
Mining the Mind, Minding the Mine
Grand Challenges in Comprehension and Mining

Andy J. Ko, Ph.D.

Andrew J. Ko

Inter•disciplin•arity
Drawing upon two or more branches of knowledge

 2

Andrew J. Ko

About me
• Associate Professor at the UW Information School

• Background in CS, psychology, design, learning

• I study and invent interactions with code

• I theorize about what programming is

• I do all of this work at the boundaries between
disciplines

 3

Andrew J. Ko

1999-2002 undergrad

• Worked with Margaret Burnett

• End-user programmers + spreadsheets

• How do we help end users test effectively without any
testing skills?

 4

Andrew J. Ko

2002–2008 Ph.D.

• Worked with Brad Myers at Carnegie Mellon

• How can we make debugging easier, faster using
methods from human-computer interaction?

 5

Come to my Most
Influential Paper award
talk at ICSE on Friday

The Whyline

Andrew J. Ko

2008-2014 pre-tenure

• University of Washington
Information School (plus
4 years at AnswerDash, a
startup I co-founded)

• How can we discover field
failures at scale?

• How can we make bug
triage evidence-based?

 6

Andrew J. Ko

2014-present post-tenure

• Better software through better developers

• Learning to code at scale

• Rapid PL+API learning

• Software engineering expertise

 7

Andrew J. Ko

My history with
comprehension and mining
• I’ve studied program comprehension since 1999,

attended my first IWPC in 2003 (Portland, OR, USA)

• I’ve mined software repositories since 2005 when I
downloaded my first dump of the Linux, Apache,
and Firefox bug repositories

• But…I haven’t attended ICPC for 15 years and
haven’t ever attended MSR!

• Unique opportunity for me to reflect as an outsider

 8

Andrew J. Ko

Who here regularly
attends ICPC?

 9

Andrew J. Ko

Who here regularly
attends MSR?

 10

Andrew J. Ko

Who here regularly
attends both?

 11

Andrew J. Ko

This talk
• How I see the MSR and ICPC communities

• Four missed opportunities at their intersection

• Next steps

 12

Andrew J. Ko

Disclaimer
• In attempting to build a bridge between these

communities, I’m going to identify weaknesses in
each community

• Please don’t take it personally; my work has the
same weaknesses.

• Everyone here is doing great work, but to make it
even greater, we must surface our disciplinary
shortcomings.

 13

 14

Andrew J. Ko

What we have in common
• All of us want to making programming and

software engineering more effective, efficient,
enjoyable, and successful

• All of us want to do this through rigorously
discovery, of new tools, processes, insights

• We only differ in how we do this research
(methods), and what we believe will make a
difference (phenomena)

 15

Andrew J. Ko

Comprehension
• Units of analysis

• Perception

• Cognition

• Decisions

• Collaboration

• Contexts

 16

Andrew J. Ko

Comprehension
• New science on human

program
comprehension

• New tools to support
developer’s program
comprehension

• Evaluations of strengths
and weaknesses of
comprehension tools

 17

Andrew J. Ko

Mining
• Units of analysis

• Code

• Commits

• Issues

• Dependencies

• Defects

 18

foo();
bar();
baz();

foo();
bar();
baz();

foo();
bar();
baz();

foo();
bar();
baz();

Andrew J. Ko

Mining
• New science about

process, method,
architecture, domain,
defects, debt

• Prediction techniques

• New analysis methods

 19

foo();
bar();
baz();

foo();
bar();
baz();

foo();
bar();
baz();

foo();
bar();
baz();

Andrew J. Ko

Two sides of the same phenomenon

 20

Comprehension
perception

cognition
decisions

collaboration
contexts

foo();

bar();

baz();

bar();

foo();

baz();

Mining
code
commits
issues
dependencies
defects

Andrew J. Ko

foo();

bar();

baz();

bar();

foo();

baz();

Comprehension = better decisions

 21

Comprehension
perception

cognition
decisions

collaboration
contexts

• Tools optimized to enhance
comprehension

• Processes optimized to
streamline collaboration

• Descriptive and predictive
theories of comprehension that
support design and education

Andrew J. Ko

Mining = better modeling

 22

foo();

bar();

baz();

bar();

foo();

baz();

Mining
code
commits
issues
dependencies
defects

• Better predictions

• Better models of
software process

• Better tools for
software analytics

Andrew J. Ko

Disciplinarity is productive
• By focusing on comprehension, ICPC can enhance

developers’ understanding of complex systems

• By focusing on mining, MSR can can enhance
developers’ processes

• Neither of these necessarily require contributions
from the other to be valuable

 23

Andrew J. Ko

Four missed interdisciplinary
opportunities
• Mining the mind

• Minding the mine

• Theory

• Grander challenges

 24

Andrew J. Ko

Mining the mind

 25

Andrew J. Ko

The problem
• Many ICPC studies are small sample lab studies

• Of 16 pre-prints this year, 6 include studies with
human subjects

• Recruited between 8 and 88 participants

• All short tasks, interviews, or surveys

• Many of these studies need longitudinal,
ecologically valid contexts to strongly support
their claims

 26

Andrew J. Ko

An ICPC example
• Tymchuk et al’s "JIT Feedback — What Experienced

Developers like about Static Analysis.” ICPC ’18.

• Solid interview study of 29 Smalltalk developers about
a static analysis tool

• Great for understanding developers’ sentiments
about the tool

• Not great for understanding impact of the tool,
because it relied on retrospective self-report

 27

Andrew J. Ko

A solution
• Measure comprehension at scale with repositories

• Repositories offer longitudinal, ecologically valid,
ground truth contexts in which to test hypotheses

• In fact, ICPC is doing this already: 10 pre-prints
actually used repositories—just not to understand
program comprehension.

 28

Andrew J. Ko

An approach
• Repositories hold traces of developers’

comprehension of code

• Defects may indicate failure to comprehend

• Communication may indicate comprehension needs

• Complexity may suggest comprehension barriers

• Few studies try to model these indicators of
comprehension

 29

Andrew J. Ko

Example: APIs & defects
• Theory

• Hidden semantics result in developers with brittle
comprehension of API semantics, who then write brittle
code

• e.g., many users of the Facebook React framework
don’t understand which calls are asynchronous, which
leads to code that seems correct with shallow testing

• Hypothesis

• More hidden the API semantics, more defects

 30

Andrew J. Ko

Example: APIs & defects
• Method

• Measure how hidden
semantic facts are by
counting the number of
Stack Overflow
questions about that API

• Measure defect density
of components

• Correlate

 31

Andrew J. Ko

Example from MSR ‘18
• Some at MSR are already doing this!

• Gopstein et al. “Prevalence of Confusing Code in
Software Projects: Atoms of Confusion in the Wild.”
MSR 2018

• Operationalizes an indicator of comprehension

• Shows a strong correlation between “confusing”
patterns and bug-fix commits

 32

Andrew J. Ko

Impact of mining the mind
• Longitudinal, community-wide measures of

program comprehension

• Descriptive and predictive models of a community
or organization’s comprehension gaps

• Associations between comprehension, defects,
productivity, and other outcomes

 33

Andrew J. Ko

“Minding” the mine

 34

Andrew J. Ko

The problem
• Many MSR (and ICPC) papers do a great job testing

feasibility, correctness, coverage, accuracy of tools

• However, of 11 pre-prints at MSR ’18 that evaluated tools
intended for developers, only one evaluated usefulness

• This bias towards applicability overlooks critical
questions about how these tools would be used by
developers, managers, and teams to actually improve
software engineering.

• Leaves many fundamental premises about the utility of
mining tools untested.

 35

Andrew J. Ko

An MSR example
• Rath et al. “Analyzing Requirements and

Traceability Information to Improve Bug
Localization” MSR 2018.

• Clever use of previously fixed bug reports to improve
localization!

• Robust evaluation against 13,000 bug reports

• No evaluation of whether a ranked list of source files is
useful to developers in comprehending, localizing, or
repairing defects.

 36

Andrew J. Ko

A solution
• We need to test these unverified premises with real

developers on real teams

• Example premises to test:

• Managers want to analyze their team’s activity

• Predictions are trusted and actionable

• Patterns in source code lead to valuable insights

• Patterns in communication lead to valuable insights

• When are these true? When are they not? Why?

 37

Andrew J. Ko

An approach
• Putting tools in front of real developers, managers,

and teams

• Show them our vision of how mining tools can be
used to impact software engineering practice

• Elicit their questions, concerns, and ideas

• Better yet, deploy mining tools into practice,
evaluating how they do and do not support
software engineering

 38

Andrew J. Ko

Example: prediction actionability

• Theory

• Decision sciences shows that people generally don’t
use data to make decisions, they use it confirm prior
beliefs

• Hypothesis

• Developers and managers will view fault localization
predictions as evidence of their prior knowledge
about components, and see little actionable insight

 39

Andrew J. Ko

Example: prediction actionability

• Method

• Recruit 30 open source developers

• Present fault localization source file rankings

• Challenge developers to extract novel actionable
insights from the data

 40

Andrew J. Ko

Example: prediction actionability

• Implications

• If my hypothesis is true, many mining tools that make
predictions will be viewed as useless

• May need to reconsider what output would be
valuable to developers and managers

• May need to invent new algorithms and tools to
achieve usefulness

 41

Andrew J. Ko

Example from ICPC ‘18
• Tymchuk et al’s "JIT Feedback” paper we just

discussed is a perfect example of a human
subjects study of developers’ perception of value
of a tool’s output

• Provides rich insights about precisely which rules
were valuable, which rules were not, and why

 42

Andrew J. Ko

Evaluating with human
participants
• Many skills required to

evaluate tools with people.

• My collaborators Thomas
LaToza and Margaret Burnett
and I have written down
many of these skills for you.
• Ko, A. J., Latoza, T. D., & Burnett, M. M.

(2015). A practical guide to controlled
experiments of software engineering
tools with human
participants. Empirical Software
Engineering, 20(1), 110-141.

 43

Andrew J. Ko

Impact of “minding” the mine
• Demonstrably useful software analytics tools

• A new science of software analytics decisions

• New tool requirements requiring further research

• More impact on practice

 44

Andrew J. Ko

Theory

 45

Andrew J. Ko

The problem
• Most ICPC studies describe or predict behaviors, practices,

strategies, effects of tools; few explain.

• Most MSR studies describe or predict patterns, associations,
and trends; few explain.

• None of the pre-prints in ICPC or MSR ’18 had formal or
informal theories that informed tool or empirical study design,
or interpretations of results.

• Without explanations, all we have is a loosely connected set
of empirical patterns, with no greater theory of how they relate

• We need theory to build upon each others’ discoveries.

 46

Andrew J. Ko

A solution
• We must produce theories that explain the major

phenomena in software engineering (e.g.,
comprehension, process, coordination, defects)

• We must rigorously explain why defects occur, why builds
fail, why decisions are poor, why projects are late, etc.

• By generating these explanations, we can derive
hypotheses, and test them in the lab and the field, with
developers and with data.

• Theories will then allow us to combine our results, and
communicate greater truths to industry about software

 47

Andrew J. Ko

An example theory from SE
• James Herbsleb’s Socio-Technical Theory of

Coordination (STTC) (Herbsleb 2016) .

• Explains how teams coordinate work, arguing that:

1. Software is an interdependent network of decision
constraints imposed by technical dependencies

2. Teams, process, and modularity are all efforts to align
coordination requirements determined by these
constraints with actual coordination between
individuals.

 48

Andrew J. Ko

STTC in simpler terms
• If

• developer A owns function foo(), and

• developer B owns function bar(), and

• foo() calls bar()

• Developers A and B must talk to each other about
foo() and bar() to coordinate the dependency.

 49

Andrew J. Ko

Support for STTC
• The theory predicts that misalignment between

social and technical constraints causes defects and
delays by limiting the information that developers
have for decision making.

• Evidence supports these predictions:

• Cataldo et al. 2008: misalignment is related to time to
resolve modification requests

• Cataldo and Herbleb 2012: misalignment explained
increases in software failures over time

 50

Andrew J. Ko

Applying STTC
• Everyone in the room investigating questions of

coordination should be attempting to falsify this theory:

• Interpret prior work

• Derive hypotheses

• Test hypotheses

• Interpret results

• Connect results to prior work

• Allows us to integrate our individual publications into a
greater whole, explaining the work of software engineering

 51

Andrew J. Ko

A theory of defects
• Knuth’s “Errors of

TeX” (1989) is one of my
favorite qualitative
empirical studies from SE

• An epic-10 year diary
study of defects

• Inside it is a fascinating
theory of how defects arise
in practice

 52

Andrew J. Ko

A theory of defects
• These actually map neatly on to

more basic research on human
error (Reason 1990), which I adapted
into a theory of defects

• Ko, A. J., & Myers, B. A. (2005). A
framework and methodology for
studying the causes of software
errors in programming
systems. Journal of Visual
Languages &
Computing, 16(1-2), 41-84.

 53

Andrew J. Ko

Explaining defects
• Argues that defects come from 5 sources

1. Failure to attend closely to routine action (e.g., choosing an item
in code completion)

2. Misapplication of a rule in a novel context (e.g., using a for loop
increment template for a decrement problem)

3. Use of a bad rule (e.g., using for loops instead of iterators)

4. Incomplete information about a problem space (e.g., brittle
knowledge of an API’s expressiveness)

5. Problem space is too large to comprehend (e.g., reasoning about
human behavior in a driverless car context)

 54

Andrew J. Ko

Testing a theory of defects
• Theory

• Failure to attend closely to a routine action causes defects.

• Hypothesis

• Developers read and write a lot of routine for() loops.
When those loops deviate from routine, developers will
overlook this deviation, leading to defects.

• Method

• Measure the defect density of functions and the deviancy
of their for() loops, then correlate density to deviancy

 55

Andrew J. Ko

Testing a theory of defects
• If we all spent time developing and testing this

theory, we may produce a grand theory of where
all defects come from

• Could use to reliably predict when defects will
occur, helping to prevent them through training,
process, and tools

 56

Andrew J. Ko

Theory for tools
• Theory isn’t just for empirical studies

• Tools embody theories of programming

• e.g., the implicit theory of defect prediction tools is
that developers and teams need help localizing
defects and prioritizing testing

• Is this theory true?

 57

Andrew J. Ko

A theoretical call to action
• All research on comprehension and mining,

empirical or technical should advance or falsify a
theory about software engineering

• If we all do this, then we have a common
framework in which to combine our individual
discoveries into greater truths

 58

Andrew J. Ko

Grander challenges

 59

Andrew J. Ko

The problem
• Developers don’t see value in much of our research

(Lo, Nagappan, Zimmermann 2015)

• According to 512 practitioners at Microsoft, 29% of
our research ideas are not not actionable, not useful,
not generalizable, or too costly

• No correlation between what developers’ valued
and what we cite in research papers

 60

Andrew J. Ko

A solution
• Focus on the big questions that industry can’t answer

• Here are some questions CTO’s wanted research to answer

• How can I know a new software process will help?

• How can we onboard new developers faster?

• How can my developers learn APIs faster?

• How can I align my technical decisions with business priorities?

• How can I know what’s happening in the field if no one reports it?

• How can I discover single points of failure?

 61

Ko, A. J. (2017, May). A three-year
participant observation of software
startup software evolution. ICSE, SEIP.

Andrew J. Ko

We can answer these, but we need
both comprehension and mining
• How can I know a new software

process will help?

• How can we onboard new
developers faster?

• How can my developers learn APIs
faster?

• How can I align my technical
decisions with business priorities?

• How can I know what’s happening
in the field if no one reports it?

• How can I discover our single points
of failure?

 62

• But also organizational
scientists, management
scientists, and learning
scientists

• We should be bringing
together interdisciplinary
teams to answer these big
questions

Andrew J. Ko

Example: onboarding
• Millions of developers start new jobs every year, but

aren’t productive for months.

• How can we help them onboard faster?

• We have a few studies of onboarding (e.g., Begel & Simon
2008) that suggest organizational management theories of
“newcomer socialization” best explain learning needs

• New developers need mentors, models for proper
behavior, connections to expertise about architecture, code
review practices, norms about meetings, walkthroughs of
feature implementations, and much more

 63

Andrew J. Ko

Example: onboarding
• One idea from this study was feature interviews, in

which a new hire meets with a developer to learn about:

• The features the developer owns

• The architecture of the features

• How the features are situated in the larger architecture

• These could be supported by a new class of
architectural walkthrough tools that situate features in
architectures, provide rationale, reveal business goals,
and surface practices and norms around process

 64

Andrew J. Ko

Example: onboarding
• How can comprehension help? Answer these:

• How can developers author a walkthrough to reveal this
information in a feature interview?

• How can we know if an authored walkthrough will
produce effective comprehension of architecture?

• What data other than code will be necessary to surface in
such a walkthrough?

• These are foundational program comprehension
questions that go well beyond reading code.

 65

Andrew J. Ko

Example: onboarding
• How can mining help? Answer these:

• What kinds of project history are necessary for
comprehending architectural rationale?

• Can we help a developer preparing for a walkthrough
predict what code is necessary to discuss?

• How can we use contribution history to recommend who
is qualified to author a feature walkthrough?

• These are foundational questions about prediction
and mining that go well beyond repositories.

 66

Andrew J. Ko

This is atypical SE research
• Requires us to tackle phenomena we don’t usually study

(organizations, learning, teaching, business decisions)

• Tackling the real struggles that industry has requires
interdisciplinary expertise

• Research contributions may not look like the technical and
empirical contributions we typically value in software
engineering research

• It might instead advance theories of organizational
learning, designs in HCI, strategies in computing
education

 67

Andrew J. Ko 68

Next steps

Andrew J. Ko

Make time

 69

• To aim this high, we have to think about more
than the next paper or promotion

• Some of these problems might take multiple
years before we have progress worth reporting

• If you have tenure, use it to think bigger, broader,
and longer

Andrew J. Ko

Be inclusive

 70

• Technical contributions matter
• But to make progress on these big problems, we

must value other forms of scholarship (theory,
development of instruments, etc.)

Andrew J. Ko

Read other disciplines

 71

HCI, organizational science, management
science, cognitive psychology, social
psychology, and others are explaining the
software engineering phenomena that our field
is investigating. We should know what they’ve
discovered, and build upon it.

Andrew J. Ko

Connect with software
engineers and CTOs

 72

Visit local meetups. Talk to them about what’s
hard about their jobs. Discover what questions
they have. You’ll be surprised how little their
needs align with our questions.

Andrew J. Ko

Connect MSR and ICPC

 73

You have more in common than you think.
Use this week to find a shared project.

Andrew J. Ko

The cost of inaction
• If we don’t pursue interdisciplinary work, our field may

become irrelevant

• We must show the world that the questions we answer in
software engineering matter not only to CS, but software
engineering practice

• We must also show relevance to other fields struggling with
software development:

• Medicine, natural sciences, public policy, law, etc. all need our
help, but we put most of our attention on a few specific safety-
critical domains

 74

Andrew J. Ko

If we do this, our work will be
deeper and more impactful

 75

Andrew J. Ko 76

Thanks!

Summary
• ICPC and MSR study the same thing with different lenses.
• The mining lens can increase comprehension’s scale, rigor
• The comprehension lens can increase mining’s relevance
• Both mining and comprehension need theory for progress
• Both need to ask bigger, more relevant questions
• This requires us to do interdisciplinary work and reach

outside of academia

Andy J. Ko, Ph.D.

