Mining the Mind, Minding the Mine

Grand Challenges in Comprehension and Mining

Andy J. Ko, Ph.D.

UNIVERSITY of WASHINGTON 203

)ﬂ(;:

Interedisciplinearity

Drawing upon two or more branches of knowledge

Andrew J. Ko YAJ UNIVERSITY of WASHINGTON

About me 7)
(‘\/\\

e Associate Professor at the UW Information School

e Background in CS, psychology, design, learning

| study and invent interactions with code

| theorize about what programming is

e | do all of this work at the boundaries between
disciplines

Andrew J. Ko YAJ UNIVERSITY of WASHINGTON 3

o 5

1 999'2002 undergrad ’i‘_,,,/’ ;> ;

e
« Worked with Margaret Burnett &
 End-user programmers + spreadsheets

« How do we help end users test effectively without any

testing skills?

DS\ (=X (2] 2] [0 @ [8 prewll| D@ [w)X[2]5] [0 € 5] B
= = :| &
=]| sl
- 3 . FACTORIAL
7 2 I’?'I
E = |ﬂ Aopir| E Answer 1]

if N < 2 the ; if N < 2 then
else N 56 orial:Answer .. j else N * 56 Factorial:Answer ..
Mk Sé_Fan'ORIAL:ANSWER = Answer on the copy of
Factorial whose N = (56_FACTORIALN + (- 1))
fike Factorial

Andrew J. Ko W UNIVERSITY of WASHINGTON 4

2002-2008 rho X ’5 .
AR

* Worked with Brad Myers at Carnegie Mellon

« How can we make debugging easier, faster using
methods from human-computer interaction”

|)
source

(default package)
edu.cmu_.hcii paint
Actions java
EraserPaintjava
PaintCanvas java
PaintObject java
PaintObjectConstructor java
PaintObjectConstructorListe
PaintWindow java
PaintWindow$1.class
PaintWindow$1()
stateChanged()
PaintWindow$2.class
PaintWindow$3.class
PaintWindow.class
PencilPaintjava
PencilPaint.class
PencilPaint()
define()
getBoundingBox()
getEndX()
getEndY()
getStartX()
getStartY()
paint()
java.awt
java.awtevent
javax.swing

Ishowing mor

2

e drag events

!

) why did this execute? @
color = rgb(0,0,0)?
(1) why did color = rgb(0,0,0)? {

w-(2) why did this = PenciPaint #25,2

properties of this line N why did x1=777
objects rendering this ¥ why did y1 = 2747
why did x2 =757

after this mouse drag

windows * whydid y2 = 2557 Color
why did color = [¢ ¢ * T#o0a1
why did font = Dial
| | text P

Called Color() on
() why did this execute?

(1) why did getValue() return 0? (producer)
(2) why did getValue() return 07 (producer)

i stateChanged(Chan
(3) why did getValue() return 0? (producer)

objectConstructor. setColoM

©

ew Color

repaint
Q why did color —
3 P) 30 £) Th| (O [colapser show
A These events were ovont [ovent| |methoa|method) |thread|threa) |biock| |expana | |threads)
responsible.
(1) why did this execute?
4\‘\ why did getValue() returs)
o (2) why did getValue() retur er)
> (3) why did getValue() retur
thread thread
main-0 AWTEventQueue0-5
start of proaram >

threads waltch ' |explain| |show call

AWTEventQueue0-5
PaintWindow$ 1 : stateChanged|
this = PaintWindow$1 #3,742
changeEvent = ChangeEvent
JSlider : fireStateChanged)
ModelListener : stateChanged)
DefaultBoundedRangeModel : fire;
DefaultBoundedRangeModel : set
DefaultBoundedRangeModel : set
JSlider : setValuelsAdjusting()
TrackListener : mouseReleased|()
Component : processMouseEven
IComnonent - nracessMouseFye

n |
Ask | @ why did color =2

The Whyline

Come to my Most
Influential Paper award
talk at ICSE on Friday

Andrew J. Ko W UNIVERSITY of WASHINGTON 5

2008‘20 1 4 pre-tenure

e University of Washington
Information School (plus
4 years at AnswerDash, a
startup | co-founded) S

Balance Bill highlights'

« How can we discover field —l T

aaaaaaaaaaaaa

[Bill Total $0.00 You can view your last 12 months' worth of bills by selecting the
? Total amount due by 11/09 $0 . 00 bill cycle your want to view from the drop down selector at the
a I u r e S a S C a e ° top-right of the Billing Summary page. The screen sho
highlights the drop down selector below:

Current charges View bill details

e How can we make bug T | B |
triage evidence-based? S

Andrew J. Ko W UNIVERSITY of WASHINGTON)

-) ’
~ "

-

201 4 preseht POSt- tenure_,(\/gz\k

« Better software through better developers

* Learningto code at scale
* Rapid PL+API learning

* Software engineering expertise

Andrew J. Ko YAJ UNIVERSITY of WASHINGTON 7

’ :

My history with , k
comprehension and mining “"‘"‘(\2\

 |'ve studied program comprehension since 1999,
attended my first IWPC in 2003 (Portland, OR, USA)

* |'ve mined software repositories since 2005 when |
downloaded my first dump of the Linux, Apache,
and Firefox bug repositories

* But...l haven't attended ICPC tor 15 years and
haven't ever attended MSR!

* Unigue opportunity for me to reflect as an outsider

Andrew J. Ko W UNIVERSITY o f WASHIN GTON 8

Who here regularly
attends ICPC?

Who here regularly
attends MSR?

10

Who here regularly
attends both?

11

This talk

 How | see the MSR and ICPC communities
e Four missed opportunities at their intersection

* Next steps

)ﬂ(;:

Disclaimer

* |n attempting to build a bridge between these
communities, I'm going to identify weaknesses in
each community

« Please don't take it personally; my work has the
same weaknesses.

e Everyone here is doing great work, but to make it
even greater, we must surface our disciplinary
shortcomings.

Andrew J. Ko WA UNIVERSITY of WASHINGTON 13

What we have in common

e All of us want to making programming and
software engineering more effective, efficient,
enjoyable, and successtul

o All of us want to do this through rigorously
discovery, of new tools, processes, insights

« We only differ in how we do this research
(methods), and what we believe will make a
difference (phenomena)

Andrew J. Ko WA UNIVERSITY of WASHINGTON

15

Comprehension

* Units of analysis
* Perception
* Cognition
e Decisions
* Collaboration

e Contexts

Andrew J. Ko "W UNIVERSITY of WASHINGTON

16

Comprehension

* New science on human
program
comprehension

* New tools to support
developer’s program
comprehension

* Evaluations of strengths
and weaknesses of

comprehension tools

Andrew J. Ko "W UNIVERSITY of WASHINGTON 17

* Units of analysis
* Code
« Commits
* |ssues
* Dependencies

e Defects

Andrew J. Ko "W UNIVERSITY of WASHINGTON

18

 New science about
process, method,
architecture, domain,
detfects, debt

 Prediction techniques

* New analysis methods

Andrew J. Ko "W UNIVERSITY of WASHINGTON

19

Two sides of the same phenomenon

Comprehension
perception
cognition
decisions
collaboration
contexts

foo();
bar();

baz();

bar();
foo();

baz();

Andrew J. Ko WA UNIVERSITY of WASHINGTON

Mining
code
commits
ISSUES

defects

dependencies

20

Comprehension = better decisions

* Jools optimized to enhance
comprehension

Comprehension
perception * Processes optimized to
cognition streamline collaboration
decisions » Descriptive and predictive
collaboration theories of comprehension that

contexts support design and education

Andrew J. Ko WA UNIVERSITY of WASHINGTON

21

Mining = better modeling

* Better predictions

* Better models of
software process

* Better tools for
software analytics

foo();
bar();

baz();

bar();
foo();

baz();

Andrew J. Ko WA UNIVERSITY of WASHINGTON

Mining

code
commits
Issues
dependencies

defects

22

Disciplinarity is productive
e By focusing on comprehension, ICPC can enhance

developers’ understanding of complex systems

e By focusing on mining, MSR can can enhance
developers' processes

e Neither of these necessarily require contributions
from the other to be valuable

Andrew J. Ko WA UNIVERSITY of WASHINGTON

23

Four missed interdisciplinary
opportunities

* Mining the mind
 Minding the mine
* Theory

* Grander challenges

24

Mining the mind

The problem

« Many ICPC studies are small sample lab studies

« Of 16 pre-prints this year, 6 include studies with
human subjects

* Recruited between 8 and 88 participants

* All short tasks, interviews, or surveys

e Many of these studies need longitudinal,
ecologically valid contexts to strongly support
their claims

Andrew J. Ko WA UNIVERSITY of WASHINGTON

26

An ICPC example

e Tymchuk et al's "JIT Feedback — What Experienced
Developers like about Static Analysis.” ICPC "18.

* Solid interview study of 29 Smalltalk developers about
a static analysis tool

* Great for understanding developers’ sentiments
about the tool

* Not great for understanding impact of the tool,
because it relied on retrospective self-report

Andrew J. Ko WA UNIVERSITY of WASHINGTON 27

A solution

 Measure comprehension at scale with repositories

e Repositories offer longitudinal, ecologically valid,
ground truth contexts in which to test hypotheses

 Infact, ICPCis doing this already: 10 pre-prints
actually used repositories—just not to understand
program comprehension.

Andrew J. Ko WA UNIVERSITY of WASHINGTON

28

An approach

e Repositories hold traces of developers'
comprehension of code

* Defects may indicate failure to comprehend
 Communication may indicate comprehension needs

* Complexity may suggest comprehension barriers

e Few studies try to model these indicators of
comprehension

Andrew J. Ko WA UNIVERSITY of WASHINGTON

29

Example: APls & defects

* Theory

« Hidden semantics result in developers with brittle
comprehension of APl semantics, who then write brittle

code

e e.g., many users of the Facebook React framework
don't understand which calls are asynchronous, which
leads to code that seems correct with shallow testing

* Hypothesis
e More hidden the APl semantics, more defects

Andrew J. Ko WA UNIVERSITY of WASHINGTON

30

Example: APls & defects

e Method

e Measure how hidden

Can someone explain how numpy displays multidimensional arrays?

Deploy faster.

Receive a $100 infrastructure credit.

A, given the following command:

Semant|c faCtS are by 2 np.ones((2,2,3))

counting the number of G

Stack Overflow

W | getthe following

.

(S [

-]
1., 1.]
(1., 1 -]
(1., 1., 1.]

]

11)

From what | understand reading docos/blogs etc this is a multi-dimensional array that is effectively a
combination of 3, 2x2 matrices so we have 2 columns 2 rows and "depth" dimension of 3 meaning

q u e Sti O n S a b O u t t h at A P | numpy uses a (row,column,depth) system for 3 dimensional arrays.

How then should | interpret what is displayed in the terminal which appears to be 2 3x2 matrices
implying a (depth,row,column) system.

* Measure defect density

of components

e Correlate

Andrew J. Ko "W UNIVERSITY of WASHINGTON

31

Example from MSR 18

 Some at MSR are already doing this!

* Gopstein et al. “"Prevalence of Confusing Code in

Software Projects: Atoms of Confusion in the Wild."
MSR 2018

* Operationalizes an indicator of comprehension

* Shows a strong correlation between “confusing”
patterns and bug-fix commits

Andrew J. Ko WA UNIVERSITY of WASHINGTON

32

lmpact of mining the mina

« Longitudinal, community-wide measures of
program comprehension

e Descriptive and predictive models of a community
or organization’s comprehension gaps

« Associations between comprehension, defects,
productivity, and other outcomes

Andrew J. Ko W UNIVERSITY of WASHINGTON 33

"Minding” the mine

The problem

 Many MSR (and ICPC) papers do a great job testing
feasibility, correctness, coverage, accuracy of tools

 However, of 11 pre-prints at MSR "18 that evaluated tools
intended for developers, only one evaluated usefulness

* This bias towards applicability overlooks critical
questions about how these tools would be used by
developers, managers, and teams to actually improve
software engineering.

e Leaves many fundamental premises about the utility of
mining tools untested.

Andrew J. Ko WA UNIVERSITY of WASHINGTON

35

An MSR example

« Rath et al. "Analyzing Requirements and
Traceability Information to Improve Bug

Localization” MSR 2018.

* Clever use of previously fixed bug reports to improve
localization!

* Robust evaluation against 13,000 bug reports

e No evaluation of whether a ranked list of source files is
useful to developers in comprehending, localizing, or
repairing defects.

Andrew J. Ko WA UNIVERSITY of WASHINGTON

36

A solution

* We need to test these unverified premises with real
developers on real teams

* Example premises to test:
 Managers want to analyze their team’s activity
* Predictions are trusted and actionable
» Patterns in source code lead to valuable insights
» Patterns in communication lead to valuable insights

 When are these true? When are they not? Why?

Andrew J. Ko WA UNIVERSITY of WASHINGTON

37

An approach

e Putting tools in front of real developers, managers,
and teams

e Show them our vision of how mining tools can be
used to impact software engineering practice

 Elicit their questions, concerns, and ideas

e Better yet, deploy mining tools into practice,
evaluating how they do and do not support
software engineering

Andrew J. Ko W UNIVERSITY of WASHINGTON 38

Example: prediction actionability

 Theory

* Decision sciences shows that people generally don't
use data to make decisions, they use it confirm prior

beliefs
« Hypothesis

* Developers and managers will view fault localization
predictions as evidence of their prior knowledge
about components, and see little actionable insight

Andrew J. Ko W UNIVERSITY of WASHINGTON 39

Example: prediction actionability

e Method

* Recruit 30 open source developers
* Present fault localization source file rankings

* Challenge developers to extract novel actionable
insights from the data

Andrew J. Ko WA UNIVERSITY of WASHINGTON

40

Example: prediction actionability

 Implications

* |f my hypothesis is true, many mining tools that make
predictions will be viewed as useless

* May need to reconsider what output would be
valuable to developers and managers

* May need to invent new algorithms and tools to
achieve usefulness

Andrew J. Ko WA UNIVERSITY of WASHINGTON

41

Example from ICPC 18

e Tymchuk et al’'s "JIT Feedback” paper we just

discussed is a pertect example of a human

subjects study of developers’ perception of value
of a tool’s output

* Provides rich insights about precisely which rules
were valuable, which rules were not, and why

Andrew J. Ko W UNIVERSITY of WASHINGTON 42

Evaluating with human

participants

* Many skills required to Py

evaluate tools with people. =

* My collaborators Thomas
LaToza and Margaret Burnett
and | have written down
many of these skills for you.

e Ko, A.J., Latoza, T. D., & Burnett, M. M.
(2015). A practical guide to controlled
experiments of software engineering
tools with human

participants. Empirical Software
Engineering, 20(1), 110-141.

Empirical Software Engineering
February 2015, Volume 20, Issue 1, pp 110-141 | Cite as

A practical guide to controlled experiments of software
engineering tools with human participants

Authors Authors and affiliations

Andrew J. Ko[~], Thomas D. LaToza, Margaret M. Burnett

Article

. . 21 2.1k 20
First Online: 27 September 2013

Shares Downloads Citations

Abstract

Empirical studies, often in the form of controlled experiments, have been widely adopted i
software engineering research as a way to evaluate the merits of new software engineering
tools. However, controlled experiments involving human participants actually using new t
are still rare, and when they are conducted, some have serious validity concerns. Recent
research has also shown that many software engineering researchers view this form of tool
evaluation as too risky and too difficult to conduct, as they might ultimately lead to inconc]
or negative results. In this paper, we aim both to help researchers minimize the risks of thi
form of tool evaluation, and to increase their quality, by offering practical methodological
guidance on designing and running controlled experiments with developers. Our guidance
gaps in the empirical literature by explaining, from a practical perspective, options in the
recruitment and selection of human participants, informed consent, experimental procedu
demographic measurements, group assignment, training, the selecting and design of tasks,
measurement of common outcome variables such as success and time on task, and study
debriefing. Throughout, we situate this guidance in the results of a new systematic review (
tool evaluations that were published in over 1,700 software engineering papers published f

2001 to 2011.

Andrew J. Ko "W UNIVERSITY of WASHINGTON

43

Impact of “minding” the mine

Demonstrably useful software analytics tools
A new science of software analytics decisions
New tool requirements requiring further research

More impact on practice

Andrew J. Ko WA UNIVERSITY of WASHINGTON

44

RGN

AYTFE .

e
Ay
ST

<

The problem

* Most ICPC studies describe or predict behaviors, practices,
strategies, effects of tools; few explain.

 Most MSR studies describe or predict patterns, associations,
and trends; few explain.

* None of the pre-prints in ICPC or MSR "18 had formal or
informal theories that informed tool or empirical study design,
or interpretations of results.

* Without explanations, all we have is a loosely connected set
of empirical patterns, with no greater theory of how they relate

* We need theory to build upon each others’ discoveries.

Andrew J. Ko W UNIVERSITY of WASHINGTON 46

A solution

 We must produce theories that explain the major
phenomena in software engineering (e.g.,
comprehension, process, coordination, defects)

« We must rigorously explain why defects occur, why builds
fail, why decisions are poor, why projects are late, etc.

* By generating these explanations, we can derive
hypotheses, and test them in the lab and the field, with
developers and with data.

e Theories will then allow us to combine our results, and
communicate greater truths to industry about software

Andrew J. Ko W UNIVERSITY of WASHINGTON 47

An example theory from SE

« James Herbsleb’s Socio-Technical Theory of
Coordination (STTC) (Herbsleb 2016).

e Explains how teams coordinate work, arguing that:

1. Software is an interdependent network of decision
constraints imposed by technical dependencies

2. Teams, process, and modularity are all efforts to align
coordination requirements determined by these
constraints with actual coordination between
individuals.

Andrew J. Ko WA UNIVERSITY of WASHINGTON

48

STTC in simpler terms

o |f
* developer A owns function foo(), and
* developer B owns function bar(), and
* foo() calls bar()

e Developers A and B must talk to each other about
foo() and bar() to coordinate the dependency.

Andrew J. Ko WA UNIVERSITY of WASHINGTON

49

Support for STTC

* The theory predicts that misalignment between
social and technical constraints causes defects and

delays by limiting the information that developers
have for decision making.

* Evidence supports these predictions:

» Cataldo et al. 2008: misalignment is related to time to
resolve modification requests

« Cataldo and Herbleb 2012: misalignment explained
increases in software failures over time

Andrew J. Ko WA UNIVERSITY of WASHINGTON

50

Applying STTC

* Everyone in the room investigating questions of
coordination should be attempting to falsify this theory:

* Interpret prior work
* Derive hypotheses
» Test hypotheses

* Interpret results

e Connect results to prior work

* Allows us to integrate our individual publications into a
greater whole, explaining the work of software engineering

Andrew J. Ko WA UNIVERSITY of WASHINGTON

A theory of defects

* Knuth's “Errors of
TeX” (1989) is one of my
favorite qualitative
empirical studies from SE

* An epic-10 year diary
study of defects

* Inside itis a fascinating
theory of how defects arise
In practice

The Errors of TEX*

DONALD E. KNUTH
Computer Science Department, Stanford University, Stanford, California 94305, U.S.A.

SUMMARY

This paper is a case study of program evolution. The author kept track of all changes made to
TEX during a period of ten years, including the changes made when the original program was
first debugged in 1978. The log book of these errors, numbering more than 850 items, appears
as an appendix to this paper. The errors have been classified into fifteen categories for purposes
of analysis, and some of the noteworthy bugs are discussed in detail. The history of the TEX
project can teach valuable lessons about the preparation of highly portable software and the
maintenance of programs that aspire to high standards of reliability.

key worDs Errors Debugging TEgX Program evolution Language design Truc confessions

INTRODUCTION

I make mistakes. I always have, and I probably always will. But I like to think that I
learn something, every time [go astray. In fact, one of my favourite poems consists
of the following lines by Piet Hein:'

The road to wisdom? Well, it’s plain
and simple to express:

Err

and err

and err again

but less

and less

and less.

Andrew J. Ko WA UNIVERSITY of WASHINGTON 52

A theory of defects

* These actually map neatly on to
more basic research on human
error (Reason 1990), which | adapted
into a theory of defects

* Ko, A.J., & Myers, B. A.(2005). A
framework and methodology for
studying the causes of software
errors in programming
systems. Journal of Visual

Languages &
Computing, 16(1-2), 41-84.

A framework and methodology for studying the
causes of software errors in programming systems

Andrew J. Ko*, Brad A. Myers

Human-Computer Interaction Institute, School of Computer Science, Carnegie Mellon University, 5000
Forbes Ave., Pittshurgh, PA 15213, USA

Received 1 January 2004; received in revised form 1 July 2004; accepted 1 August 2004

Abstract

An essential aspect of programmers’ work is the correctness of their code. This makes
current HCI techniques ill-suited to analyze and design the programming systems that
programmers use everyday, since these techniques focus more on problems with learnability
and efficiency of use, and less on error-proneness. We propose a framework and methodology
that focuses specifically on errors by supporting the description and identification of the causes
of software errors in terms of chains of cognitive breakdowns. The framework is based on
both old and new studies of programming, as well as general research on the mechanisms of
human error. Our experiences using the framework and methodology to study the Alice
programming system have directly inspired the design of several new programming tools and
interfaces. This includes the Whyline debugging interface, which we have shown to reduce
debugging time by a factor of 8 and help programmers get 40% further through their tasks.
We discuss the framework’s and methodology’s implications for programming system design,
software engineering, and the psychology of programming.
© 2004 Elsevier Ltd. All rights reserved.

Andrew J. Ko "W UNIVERSITY of WASHINGTON

53

Explaining defects

e Argues that defects come from 5 sources

1. Failure to attend closely to routine action (e.g., choosing an item
in code completion)

2. Misapplication of a rule in a novel context (e.g., using a for loop
increment template for a decrement problem)

3. Use of a bad rule (e.g., using for loops instead of iterators)

4. Incomplete information about a problem space (e.qg., brittle
knowledge of an API's expressiveness)

5. Problem space is too large to comprehend (e.g., reasoning about
human behavior in a driverless car context)

Andrew J. Ko W UNIVERSITY of WASHINGTON 54

Testing a theory of defects

* Theory
 Failure to attend closely to a routine action causes defects.
* Hypothesis

e Developers read and write a lot of routine for() loops.
When those loops deviate from routine, developers will
overlook this deviation, leading to defects.

e Method

* Measure the defect density of functions and the deviancy
of their for() loops, then correlate density to deviancy

Andrew J. Ko WA UNIVERSITY of WASHINGTON

95

Testing a theory of defects

-we all spent time developing and testing t

t

neory, we may produce a grand theory of w

all defects come from

NIS

nere

e Could use to reliably predict when defects will

occur, helping to prevent them through training,

process, and tools

Andrew J. Ko WA UNIVERSITY of WASHINGTON

56

Theory for tools

e Theory isn't just for empirical studies

e Tools embody theories of programming

* e.g., the implicit theory of defect prediction tools is
that developers and teams need help localizing
defects and prioritizing testing

* |sthis theory true?

Andrew J. Ko WA UNIVERSITY of WASHINGTON

S/

A theoretical call to action

« All research on comprehension and mining,
empirical or technical should advance or falsity a

theory about software engineering

e |f we all do this, then we have a common
framework in which to combine our individual
discoveries into greater truths

Andrew J. Ko WA UNIVERSITY of WASHINGTON

58

Grander challenges

The problem

e Developers don't see value in much of our research
(Lo, Nagappan, Zimmermann 2015)

e According to 512 practitioners at Microsoft, 29% of
our research ideas are not not actionable, not useful,
not generalizable, or too costly

* No correlation between what developers’ valued
and what we cite in research papers

Andrew J. Ko W UNIVERSITY of WASHINGTON 60

Ko, A. J. (2017, May). A three-year

{]
/ \ S O ‘ u -t I O n participant observation of software
startup software evolution. ICSE, SEIP.

* Focus on the big questions that industry can’t answer

* Here are some questions CTO's wanted research to answer
* How can | know a new software process will help?
* How can we onboard new developers faster?
e How can my developers learn APIs faster?
* How can | align my technical decisions with business priorities?
* How can | know what's happening in the field if no one reports it?

* How can | discover single points of failure?

Andrew J. Ko WA UNIVERSITY of WASHINGTON 61

We can answer these, but we need
both comprehension and mining

e How can | know a new software
process will help?

e How can we onboard new
developers faster?

* How can my developers learn APIs
faster?

* How can | align my technical
decisions with business priorities?

* How can | know what's happening
in the field if no one reports it?

* How can | discover our single points
of failure?

But also organizational

scientists, management
scientists, and learning

scientists

We should be bringing
together interdisciplinary
teams to answer these big
questions

Andrew J. Ko WA UNIVERSITY of WASHINGTON

62

Example: onboarding

« Millions of developers start new jobs every year, but
aren’t productive for months.

 How can we help them onboard faster?

* We have a few studies of onboarding (e.g., Begel & Simon
2008) that suggest organizational management theories of
“newcomer socialization” best explain learning needs

* New developers need mentors, models for proper
behavior, connections to expertise about architecture, code
review practices, norms about meetings, walkthroughs of
feature implementations, and much more

Andrew J. Ko WA UNIVERSITY of WASHINGTON

63

Example: onboarding

* One idea from this study was feature interviews, in

which a new hire meets with a developer to learn about:

* The features the developer owns
* The architecture of the features

 How the features are situated in the larger architecture

* These could be supported by a new class of
architectural walkthrough tools that situate features in
architectures, provide rationale, reveal business goals,
and surface practices and norms around process

Andrew J. Ko WA UNIVERSITY of WASHINGTON

64

Example: onboarding

* How can comprehension help? Answer these:

 How can developers author a walkthrough to reveal this
information in a feature interview?

 How can we know if an authored walkthrough will
produce effective comprehension of architecture?

« What data other than code will be necessary to surface in
such a walkthrough?

* These are foundational program comprehension
questions that go well beyond reading code.

Andrew J. Ko WA UNIVERSITY of WASHINGTON

65

Example: onboarding

* How can mining help? Answer these:

« What kinds of project history are necessary for
comprehending architectural rationale?

 Can we help a developer preparing tfor a walkthrough
predict what code is necessary to discuss?

 How can we use contribution history to recommend who
is qualified to author a feature walkthrough?

* These are foundational questions about prediction
and mining that go well beyond repositories.

Andrew J. Ko W UNIVERSITY of WASHINGTON 66

This is atypical SE research

* Requires us to tackle phenomena we don't usually study
(organizations, learning, teaching, business decisions)

» Tackling the real struggles that industry has requires
interdisciplinary expertise

e Research contributions may not look like the technical and
empirical contributions we typically value in software
engineering research

It might instead advance theories of organizational

learning, designs in HCI, strategies in computing
education

Andrew J. Ko WA UNIVERSITY of WASHINGTON

67

Next steps

Make time

* To aim this high, we have to think about more
than the next paper or promotion

* Some of these problems might take multiple
years before we have progress worth reporting

* |f you have tenure, use it to think bigger, broader,
and longer

Andrew J. Ko WA UNIVERSITY of WASHINGTON

69

Be inclusive

* Technical contributions matter

* Butto make progress on these big problems, we
must value other forms of scholarship (theory,
development of instruments, etc.)

Andrew J. Ko WA UNIVERSITY of WASHINGTON

70

Read other disciplines

HCI, organizational science, management
science, cognitive psychology, social
psychology, and others are explaining the
software engineering phenomena that our tield
is investigating. We should know what they've
discovered, and build upon it.

Andrew J. Ko WA UNIVERSITY of WASHINGTON

71

Connect with software

engineers and CTOs

Visit local meetups.

alk to them about what's

hard about their jobs. Discover what questions
they have. You'll be surprised how little their
needs align with our questions.

Andrew J. Ko W UNIVERSITY o f WASHIN GTON

/2

Connect MSR and ICPC

You have more in common than you think.
Use this week to find a shared project.

/3

The cost of inaction

* If we don't pursue interdisciplinary work, our field may
become irrelevant

* We must show the world that the questions we answer in
software engineering matter not only to CS, but software
engineering practice

* We must also show relevance to other fields struggling with
software development:

* Medicine, natural sciences, public policy, law, etc. all need our
help, but we put most of our attention on a few specific safety-
critical domains

Andrew J. Ko W UNIVERSITY of WASHINGTON 74

It we do this, our work will be
deeper and more impacttful

73

\

Thanks! Cay ;
/‘\

Andy J. Ko, Ph.D. &

Summary

» |CPC and MSR study the same thing with different lenses.

* The mining lens can increase comprehension’s scale, rigor

* The comprehension lens can increase mining's relevance

* Both mining and comprehension need theory for progress

* Both need to ask bigger, more relevant questions

* This requires us to do interdisciplinary work and reach
outside of academia

Andrew J. Ko YAJ UNIVERSITY of WASHINGTON

» 4
/
\

/6

