5. Moreover, this estimate of

the speed of automation θ falls below the threshold for capital dominance provided that the elasticity

of substitution across tasks, σ, is below 0.81, which encompasses typical empirical estimates.

Finally: Appendix B explores two further alternative calibrations, both of which lead to the

19In his synthesis of the literature on capital-labor substitution in production, Chirinko (2008) writes that
“the weight of the evidence suggests a value of σ in the range of 0.40–0.60.” In a recent estimation for the
manufacturing sector, Oberfield and Raval (2021) place it at 0.5–0.7. Given the dual role of σ in capturing
both technology- and preference-based complementarities, we also note that estimates based on consumption
expenditure similarly point towards gross complementarity (Nordhaus, 2021).
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same conclusion that the speed of automation falls short of the capital dominance threshold.

7.2 Capital dominance as one of multiple equilibria?

Next, we assess whether capital dominance arises as one of two coexisting equilibria, i.e., evaluate

whether the combination of σ + η < 1 and (55) holds.

Relative to (54), condition (55) features the wedge in capital returns experienced by workers

and capitalists, δw − δo, and the consumption-leisure substitutability parameter η.

Fagereng et al. (2020) estimate a return differential of around 1.5 percentage points within safe

assets and around half a percentage point within risky assets. In US data, Smith et al. (2023)

estimate a gap of close to three percentage points within fixed income assets between the bottom

99.9% and the top 0.01% of the wealth distribution. Through the lens of intermediation rents,

Philippon (2015) estimates an intermediation cost of 1.5–2% of intermediated assets. Below, we

consider input values for the return wedge δw − δo of 1.5% to 4.5%.

For η, the elasticity of substitution between consumption and leisure, we use the following result

that expresses this elasticity in terms of the Frisch elasticity of labor supply and the IES:

Lemma 6 The elasticity of substitution between consumption and leisure (η) is related to the Frisch

elasticity of labor supply ( ∆ lnL
∆lnW

) and the IES (≈ 1
γ
) according to

η =

(

WL

C
+

L

1− L

)

∆ lnL

∆ lnW
−

1

γ

1− L

L

WL

C
. (60)

For the Frisch elasticity, we use the value of 0.32 reported in (Chetty et al., 2013), obtained from

averaging estimates from previous studies.20 The income-to-consumption ratio WL
C

is approximately

1.1. Hence even if one takes a conservative view of what constitutes leisure, leading to an input of
L

1−L
≈ 2, and even if one believes the IES is very small, Lemma 6 still implies η < 1. Adopting a

more expansive view of leisure ( L
1−L

lower) and/or a higher value of the IES reduces the estimate

of η.

With respect to η, we conclude that micro-estimates indeed suggest that η < 1, as we have

assumed throughout. Moreover, values of η below 0.5 are consistent with reasonable inputs in

Lemma 6, and values in this range imply that the strong complementarity condition σ + η < 1 is

likely satisfied.

We are now ready to consider condition (55), determining whether capital dominance coexists

with a stable labor share as a possible equilibrium outcome. First, consider the case in which the

return wedge is at the lower end of estimated values, δw − δo = 1.5%. Note that the wedge term

in (55) is bounded above by δw − δo. From Figure 2, it follows that (55) holds only for values of

task-complementarity σ that are very close to 1 (approximately 0.9 or higher), which is well outside

the range of empirical estimates (see footnote 19).

20See Table 1 in (Chetty et al., 2013); the range of estimates is 0.18− 0.43.
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Second, consider the case in which the return wedge is at the upper end of estimated values,

δo − δw = 3%. The top panel of Figure 3 plots the LHS of (55) for η = 0.025, 0.05, 0.1, with

the domain of σ restricted to ensure the strong complementarity condition σ + η < 1 holds. The

figure demonstrates that (55) holds for task complementarity σ < 0.9 only if consumption-leisure

complementarity is extremely strong, η < 0.05, i.e., close to Leontief.

Third, consider the case of a return wedge that exceeds estimated values, δw − δo = 4.5%.

The bottom panel of Figure 3 is analogous to the top panel, and plots the LHS of (55) for η =

0.05, 0.1, 0.25. In this case, the return wedge is large enough that the LHS of (55) is decreasing

rather than increasing in the task-complementarity parameter σ. For very strong consumption-

leisure complementarity (η < 0.05), the capital dominance condition (55) holds. Even for less

extreme (though still strong) complementarity inputs, such as η in the range of 0.1 − 0.15, the

capital dominance condition (55) holds for a wide range of task-complementarity inputs that is

consistent with empirical estimates. However, consumption-leisure complementarity weaker than

η = 0.28 is inconsistent with the capital dominance condition (55), regardless of the strength of

task-complementarity σ.

To conclude: The “multiplicity” capital dominance condition (55) is naturally easier to satisfy

than the “unique” capital dominance (54). Nonetheless, (55) holds only if at least one of the inputs

σ and δw − δo is chosen aggressively, relative to available estimates; and even in these cases, (55)

holds only if consumption-leisure complementarity is very strong. As such, the calibration exercise

suggests that the recent pace of automation is likely too slow to deliver an equilibrium featuring

capital dominance.

7.3 Lower bounds for the asymptotic labor share

Finally, and more briefly, our calibration exercise also delivers a lower bound for the asymptotic

labor share. To obtain this lower bound, we apply Proposition 3, using as an input for AK the lower

bound calculated from the observed return to capital FK,t. As task-complementarity strengthens

from σ = 0.7 to σ = 0.4 (focusing here on the range most consistent with empirical estimates, see

footnote 19), the estimated lower bound for the asymptotic labor share increases from approximately

8.5% to approximately 18%. Especially in light of the low values of these estimates, it is worth

emphasizing that these are lower bounds, not point estimates. Tighter bounds would require better

estimates of AK than we have been able to construct.21

21The parameter AK is related to the current labor share Xt and return to capital FK,t by AK =
(

αt

1−Xt

)
1

1−σ

FK,t. But this formula requires a credible estimate of the fraction of automated tasks αt.
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8 Conclusion

Recent progress in artificial intelligence raises the prospect that, asymptotically, all tasks will be

automated. We characterize the consequences for capital and labor markets of such automation, in

combination with standard economic forces determining capital returns and wages. In particular,

we derive a simple condition determining whether or not capital dominance arises, i.e., national

income flowing entirely to the owners of capital. Our model provides a natural setting for policy

analysis, and implies that the negative consequences of capital dominance are better ameliorated

via taxation-funded “basic income” than by the deliberate retardation of automation. The capital-

dominance condition maps to observables, and a first-pass calibration suggests that the current rate

of automation is too slow to generate capital dominance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Elasticity of substitution across tasks ( )

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Dashed line shows , solid line shows /(1- )

Figure 2: θ (dotted, blue) and θ
1−σ

(solid, orange) as functions of the elasticity of substitution
between tasks, σ. The automation rate θ is inferred from (57). The gray, horizontal line
marks the lower bound on AK − δo − ρ from (58).
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Figure 3: LHS of (55) as functions of the elasticity of substitution between tasks, σ for
different values of η; top panel: 0.025 (blue, dashed), 0.05 (orange, dash-dot), 0.1 (yellow,
dotted), bottom panel: 0.05 (blue, dashed), 0.1 (orange, dash-dot), 0.25 (yellow, dotted).
The gray, horizontal line marks the lower bound on AK − δo − ρ from (58).
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A Proofs

Substituting Lemma 1 into the return and wage growth rates (9) and (10) gives

gR,t =
1

σ

(

Xt (gL,t − gK,t) +
θ

1− σ

(

1−
1−Xt

αt

)

+ θ
1− αt

αt

)

(A-1)

gW,t =
1

σ

(

(1−Xt) (gK,t − gL,t) +
θ

1− σ

(

σ −
1−Xt

αt

))

. (A-2)

Output growth (14), αt → 1, and (15) together imply that a stable labor share equilibrium exists

only if

lim (gK − gL) =
θ

1− σ
. (A-3)

Proof of Lemma 1: From the decomposition Yt = KtFK,t + LtFL,t:

Ẏt = K̇tFK,t +KtḞK,t + L̇tFL,t + LtḞL,t

and hence (using also (9) and (10))

Ẏt
Yt

=
K̇t

Kt

KtFK,t

Yt
+

KtFK,t

Yt

ḞK,t

FK,t
+

L̇t

Lt

LtFL,t

Yt
+

LtFL,t

Yt

ḞL,t

FL,t

=

(

σ − 1

σ

)

(

(1−Xt)
K̇t

Kt
+Xt

L̇t

Lt

)

+
1

σ

Ẏt
Yt

+
θ

σ

(

(1−Xt)
1− αt

αt
−Xt

)

,

i.e.,

gY,t = (1−Xt) gK,t +XtgL,t +
θ

σ − 1

(

(1−Xt)
1− αt

αt
−Xt

)

,

which yields the result and completes the proof.

Proof of Lemma 2: First, there cannot be an equilibrium in which some group i both holds

capital and has lim g1−Li
< 0, as follows. Suppose to the contrary that such an equilibrium exists.

From the law of motion for capital,

lim gK,i = F̄K − δi + lim
LiFL − Ci

Ki
.

Since group i holds capital, its transversality condition can hold only if the final term on the RHS

is non-positive, which in turn requires

lim gC,i ≥ lim gL,i + lim gW = lim gW ,

where the equality follows from the supposition that lim g1−Li
< 0. But since group i is not at the
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no-work corner, (25) and η < 1 imply that

lim gC,i = η lim gW + lim g1−Li
< lim gW ,

contradicting the previous inequality and establishing the claim.

Second, there cannot be an equilibrium in which some group i does not hold capital and has

lim g1−Li
< 0, as follows. Suppose to the contrary that such an equilibrium exists. Since by

supposition lim gLi
= 0, the budget constraint for this non-capital-holding group i gives

lim gCi
= lim gW .

Substitution into (25) gives

lim g1−Li
= (1− η) lim gW ,

and hence (by supposition, and η < 1)

lim gW = lim gCi
≤ 0.

From (27),
∂

∂t
lnMUCi

≥ 0.

From (12), limX = 0, and hence F̄K = AK . Hence intertemporal optimality (24) and assumption

(6) imply

lim
∂

∂t
lnMUCi,t ≤ − (AK − δi − ρ) < 0.

The contradiction establishes the claim.

So far, we have established that lim g1−Li
= 0 for both groups. We now show that

lim gW > 0.

At least one group i must work (from the Inada condition for the marginal product of labor), and

the intratemporal optimality condition (25) for this group gives

lim gCi
= η lim gW .

Suppose to the contrary that lim gW ≤ 0. Then one obtains a contradiction exactly as above.

The consumption of both groups grows without bound, as follows. From the previous step,

wages grow without bound; and also as above, at least one group must work. The combination of

that group’s intratemporal condition (25) and lim g1−Li
= 0 implies that the consumption of any

group that works grows without bound. Moreover, if a group does not work, consumption of that

group must grow even faster, completing the proof.
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Proof of Lemma 3: We first show that workers supply strictly positive labor asymptotically. To

see this, suppose to the contrary that workers do not work asymptotically. Hence workers hold

capital, and capitalists work. From intermporal optimality (30),

lim gCw = η
(

F̄K − δw − ρ
)

< η
(

F̄K − δo − ρ
)

≤ lim gCo , (A-4)

implying that workers work (since capitalists do), contradicting the original supposition.

Similarly, capitalists hold capital asymptotically. To see this, suppose to the contrary that

capitalists do not hold capital. Hence workers hold capital, and capitalists work. Exactly the same

steps as above imply (A-4), which contradicts the following implication of intratemporal optimality

conditions:
1

η
lim gCo = lim gW ≤

1

η
lim gCw .

Next, we show that capitalists do not work under capital dominance. Suppose to the contrary

that capitalists and workers both work. By Corollary 1, workers do not hold capital. By capital

dominance, aggregate labor income grows strictly slower than lim gY = lim gK , and hence workers’

consumption Cw likewise grows strictly slower than lim gK . Capitalists’ capital accumulation is

given by
K̇o,t

Ko,t
= FK,t − δo +

Lo,tFL,t

Yt

Yt
Ko,t

−
Co,t

Ko,t
.

By capital dominance, the third term on the RHS converges to 0. The transversality condition for

capitalists then implies that capitalists’ consumption Co asymptotically grows at the same rate as

their capital holdings Ko, i.e.,

lim gCo = lim gKo = lim gK .

Hence capitalists’ consumption grows strictly faster than workers’ consumption, and the intratem-

poral optimality conditions imply that capitalists do not work, contradicting the supposition that

they do.

Finally, we show that workers do not hold capital in stable labor share equilibrium. Suppose

to the contrary that both capitalists and workers hold capital. (30) at equality for both groups

directly implies lim gCo > lim gCw . Moreover, from Corollary 1, capitalists do not work, and the

transversality condition for capitalists implies lim gKo = lim gCo . Workers’ capital accumulation is

given by

gKw,t =
K̇w,t

Kw,t
= FK,t − δw +

Lw,tFL,t

Yt

Yt
Kw,t

−
Cw,t

Kw,t
.

If lim gKw ≥ lim gKo then

lim gY = lim gK = lim gKw ≥ lim gKo = lim gCo > lim gCw
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implying

lim gKw = F̄K − δw + limX lim
Y

K
> F̄K − δw,

violating the workers’ transversality condition. If instead lim gKw < lim gKo then

lim gY = lim gK = lim gKo = lim gCo > lim gCw ,

implying that
Lw,tFL,t

Yt
Yt−Cw,t asymptotically grows at the same rate as aggregate capital K, which

strictly exceeds the growth rate of worker capital Kw, implying lim gKw > F̄K − δw and violating

the workers’ transversality condition. The contradiction completes the proof.

Proof of Lemma 4: Recall that lim gY = lim gK (see (15)). From Corollary 2, the asymptotic

growth rate of capitalists’ consumption coincides with the the asymptotic growth rate of aggregate

consumption, lim gCo = lim gC . Asymptotically, aggregate consumption must grow weakly slower

than output, lim gC ≤ lim gY . For both groups i, the asymptotic growth rate of capital must be

weakly below the asymptotic growth rate of consumption, lim gKi
≤ lim gCi

, since otherwise that

group’s transversality condition is violated.

We next show that lim gKo = lim gK . If workers do not hold capital then this is immediate. If

workers do hold capital, it suffices to show that lim gKo ≥ lim gKw . Suppose to the contrary that

lim gKo < lim gKw . In this case, capitalists do not work, and since the return on capital asymptotes

to F̄K , capitalists’ consumption must grow weakly slower that capitalists’ capital holdings, lim gCo ≤

lim gKo . Together, the above inequalities deliver

lim gCo ≤ lim gKo < lim gKw ≤ lim gCw ,

contradicting Corollary 2, and thereby establishing that lim gKo = lim gK .

To complete the proof, simply note that

lim gCo = lim gC ≤ lim gY = lim gK = lim gKo ≤ lim gCo .

establishing the result.

Proof of Proposition 1: We characterize the conditions for a capital-dominant equilibrium in

which both groups hold capital to exist. From Lemma 3, workers work while capitalists do not .

In a capital-dominant equilibrium, F̄K = AK , and so from (30), the intertemporal conditions for

capitalists and workers are

lim gCo = η (AK − δo − ρ)

lim gCw = η (AK − δw − ρ)
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while the intratemporal condition for workers is (using Lemma 2)

lim gW =
1

η
lim gCw = AK − δw − ρ.

(Note that the above expression is positive by assumption (6).) Capital holdings grow according to

lim gKo = AK − δo − lim
Co

Ko

lim gKw = AK − δw + lim
LwFL − Cw

Kw
,

and from (A-2), wages grow according to

lim gW =
1

σ
(lim gK − lim gLw − θ) .

Capitalists’ transversality condition implies that Co and Ko asymptotically grow at the same rate:

lim gKo = lim gCo = η (AK − δo − ρ) .

We characterize an equilibrium in which Cw and Kw asymptotically grow at the same rate. In this

case,

lim gKw < lim gKo = lim gK ,

and so

lim gLw = η (AK − δo − ρ)− σ (AK − δw − ρ)− θ.

A worker’s transversality condition is equivalent to

lim gCw ≥ lim gW + lim gLw , (A-5)

which substituting in the above expressions is equivalent to

η (AK − δw − ρ) ≥ AK − δw − ρ+ η (AK − δo − ρ)− σ (AK − δw − ρ)− θ,

and hence to

θ ≥ (1− σ) (AK − δw − ρ) + η (δw − δo) . (A-6)

Note that lim gCo > lim gCw together with the worker transversality condition (A-5) implies that

the capital-dominance condition is satisfied; and also that capitalists indeed do not work. Moreover,

the worker transversality condition implies that lim gLw < 0.

Proof of Proposition 2: We characterize the conditions for a capital-dominant equilibrium in

which workers do not hold capital to exist. By the similar arguments to those in the proof of

Proposition 1, the asymptotic equilibrium conditions are as follows. (Relative to the proof of
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Lemma 1, the key difference is that workers’ intertemporal optimality condition is replaced with an

intratemporal budget constraint.)

lim gKo = lim gCo = η (AK − δo − ρ)

lim gW =
1

η
lim gCw

lim gCw = lim gW + lim gLw

lim gW =
1

σ
(lim gKo − lim gLw − θ) .

From a worker’s intratemporal optimality and intratemporal budget constraint,

lim gLw = (η − 1) lim gW .

Hence

lim gW =
lim gKo − θ

σ + η − 1
.

The capital-dominance condition is lim gKo > lim gW + lim gLw . Note that if the capital-dominance

condition holds then lim gCo > lim gCw , which ensures that capitalists indeed do not work asymp-

totically. Substituting in, the capital-dominance condition is

lim gKo > η
lim gKo − θ

σ + η − 1
.

The condition that workers asymptotically do not want to hold capital is (from (30), and substituting

in for lim gCw)

lim gW ≥ AK − δw − ρ,

i.e.,

lim gW =
lim gKo − θ

σ + η − 1
≥ AK − δw − ρ =

1

η
lim gKo − (δw − δo) .

The above condition and (6) imply that lim gW > 0 and lim gLw < 0.

Hence an equilibrium of this type exists if either σ + η > 1 and

θ ∈

[

1− σ

η
lim gKo ,

1− σ

η
lim gKo + (σ + η − 1) (δw − δo)

]

or if σ + η < 1 and

[

1− σ

η
lim gKo + (σ + η − 1) (δw − δo) ,

1− σ

η
lim gKo .

]

Substituting in for lim gKo yields the result.

Proof of Corollary 3: To see why the return on capital in a capital-dominant equilibrium exceeds

today’s rate, first note that substitutability of capital and labor in automated tasks implies that, in
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equilibrium,
AK

FK,t
≥

AL

FL,t
,

or equivalently,
AKKt

α̃t
≥

ALLt

1− α̃t
,

where α̃t ≤ αt is the fraction of tasks that are actually automated (i.e., tasks for which automation

is feasible, and for which labor is replaced with capital; as noted, asymptotically capital is abundant,

and so labor is replaced by capital whenever feasible). It follows that

Yt ≤
AKKt

α̃t

and hence, using (4),

FK,t ≤ AK .

Moreover, the inequality is strict provided that it is strictly profitable to replace labor with capital.

Proof of Proposition 3: We characterize the conditions for a stable labor share equilibrium to

exist. From Lemma 3, workers do not hold capital. Following similiar steps to those in the proofs

of Propositions 1 and 2, but incorporating the possibility that capitalists work, the asymptotic

equilibrium conditions are

lim gCo ≥ η lim gW

lim gCo = η
(

F̄K − δo − ρ
)

lim gKo = F̄K − δo − lim
Co − FLLo

Ko

lim gW =
1

η
lim gCw

lim gCw = lim gW + lim gLw

lim gW =
θ

1− σ
.

From Lemma 4,

lim gY = lim gKo = lim gCo = η
(

F̄K − δo − ρ
)

.

We first show that aggregate labor growth matches worker-labor growth, i.e.,

lim gL = lim gLw . (A-7)

If capitalists do not work then (A-7) is immediate. If instead capitalists work, note that capital

evolves according to

lim gKo = F̄K − δo − lim
Co − FLLo

Ko
.
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Capitalists’ transversality constraint implies that their labor income grows weakly slower than the

common growth rate of their consumption and capital. Moreover, if both capitalists and workers

work, their consumption growth rates must asymptotically coincide (by Lemma 2 and the intratem-

poral optimality conditions). Hence

lim gW + lim gLo ≤ lim gCo = lim gCw = lim gW + gLw , (A-8)

implying that lim gLo ≤ lim gLw and establishing (A-7).

From the workers’ intratemporal optimality and intratemporal budget constraint,

lim gLw = (η − 1) lim gW = (η − 1)
θ

1− σ
.

Note that this condition ensures that lim gLw < 0. Further, from (A-3), a stable labor share requires

lim gKo − lim gL =
θ

1− σ
.

From (A-7), it follows that

lim gKo = η
θ

1− σ
,

which combined with capitalists’ intertemporal optimality implies that the limiting rental rate is

F̄K =
θ

1− σ
+ δo + ρ. (A-9)

From (17), the asymptotic capital share is bounded away from one if and only if
(

F̄K

AK

)1−σ

< 1,

which after substitution for F̄K is equivalent to

θ

1− σ
+ δo + ρ < AK .

Rearranging establishes the stable labor share condition, (39).

Workers’ and capitalists’ consumption grow at the same asymptotic rate, as follows. If capitalists

do not work, this is immediate from the combination of definition of a stable labor share and the

fact that output F , capital Ko and capitalist consumption Co all grow at the same rate. If instead

capitalists work, then it follows intratemporal optimality conditions, as already noted in (A-8).

Finally, the expression for the limiting labor share follows from the substitution of F̄K into (17).

This completes the proof.

Proof of Lemma 5: Equilibrium coexistence arises when complementarities are weak (σ+ η < 1)

and

θ ∈ [(1− σ) (AK − δw + ρ) + η (δw − δo) , (1− σ) (AK − δo + ρ)] . (A-10)
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In the stable labor share equilibrium,

lim gCo = lim gCw =
η

1− σ
θ

lim gLw =
η − 1

1− σ
θ

while in the capital-dominant equilibrium,

lim gCo = η (AK − δo + ρ)

lim gCw = η (AK − δw + ρ)

lim gLw = η (AK − δo − ρ)− σ (AK − δw − ρ)− θ.

It is immediate that lim gCo (respectively, lim gCw) is higher (lower) in the capital-dominant equi-

librium than in the stable labor share equilibrium. Moreover, both comparisons are strict, with the

exception of lim gCo at the upper boundary of the interval (A-10).

It remains to consider the labor growth rate lim gLw . Because it is linear in θ in both equilibria,

it suffices to consider the lower and upper boundaries of the interval (A-10).

At the lower end of the interval, in the stable labor share equilibrium

lim gLw = (η − 1) (AK − δw − ρ) +
η (η − 1)

1− σ
(δw − δo) ,

while in the capital-dominant equilibrium,

lim gLw = (η − 1) (AK − δw − ρ) ,

which is strictly greater.

At the upper end of the interval, in the stable labor equilibrium

lim gLw = (η − 1) (AK − δo − ρ) ,

while in the capital-dominant equilibrium,

lim gLw = (η − 1) (AK − δo − ρ) + σ (δw − δo) .

which again is strictly greater, completing the proof.

Proof of Corollary 4: The only case in which workers hold capital is characterized in Proposition

1. Workers’ labor income grows at rate gLw + gW , which evaluating equals

η (AK − δo − ρ)− σ (AK − δw − ρ)− θ + (AK − δw − ρ) .
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Substituting in the equilibrium condition (34), the above expression is bounded above by

η (AK − δw − ρ) ,

which in turn equals the growth rate of worker’s consumption, completing the proof.

Proof of Corollary 5: The result is immediate for strong complementarities (σ + η < 1), as

covered in the main text. Here, we consider the case of weak complementarities (σ + η > 1). From

Propositions 1 and 2, workers hold capital if and only if the automation rate θ exceeds the threshold

value of

(1− σ) (AK − δw − ρ) + η (δw − δo) = (1− σ) (AK − δo − ρ) + (η + σ − 1) (δw − δo) . (A-11)

Hence from Proposition 2, as θ approaches the threshold (A-11) from below, the growth rate of

workers’ consumption approaches

η
η (AK − δo − ρ)− (1− σ) (AK − δo − ρ)− (η + σ − 1) (δw − δo)

σ + η − 1
= η (AK − δw − ρ) ,

which matches the growth rate of workers’ consumption for any value of θ above the threshold

(A-11). Hence (from Propositions 1 and 2 again), the growth rate of workers’ consumption in a

capital-dominant equilibrium is simply

max

{

η
η (AK − δo − ρ)− θ

σ + η − 1
, η (AK − δw − ρ)

}

,

where the first and second terms in the maximand correspond, respectively, to equilibria in which

workers do not capital, and hold capital. The result is then immediate.

Proof of Proposition 4: We exogenously set labor choices to Lo,t = 0 and gLw < 0.22 Intertem-

poral optimality of capitalists implies

lim gKo = η
(

F̄K − δo − ρ
)

. (A-12)

As before, aggregate capital growth equals capitalists’ capital growth,

lim gK = lim gKo ,

regardless of whether or not workers hold capital (since even if workers hold capital, their capital

holdings grow more slowly than that of capitalists).

22Note that we do not remove leisure from the agents’ preferences. In the limit as consumption grows
unbounded but leisure is bounded, the IES with consumption and leisure as gross complements tends to
η rather than 1/γ. Retaining this feature of preferences in the exogenous-labor case facilitates comparison
with the endogenous-labor case.
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As before, the condition for capital dominance is that labor income asymptotically grows slower

than capital income, i.e.,

gLw + lim gW < lim gK .

From (A-2), capital dominance also requires

lim gW =
1

σ
(lim gK − gLw − θ) .

Finally, under capital dominance the return on capital asymptotes to AK . Together, these obser-

vations imply that capital dominance requires

θ > (1− σ) (η (AK − δo − ρ)− gLw) . (A-13)

When (A-13) is satisfied,

lim gY = lim gKo = lim gCo = η (AK − δo − ρ) . (A-14)

Workers’ consumption grows at rate

max

{(

1−
1

σ

)

gLw +
η

σ
(AK − δo − ρ)−

θ

σ
, η (AK − δw − ρ)

}

, (A-15)

where the two terms in the maximand correspond, respectively, to workers not holding capital,

and holding capital. Note that if (A-13) holds at equality then worker consumption growth (A-15)

coincides with (A-14).

Conversely, in a stable labor share equilibrium, consumption, capital income, and labor income

must grow at the same rate. Equation (13) characterizes wage growth in a stable labor share

equilibrium. Equation (A-12) gives the growth rate of capital. Hence a stable labor equilibrium

requires
θ

1− σ
+ gLw = η

(

F̄K − δo − ρ
)

.

As in the proof of Proposition 3, a stable labor share equilibrium requires F̄K < AK , and hence

requires

θ < (1− σ) (η (AK − δo − ρ)− gLw) ,

which combined with (A-13) establishes the threshold rate of automation that determines a stable

labor share vs capital dominance.

From (A-3), in a stable labor share equilibrium

lim gK =
θ

1− σ
+ gLw .
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Combining with (A-12) yields

η
(

F̄K − δo − ρ
)

=
θ

1− σ
+ gLw ,

thereby characterizing F̄K . Given F̄K , the growth rate of the economy is given by (A-12). The

asymptotic capital share is then determined by (16), completing the proof.

Proof of Lemma 6: From intratemporal optimality (23) (and dropping all time and agent sub-

scripts for clarity), if an agent works then

∆ lnW −
1

η
∆ lnC = −

1

η
∆ ln (1− L) ,

or equivalently,
L

1− L
∆ lnL = η∆ lnW −∆ lnC. (A-16)

The Frisch elasticity holds the marginal utility of capital constant—and hence holds the marginal

utility of consumption constant. From (21), and after factoring out common terms, a constant

marginal utility of consumption is equivalent to

(

−
1

η
C−1 +

1− ηγ

η
C

−
1

η

(

C
η−1

η + ω (1− L)
η−1

η

)

−1
)

∆C

=

(

1− ηγ

η
ω (1− L)

−1

η

(

C
η−1

η + ω (1− L)
η−1

η

)

−1
)

∆L.

Substituting in the intratemporal optimality condition (23), and multiplying by η
γ
,

(

−
1

γ
C−1 +

(

1

γ
− η

)

C
−

1

η

(

CC
−1

η +W (1− L)C
−1

η

)

−1
)

∆C

=

((

1

γ
− η

)

WC
−

1

η

(

CC
−1

η +W (1− L)C
−1

η

)

−1
)

∆L,

which simplifies to

(

−
1

γ

C +W (1− L)

C
+

1

γ
− η

)

∆C =

(

1

γ
− η

)

W∆L,

and hence to
(

−
1

γ
W (1− L)− ηC

)

∆ lnC =

(

1

γ
− η

)

WL∆ lnL,

and in turn to

∆ lnC =

(

η − 1
γ

)

WL
C

η + 1
γ
1−L
L

WL
C

∆ lnL.
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Substituting into (A-16) gives
η L
1−L

+ ηWL
C

η + 1
γ
1−L
L

WL
C

∆ lnL = η∆W,

and hence the following expression for the Frisch elasticity of labor supply,

∆ lnL

∆ lnW
=

η + 1
γ
1−L
L

WL
C

WL
C

+ L
1−L

.

Rearranging delivers (60).

Finally, substituting the intratemporal optimality condition (23) into (26), the marginal utility

of consumption is

MUC = C−γ

(

1 +
1− L

L

WL

C

)
1−ηγ
η−1

.

So provided that the IES is estimated over periods in which 1+ 1−L
L

WL
C

doesn’t change too much,23

IES ≈
1

γ
,

completing the proof.

23To relate this statement to the observation in the main text that the IES asymptotes to
η on the equilibrium path: From intratemporal optimality, C =

(

W
ω

)η
(1− L). So MUC =

(

W
ω

)

−ηγ
(1− L)

−γ (

1 + ωηW 1−η
)

1−ηγ

η−1 . As W grows large and L approaches 0, MUC becomes proportional
to W−1. Hence the IES approaches η.
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B Calibration

B.1 Details for inputs

Table 1 below reports the inputs we use in our calibration, along with sources.24,25

Input Description Value Source

gY Growth rate of output 2.79% National income accounts
gL Growth rate of labor (per worker) −0.19% National income accounts
gK Growth rate of capital 2.42% National income accounts
gX Growth rate of labor share −0.17% National income accounts
g1−X Growth rate of capital share 0.28% National income accounts
gC Growth rate of consumption (per capita) 2.00% National income accounts
X Labor share 59.7% National income accounts
Kt

Yt
Capital/output ratio 3.63 National income accounts

δo Depreciation 4.32% National income accounts
ρ Annual time preference 2% Standard

Employment growth rate 1.43% National income accounts

Table 1: Input values. Levels from national income accounts are estimated as of 2019. Growth
rates refer to relative changes between 1970 and 2019. The growth rates of output and capital are
for aggregate quantities; the calibration uses per-capita growth (subtracting population growth).

B.2 Alternative calibration approaches

We pursue two alternative calibration approaches complementing the exercise in Section 7.26 The

first one starts with an equation analogous to (57) but obtained from the law of motion of the

capital share:
1− αt

αt
θ = σg1−X,t + (1− σ) (gK,t − gY,t) . (B-1)

Given observable growth rates for the capital share, capital, and output, the LHS can be estimated

directly from existing estimates of the elasticity parameter σ.

To move from (B-1) to an estimate of θ one needs information about αt, the fraction of tasks

already automated. This number is hard to observe directly, and in our approach below we are

agnostic about its value.

24The growth rates of output, labor supply, and the labor share are not constant in our model. We estimate
them using data from 1970 to 2019.

25The empirical measurement of depreciation corresponds to
λoKo,t

Kt
δo +

λwKw,t

Kt
δw ≥ δo. Using a smaller

value of δo than 4.32% would increase the estimated value of the RHS of (54), and reinforce the conclusion
below that empirically the condition is likely to hold.

26A fourth possible approach to estimating θ would be to use the TFP equation (52). However, such an
approach is susceptible to two significant pitfalls, and accordingly we do not pursue it. First, the inferred
value of θ is very sensitive to the input αt when αt is close in value to the capital share of the economy Xt,
which we cannot rule out a priori. Second, extracting θ from the TFP formula (52) is sensitive to the model
assumption that technological advance consists solely of changes in the fraction of automated tasks.
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For any given value of αt, we can further tighten the estimate of AK relative to the lower bound

presented in (56). The expression for the capital share (16) can rewritten to yield

AK =
Yt
Kt

(

αt

(1−Xt)σ

)
1

1−σ

. (B-2)

The drawback of this expression, relative to the lower bound in (56) is that it requires an assumption

on αt. Note, however, that both the value of θ inferred from (B-1) and the value of AK inferred

from expression (B-2) are increasing in the automation share αt, and hence both the estimated LHS

and RHS of the key inequality (54) are likewise increasing in αt.

Using once again inputs from Table 1, with gK,t and g1−X,t estimated over the same 1970–2019

sample as gY,t, Table 2 displays, for a range of possible values of αt and σ, the rate of automation

θ (calculated from (B-1)), the key ratio θ
1−σ

, and the productivity parameter AK (calculated using

(B-2)). The ratio θ
1−σ

only exceeds this bound if the elasticity parameter σ is relatively close to

1 and the fraction of tasks already automated (αt) is high. Note that the baseline calibration in

Section 7 implies an estimate of αt (from equations (57) and (B-1) and the observable growth rates).

These estimates indicate that the majority of tasks is already automated but are decreasing in σ:

for σ = 0.8, the implied αt is 0.8, dropping to 0.6 for σ = 0.9.

In the table, we use color shading to highlight the combinations of σ and αt for which the ratio
θ

1−σ
either exceeds 4.79%, or at least approaches it. But those parameter choices that deliver θ

1−σ

anywhere close to the boundary of 4.79% also imply large values for AK , and hence for AK −δo−ρ,

so that the stable labor share inequality (54) continues to hold.27

Finally, an alternative and independent approach to estimating 1−αt

αt
θ is as follows. The fraction

of investment devoted to new automation, φt, equals

φt =
α̇t

Kt

αt

K̇t

=
1−αt

αt
θ

gK,t
. (B-3)

Rearranging:
1− αt

αt
θ = φtgK . (B-4)

Table 3 shows the results of inferring θ from (B-4) instead of from (B-1), for a range of values of the

fraction of investment devoted to new automation. The conclusions are the same as those drawn

from Figure 2 and Table 2.

27Note that high values of αt lead to extremely high estimates of AK , the productivity of capital in an
all-capital economy. The reason is as follows. First, note from (16) that the capital share is decreasing in
the amount of “effective” capital AKKt, since tasks are complements (σ < 1). The current capital share in
the economy is much less than 100%. If one believes that most tasks are already automated, the only way
to explain the observed capital share is to posit that there is a large amount of “effective” capital AKKt.
Given observed levels of capital Kt, this in turn implies that AK must be high.

50



σ = 0.6 σ = 0.8 σ = 0.9

αt θ θ/(1− σ) AK θ θ/(1− σ) AK θ θ/(1− σ) AK

0.1 0.00% 0.01% 0.33% 0.02% 0.09% 0.01% 0.02% 0.24% 0.00%

0.2 0.01% 0.02% 1.89% 0.04% 0.19% 0.33% 0.05% 0.54% 0.01%

0.3 0.01% 0.03% 5.20% 0.07% 0.33% 2.49% 0.09% 0.93% 0.57%

0.4 0.02% 0.04% 10.68% 0.10% 0.51% 10.48% 0.15% 1.45% 10.10%

0.5 0.02% 0.06% 18.66% 0.15% 0.77% 31.99% 0.22% 2.18% 94.04%

0.6 0.04% 0.09% 29.43% 0.23% 1.15% 79.60% 0.33% 3.27% 582.28%

0.7 0.06% 0.14% 43.27% 0.36% 1.79% 172.04% 0.51% 5.08% 2720.19%

0.8 0.10% 0.24% 60.41% 0.61% 3.06% 335.42% 0.87% 8.71% 10339.94%

0.9 0.22% 0.54% 81.10% 1.38% 6.89% 604.44% 1.96% 19.60% 33577.12%

Table 2: θ
1−σ

and AK as functions of the current level of automation, αt, and the elasticity of substitution between
tasks, σ. The automation rate θ is inferred from (B-1). Color shading highlights values of σ and αt for which the
ratio θ

1−σ
approaches or exceeds the lower bound (58).

φt = 5% φt = 15% φt = 25%

αt θ θ/(1− σ) θ θ/(1− σ) θ θ/(1− σ) AK

0.1 0.01% 0.01% 0.02% 0.08% 0.03% 0.28% 0.33%

0.2 0.01% 0.03% 0.04% 0.19% 0.06% 0.62% 1.89%

0.3 0.02% 0.05% 0.06% 0.32% 0.11% 1.07% 5.20%

0.4 0.03% 0.08% 0.10% 0.50% 0.17% 1.66% 10.68%

0.5 0.05% 0.12% 0.15% 0.75% 0.25% 2.49% 18.66%

0.6 0.07% 0.19% 0.22% 1.12% 0.37% 3.73% 29.43%

0.7 0.12% 0.29% 0.35% 1.74% 0.58% 5.80% 43.27%

0.8 0.20% 0.50% 0.60% 2.98% 0.99% 9.95% 60.41%

0.9 0.45% 1.12% 1.34% 6.71% 2.24% 22.38% 81.10%

Table 3: θ
1−σ

and AK as functions of the current level of automation, αt, and the fraction of
investment devoted to new automation (either 5%, 15%, or 25%). The automation rate θ is inferred
from (B-4). The table uses σ = 0.6 throughout; adopting higher values of σ only strengthens the
conclusion that (54) holds. Color shading is as in Table 2.
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C Analysis of representative agent case

We consider the representative agent case, i.e., δo = δw. We simply write δ for this common value,

and related, drop all group-specific subscripts.

By (15), capital and output asymptotically grow at the same rate. Moreover, consumption must

asymptotically grow at this same rate, as follows. Certainly consumption cannot asymptotically

grow faster than F . Since F and K asymptotically grow at the same rate, this in turn implies that

C cannot asymptotically grow faster than K. But nor can C asymptotically grow slower than K;

if it did, C
K

→ 0, and so

gK →
Y

K
− δ ≥ FK − δ,

which would violate the transversality condition. Hence F , K, and C must all grow at the same

rate asymptotically,

lim gY = lim gK = lim gC . (C-1)

Inada conditions in the production function imply that the representative agent both works and

holds capital, and so intra- and intertemporal optimality implies

gC − g1−L = ηgW , (C-2)

lim gC = η
(

F̄K − δ − ρ
)

. (C-3)

Lemma C-1 In the representative agent benchmark, an equilibrium with a stable labor share exists

if

θ < (1− σ) (AK − δ − ρ) . (C-4)

The asymptotic growth rate of output, capital, and consumption is

lim gY = lim gK = lim gC =
ηθ

1− σ
. (C-5)

Wages grow faster than consumption

lim gW =
1

η
lim gC , (C-6)

while labor converges to 0 according to

lim gL =

(

1−
1

η

)

lim gC < 0. (C-7)

The labor share converges to

limX = 1−

(

δ + ρ+ θ
1−σ

AK

)1−σ

(C-8)
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Lemma C-2 In the representative agent benchmark, an equilibrium with capital dominance exists

if

θ > (1− σ) (AK − δ − ρ) . (C-9)

The asymptotic growth rate of output, capital, and consumption is

lim gY = lim gK = lim gC = η (AK − δ − ρ) . (C-10)

Wages grow faster than consumption,

lim gW =
1

η
lim gC , (C-11)

while labor converges to 0 according to

lim gL =

(

1−
σ

η

)

lim gC − θ < 0. (C-12)

Proof of Lemma C-1: Recall that a stable labor share arises if wages asymptotically grow ac-

cording to (13), and asymptotic capital and labor growth are linked via (A-3). From (13), wages

grow without bound,

FL → ∞. (C-13)

Moreover, the asymptotic growth rate of leisure must be zero,

lim g1−L = 0, (C-14)

as follows. If instead lim g1−L < 0 then intratemporal optimality (C-2) and the complementarity

of labor and leisure (η < 1) implies that lim gW > lim gC . But lim g1−L < 0 also implies that

lim gL = 0, and hence (13) and (A-3) imply that lim gW = gK , a contradiction (since gK = gC by

(C-1)).

So intratemporal optimality (C-2) implies that wages grow faster than consumption,

lim gW =
1

η
lim gC . (C-15)

Substituting in (13) gives

lim gC =
ηθ

1− σ
. (C-16)

Substituting into intertemporal optimality (C-3) gives

F̄K = δ + ρ+
θ

1− σ
. (C-17)
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The condition for a stable labor share is simply F̄K < AK , i.e.,

θ < (1− σ) (AK − δ − ρ) . (C-18)

The growth rate of labor is given by (A-3),

lim gL =

(

1−
1

η

)

gC < 0. (C-19)

The consumption to capital ratio lim C
K

is determined by the law of motion for capital: again using

gC = gK and intertemporal optimality (C-3),

lim
C

K
=

F̄K

lim KFK

F

− δ − gK = F̄ σ
KA1−σ

K − δ − η
(

F̄K − δ − ρ
)

, (C-20)

which is strictly positive since η < 1 and AK > F̄K > δ, completing the proof.

Proof of Lemma C-2: Under capital dominance, (18) holds. From (A-2), wages grow according

to

lim gW =
1

σ
(lim gK − lim gL − θ) . (C-21)

The capital dominance condition is

lim gW < gY − lim gL. (C-22)

The asymptotic growth rate of leisure must be zero,

lim g1−L = 0, (C-23)

as follows. The intratemporal optimality (C-2) condition implies lim gC ≤ η lim gW . If lim g1−L < 0

then lim gL = 0, and the capital dominance condition reduces to lim gW < lim gY = lim gC . Since

η < 1, these two inequalities relating gC to gW contradict each other.

So intratemporal optimality (C-2) implies that wages grow faster than consumption,

lim gW =
gC
η
. (C-24)

In particular, (13) implies that wages grow without bound,

FL → ∞. (C-25)

Substituting into intertemporal optimality (C-3) gives consumption growth in terms of the return
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on capital, which under complete automation is simply AK :

lim gC = η (AK − δ − ρ) . (C-26)

Combining the two expressions above for the growth rate of wages, and using gK = gC , the growth

rate of labor equals

lim gL =

(

1−
σ

η

)

gC − θ. (C-27)

Note that the capital dominance condition and the expression for the growth rate of wages directly

imply that

lim gL < 0.

The capital dominance condition rewrites as

gC
η

<
σ

η
gC + θ, (C-28)

i.e.,

θ > (1− σ) (AK − δ − ρ) . (C-29)

The consumption to capital ratio lim C
K

is determined by the law of motion for capital,

lim
C

K
= AK − δ − gK , (C-30)

which is strictly positive since η < 1 and AK > δ, completing the proof.
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D Analysis of η = 1 preferences

D.1 Flow utility

We first derive an expression for flow utility as η → 1, using arguments standard to the analysis of

CES production functions. We need to evaluate:

lim
η→1

1

1− γ

(

C
η−1

η

i,t + ω (1− Li,t)
η−1

η

)
1−γ

1− 1
η .

Note that

lim
η→1

(

C
η−1

η

i,t + ω (1− Li,t)
η−1

η

)
1

1− 1
η = lim

η→1
exp

(

1

1− 1
η

ln

(

C
1− 1

η

i,t + ω (1− Li,t)
1− 1

η

)

)

.

For notational convenience, write x = 1− 1
η
. Recall that

∂

∂x
zx =

∂

∂x
ex ln z = (ln z) zx.

By l’Hôpital’s rule,

lim
x→0

ln
(

Cx
i,t + ω (1− Li,t)

x
)

x
= lim

x→0

ln (Ci,t)C
x
i,t + ω ln (1− Li,t) (1− Li,t)

x

Cx
i,t + ω (1− Li,t)

x

=
ln (Ci,t) + ω ln (1− Li,t)

1 + ω

= ln

(

C
1

1+ω

i,t (1− Li,t)
1− 1

1+ω

)

.

To ease notation, define

β =
1

1 + ω
.

Hence flow utility is
1

1− γ

(

Cβ
i,t (1− Li,t)

1−β
)1−γ

. (D-1)
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D.2 Optimality conditions and preliminaries

From (D-1), the marginal utilities of consumption and leisure are

MUCi,t = βCβ−1
i,t (1− Li,t)

1−β
(

Cβ
i,t (1− Li,t)

1−β
)

−γ

(D-2)

=
β

Cit

(

Cβ
i,t (1− Li,t)

1−β
)1−γ

(D-3)

MU1−Li,t = (1− β)Cβ
i,t (1− Li,t)

−β
(

Cβ
i,t (1− Li,t)

1−β
)

−γ

(D-4)

=
1− β

1− Lit

(

Cβ
i,t (1− Li,t)

1−β
)1−γ

(D-5)

The intratemporal and intertemporal optimality conditions are

Wt
β

Cit
≤

1− β

1− Lit
, (D-6)

∂

∂t
lnMUCi,t ≤ − (Rt − δi − ρ) , (D-7)

with (D-6) at equality if labor is strictly positive (Li,t > 0), and (D-7) at equality if capital-holding

is strictly positive (Ki,t > 0).

Note that
1− β

β
= ω,

so that (D-6) coincides with (23) evaluated at η = 1.

If type-i agents work then, from (D-6),

gCi
− g1−Li

= gW ; (D-8)

and,

MUC,t =
β

Ct

(

Cβ
t

(

ωCt

Wt

)1−β
)1−γ

= βC−γ
t

(

ω

Wt

)(1−β)(1−γ)

. (D-9)

Consequently, if type-i agents work their marginal utility grows according to

∂

∂t
lnMUCi

= −γgCi
− (1− β) (1− γ) gW

while if they are at the no-work corner,

∂

∂t
lnMUCi

= (β (1− γ)− 1) gCi
= − (1− β + βγ) gCi

. (D-10)

The above expressions all match the analogous expressions in the main text evaluated at η = 1.

The proof of Lemma 2 extends to η = 1, with just a couple of minor modifications.

Hence Corollary 1 continues to hold also.
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Substituting g1−Li
= 0 into (D-8) gives

gCi
= gW

for any group i that works. Hence regardless of whether group i works,

∂

∂t
lnMUCi

= − (1− β + βγ) gCi
.

Lemma 3 continues to hold,

Corollary 2 continues to hold, though the verbal description changes to say that wages grow at

the same rate as workers’ consumption.

Lemma 4 continues to hold.

D.3 The intertemporal elasticity of substitution (IES)

For subsequent use, we calculate the intertemporal elasticity of substitution (IES) under asymptot-

ically full automation. By definition,

IESi,t = −
ln

Ci,t+1

Ci,t

ln
β

Ci,t+1

(

C
β
i,t+1

(1−Li,t+1)
1−β

)1−γ

β
Cit

(

C
β
i,t(1−Li,t)

1−β
)1−γ

.

Since

lim g1−Li
= 0,

it follows that

lim IESi =
1

1− β (1− γ)
.

In contrast, for η < 1,

lim IESi = η.

D.4 Equilibrium characterization

Proposition D-1 A capital-dominant equilibrium in which workers hold capital exists if

θ ≥
1− σ

1− β + βγ
(AK − δw − ρ) +

δw − δo
1− β + βγ

. (D-11)

Consumption growth of group i satisfies

lim gCi
=

AK − δi − ρ

1− β + βγ
. (D-12)
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Labor converges to 0 according to

lim gLw =
1− σ

1− β + βγ
(AK − δw − ρ) +

δw − δo
1− β + βγ

− θ. (D-13)

Proposition D-2 A capital-dominant equilibrium in which workers do not hold capital exists if

θ ∈

[

1− σ

1− β + βγ
(AK − δo − ρ) ,

1− σ

1− β + βγ
(AK − δw − ρ) +

δw − δo
1− β + βγ

]

. (D-14)

Capitalists’ consumption growth satisfies (D-12), while workers’ consumption growth satisfies

lim gCw =
lim gCo − θ

σ
< lim gCo . (D-15)

Worker’s labor is asymptotically constant

lim gLw = 0. (D-16)

Proposition D-3 A stable labor share equilibrium exists if

θ <
1− σ

1− β + βγ
(AK − δo − ρ) . (D-17)

Consumption of capitalists and workers grows at same rate,

lim gCo = lim gCw =
θ

1− σ
. (D-18)

Worker’s labor is asymptotically constant. The labor share converges towards

limX = 1−

(

δo + ρ+ (1−β+βγ)
1−σ

θ

AK

)1−σ

. (D-19)

D.5 Equivalent characterization in terms of the IES

Using the characterization of the IES in subsection D.3, Propositions 1 - 3 for the case η < 1 and

Propositions D-1 - D-3 for the case η = 1 can be written in unified manner to cover all η ≤ 1, as

follows:

Proposition D-4 A capital-dominant equilibrium in which workers hold capital exists if

θ

lim IES
≥

1− σ

η
(AK − δw − ρ) + δw − δo. (D-20)

Consumption growth of group i satisfies

lim gCi

lim IES
= AK − δi − ρ. (D-21)
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Labor converges to 0 according to

lim gLw

lim IES
=

(

1−
σ

η

)

(AK − δw − ρ) + δw − δo −
θ

lim IES
. (D-22)

Proposition D-5 A capital-dominant equilibrium in which workers do not hold capital exists if

θ

lim IES
∈

[

1− σ

η
(AK − δo − ρ) ,

1− σ

η
(AK − δw − ρ) + δw − δo

]

. (D-23)

Capitalists’ consumption growth satisfies (D-21), while workers’ consumption growth satisfies

lim gCw = η
lim gCo − θ

σ + η − 1
< lim gCo . (D-24)

Labor converges to 0 according to

lim gLw =
η − 1

η
lim gCw . (D-25)

Proposition D-6 A stable labor share equilibrium exists if

θ

lim IES
<

1− σ

η
(AK − δo − ρ) . (D-26)

Consumption of capitalists and workers grows at same rate,

lim gCo = lim gCw =
ηθ

1− σ
. (D-27)

Labor converges to 0 according to (D-25). The labor share converges to

limX = 1−

(

δo + ρ+ η
1−σ

θ
IES

AK

)1−σ

. (D-28)

D.6 Proofs

Proof of Proposition D-1: We characterize the conditions for a capital-dominant equilibrium in

which both groups hold capital to exist. From Lemma 3, workers work while capitalists do not .

In a capital-dominant equilibrium, F̄K = AK , and so from (30), the intertemporal conditions for

capitalists and workers are

lim gCo =
AK − δo − ρ

1− β + βγ

lim gCw =
AK − δw − ρ

1− β + βγ
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while the intratemporal condition for workers is (using Lemma 2)

lim gW = lim gCw =
AK − δw − ρ

1− β + βγ
.

(Note that the above expression is positive by assumption (6).) Capital holdings grow according to

lim gKo = AK − δo − lim
Co

Ko

lim gKw = AK − δw + lim
LwFL − Cw

Kw
,

and from (A-2), wages grow according to

lim gW =
1

σ
(lim gK − lim gLw − θ) .

Capitalists’ transversality condition implies that Co and Ko asymptotically grow at the same rate:

lim gKo = lim gCo =
AK − δo − ρ

1− β + βγ
.

We characterize an equilibrium in which Cw and Kw asymptotically grow at the same rate. In this

case,

lim gKw < lim gKo = lim gK ,

and so

lim gLw =
AK − δo − ρ

1− β + βγ
− σ

AK − δw − ρ

1− β + βγ
− θ.

A worker’s transversality condition is equivalent to

lim gCw ≥ lim gW + lim gLw , (D-29)

which substituting in the above expressions is equivalent to

0 ≥
AK − δo − ρ

1− β + βγ
− σ

AK − δw − ρ

1− β + βγ
− θ,

and hence to

θ ≥
1− σ

1− β + βγ
(AK − δo − ρ) +

σ (δw − δo)

1− β + βγ
=

1− σ

1− β + βγ
(AK − δw − ρ) +

δw − δo
1− β + βγ

. (D-30)

Note that lim gCo > lim gCw together with the worker transversality condition (D-29) implies that

the capital-dominance condition is satisfied; and also that capitalists indeed do not work. Moreover,

the worker transversality condition implies that lim gLw < 0.

Proof of Proposition D-2: We characterize the conditions for a capital-dominant equilibrium
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in which workers do not hold capital to exist. By the similar arguments to those in the proof

of Proposition 1, the asymptotic equilibrium conditions are as follows. (Relative to the proof of

Lemma 1, the key difference is that workers’ intertemporal optimality condition is replaced with an

intratemporal budget constraint.)

lim gKo = lim gCo =
AK − δo − ρ

1− β + βγ

lim gW = lim gCw

lim gCw = lim gW + lim gLw

lim gW =
1

σ
(lim gKo − lim gLw − θ) .

From a worker’s intratemporal optimality and intratemporal budget constraint,

lim gLw = 0.

Hence

lim gW =
lim gKo − θ

σ
.

The capital-dominance condition is lim gKo > lim gW + lim gLw . Note that if the capital-dominance

condition holds then lim gCo > lim gCw , which ensures that capitalists indeed do not work asymp-

totically. Substituting in, the capital-dominance condition is

lim gKo >
lim gKo − θ

σ
.

The condition that workers asymptotically do not want to hold capital is (from (30), and substituting

in for lim gCw)

lim gW ≥
AK − δw − ρ

1− β + βγ
,

i.e.,

lim gW =
lim gKo − θ

σ
≥

AK − δw − ρ

1− β + βγ
= lim gKo −

δw − δo
1− β + βγ

.

The above condition and (6) imply that lim gW > 0.

Hence an equilibrium of this type exists if either σ + η > 1 and

θ ∈

[

(1− σ) lim gKo , (1− σ) lim gKo + σ
δw − δo

1− β + βγ

]

.

Substituting in for lim gKo yields the result.

Proof of Proposition D-3: We characterize the conditions for a stable labor share equilibrium

to exist. From Lemma 3, workers do not hold capital. Following similar steps to those in the proofs

of Propositions 1 and 2, but incorporating the possibility that capitalists work, the asymptotic
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equilibrium conditions are

lim gCo ≥ lim gW

lim gCo =
F̄K − δo − ρ

1− β + βγ

lim gKo = F̄K − δo − lim
Co − FLLo

Ko

lim gW = lim gCw

lim gCw = lim gW + lim gLw

lim gW =
θ

1− σ
.

From Lemma 4,

lim gY = lim gKo = lim gCo =
F̄K − δo − ρ

1− β + βγ
.

We first show that aggregate labor growth matches worker-labor growth, i.e.,

lim gL = lim gLw . (D-31)

If capitalists do not work then (D-31) immediate. If instead capitalists work, note that capital

evolves according to

lim gKo = F̄K − δo − lim
Co − FLLo

Ko
.

Capitalists’ transversality constraint implies that their labor income grows weakly slower than the

common growth rate of their consumption and capital. Moreover, if both capitalists and workers

work, their consumption growth rates must asymptotically coincide (by Lemma 2 and the intratem-

poral optimality conditions). Hence

lim gW + lim gLo ≤ lim gCo = lim gCw = lim gW + gLw , (D-32)

implying that lim gLo ≤ lim gLw and establishing (D-31).

From the workers’ intratemporal optimality and intratemporal budget constraint,

lim gLw = 0.

Further, from (A-3), a stable labor share requires

lim gKo − lim gL =
θ

1− σ
.

From (D-31), it follows that

lim gKo =
θ

1− σ
,
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which combined with capitalists’ intertemporal optimality implies that the limiting rental rate is

F̄K =
(1− β + βγ)

1− σ
θ + δo + ρ. (D-33)

From (17), the asymptotic capital share is bounded away from one if and only if
(

F̄K

AK

)1−σ

< 1,

which after substitution for F̄K is equivalent to

(1− β + βγ)

1− σ
θ + δo + ρ < AK .

Rearranging establishes the stable labor share condition, (39).

Workers’ and capitalists’ consumption grow at the same asymptotic rate, as follows. If capitalists

do not work, this is immediate from the combination of definition of a stable labor share and the

fact that output F , capital Ko and capitalist consumption Co all grow at the same rate. If instead

capitalists work, then it follows intratemporal optimality conditions, as already noted in (D-32).

Finally, the expression for the limiting labor share follows from the substitution of F̄K into (17).

This completes the proof.
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E Labor-share evolution away from steady state

From (12),

gX,t = (1− σ) gW,t − θ.

From (A-2),

gW,t =
1

σ

(

(1−Xt) (gK,t − gL,t) +
θ

1− σ

(

σ −
1−Xt

αt

))

.

Hence

gX,t =
1− σ

σ

(

(1−Xt) (gK,t − gL,t) +
θ

1− σ

(

σ −
1−Xt

αt

))

− θ

=
1− σ

σ

(

(1−Xt) (gK,t − gL,t)−
θ

1− σ

1−Xt

αt

)

=
1−Xt

σ

(

(1− σ) (gK,t − gL,t)−
θ

αt

)

.

The empirical value of gK,t − gL,t was approximately 1 percentage point higher in the 1950-1970

period than subsequently. So very roughly, the observed trends of K and L predict that labor share

growth should be higher in the earlier period by approximately

0.3
.4

.6
1% = 0.2%.

The estimated value of gX in the later period, which we use in our calibration, is gX = −0.17%.

So a flat labor share prior to 1970 is consistent with these calculations. (Note: These calculations

don’t incorporate the increase in automation αt, which would lead to an upwards shift to gX .)
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