
Predicting Abandonment in Online Coding Tutorials
An Yan

The Information School
University of Washington

Seattle, Washington, 98105
yanan15@uw.edu

Michael J. Lee
Department of Informatics

New Jersey Institute of Technology
Newark, New Jersey, 07102

mjlee@njit.edu

The Information School
University of Washington

Seattle, Washington, 98105
ajko@uw.edu

Abstract—Learners regularly abandon online coding tutorials
when they get bored or frustrated, but there are few techniques
for anticipating this abandonment to intervene. In this paper,
we examine the feasibility of predicting abandonment with
machine-learned classifiers. Using interaction logs from an online
programming game, we extracted a collection of features that
are potentially related to learner abandonment and engagement,
then developed classifiers for each level. Across the first five levels
of the game, our classifiers successfully predicted 61% to 76%
of learners who did not complete the next level, achieving an
average AUC of 0.68. In these classifiers, features negatively
associated with abandonment included account activation and
help-seeking behaviors, whereas features positively associated
with abandonment included features indicating difficulty and dis-
engagement. These findings highlight the feasibility of providing
timely intervention to learners likely to quit.

I. INTRODUCTION

The popularity of online coding tutorials such as
Codecademy, Kahn Academy, and Code.org has risen dramat-
ically in past years, reaching millions of people eager to learn
to code. However, because these resources are discretionary
and frequently lack the social and instructional support that
classroom environments provide, learners often abandon them
at high rates [1], [2].

There are many ways to encourage learners to continue
learning in these tutorials. Prior work has investigated im-
proving error message feedback [3], incorporating assessments
to validate learners’ understanding [2], and tuning material
difficulty [4]. These efforts have proven effective at increasing
how far a learner gets through online materials before quitting.

Unfortunately, some of the most effective strategies for
increasing engagement are still limited to classroom environ-
ments. For example, one of the simplest and most powerful
strategies is encouragement: when a learner is stuck, a few
supportive words can promote further engagement, causing
increases in self-efficacy and intrinsic motivation, especially
to students who start with low self-efficacy for a skill [5]–
[7]. Encouragement can have positive effects on learning and
engagement even when coming from software [8], suggesting
that it is the content and context of encouragement, and not
who it comes from, that is important.

Offering encouragement in coding tutorials poses many
challenges. If encouragement is not timed well, it may inter-
rupt learners’ thoughts, causing them to lose their places in a

difficult coding problem or exercise. Moreover, learners who
are already engaged and successfully learning may perceive
encouragement as annoying, condescending, or as a lack of
confidence in their abilities, making them question whether
they really are succeeding. This leaves designers of online
coding tutorials between two extremes: if they always provide
encouragement, they may annoy the majority of learners who
are engaged; if they never provide encouragement, they fail to
help learners who are likely to abandon the tutorial. Naive
probabilistic models also have flaws: for a coding tutorial
with a 10% abandonment rate on each lesson, we could
randomly predict that 1 in 10 learners would quit, but this
would only correctly identify 1% of learners about to leave.
This would also unnecessarily encourage many learners. In this
paper, we explore the feasibility of predicting which learners
are likely to complete the next lesson of a tutorial, identify
features of learner behavior that best inform this prediction,
and examine whether these features show consistent positive
or negative associations with abandonment. While these feasi-
bility assessments do not yet directly explore the applications
to encouragement in online tutorials, they provide a foundation
for future efforts.

II. RELATED WORK

A. Dropout in Introductory Programming Courses

It is well established that introductory programming (CS1)
courses in higher education have high dropout rates [9], [10].
A worldwide survey on pass rates reported that, on average,
only 67% of students complete their CS1 course [11]. Watson
& Li expanded on this study, finding that the mean pass rate
of CS1 courses is 67.7% and that pass rates have not improved
over time [12].

Several studies have investigated the reasons for these
pass rates. Kinnunen & Malmi conducted interviews with
18 dropouts from a CS1 course at Helsinki University of
Technology [10], which showed that a lack of time and a
lack of motivation were the key reasons for dropping out.
These two factors are affected by perceived difficulty of the
course and difficulties with time management. Other factors
that influence dropout included gender, prior programming
experience, students’ attributions of success, learning style,
mental model of programming, and self-efficacy [13].

978-1-5386-0443-4/17/$31.00 c© 2017 IEEE

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

191

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 26,2020 at 00:14:35 UTC from IEEE Xplore. Restrictions apply.

 Amy J. Ko

Some studies have attempted to predict dropout rates in
CS1 courses based on these factors. Wilson & Shrock ex-
amined twelve factors of success in a CS1 course [14]. They
surveyed 105 students at a Midwestern university and found
that “comfort level,” math knowledge, and attribution to luck
were the most predictive of success. Similarly, Ventura Jr.
found that a math background, prior programming experience,
and gender have negligible predictive power in the success of
a CS1 course, whereas student effort and comfort were the
strongest predictors of success [15].

Although researchers and educators have investigated stu-
dent attrition in CS1 courses extensively, there is little consen-
sus on which factors are most significant in predicting dropout.
Moreover, many factors that appear to have significance in
classroom contexts are more difficult to observe in online
contexts, since they require measuring learners’ social context,
identity, and prior experience.

B. Dropout in MOOCs

Massive open online courses (MOOCs) have increased in
popularity over the last few years, particularly those teaching
computing. Of the many challenges that MOOCs face, one
is the low user retention rates. Studies have shown that
approximately 5% to 15% of students registered for a course
complete it [16], [17].

Studies of MOOC retention have many parallels to CS1
attrition rates. A survey of 134 MOOC users who dropped
out showed that a majority of them reported changes in job,
lack of time, content difficulty, and also a lack of difficulty
as the reasons for leaving [4]. Kizilcec & Halawa surveyed
550 respondents who were identified by a prediction model
to be disengaged from a MOOC course. The results indicated
non-behavioral characteristics such as gender, age, and geo-
graphical location were related to retention [1].

Statistical models of MOOC dropout have also demon-
strated some reasons why learners quit a course. Factors in-
clude student demographic characteristics, self-reported com-
mitments, features of forum discussion activities, course per-
formance, and students’ usage patterns [16], [18]. Adamopou-
los [19] applied logistic regression to model course completion
with data from 842 students enrolled in 133 courses offered
by 30 universities. His results showed that student perceptions
of the instructor, assignments, and course material were the
most significant predictors of retention. Hermans & Aivaloglou
also applied logistic regression to predict completion of a
MOOC course that teaches young children programming and
software engineering concepts. The prediction results showed
that factors related to course performance had positive influ-
ence on completion, whereas parental involvement and being
late joining the class had negative influence on completion
[20]. However, these two studies treated dropout as a single
categorical variable, rather than examining the likelihood of
dropout at different points over time.

Using survival analysis to model retention in a Coursera
discussion forum over the entire course period on a weekly
basis, Yang et al. found that social interactions among students

in a MOOC affected dropout throughout the duration of the
course [21]. Instead of focusing on factors captured during
the course, Greene et al. used survival analysis to predict
dropout based on self-reported features gathered prior to the
course, finding that age, prior experience, and self-reported
commitment had significant predictive power [22].

A number of studies have used machine learning to predict
MOOC dropout. Xing et al. used ensemble learning based on
General Bayesian Network and Decision Tree algorithms with
features generated from a MOOC discussion forum, achieving
accurate identification of at-risk students; it did not examine
which features best predicted abandonment [23]. Halawa et
al. designed a prediction model using behavioral data with
MOOC materials, finding that students’ lack of interest and
lack of ability accounted for 60% of high-risk students two
weeks before dropout [24]. Taylor et al. carried out a study of
70 gigabytes of student usage logs including click-streams,
forum posts, wiki revisions, and learner state information
from a MOOC course [17]. They extracted 25 predictive
features using crowd-sourcing methods, and derived over 10
thousand models with various machine learning techniques
on a per student and per week basis. Their model achieved
a notably high AUC (area-under-the-curve of the receiver
operating characteristic, a metric to evaluate a binary classifier
system) of 0.95. Features related to homework submission,
social interactions, and lab grades were the most predictive.

C. Abandonment in Coding Tutorials

There has been less work investigating dropout in online
coding tutorials. Abandonment of tutorials is a slightly differ-
ent problem, as learners who use tutorials are not necessarily
making the same commitment as when enrolling in a course.
Therefore, rather than using the word “dropout,” we prefer us-
ing the word “abandon,” which does not assume that someone
using a tutorial has committed to learn.

One of the most recent works on engagement in online cod-
ing tutorials is that by Lee et al. on the Gidget programming
game [25]. Lee investigated several strategies for preventing
abandonment, including more personal errors [3] and the inclu-
sion of in-game assessments [2] – both significantly increase
engagement. Repenning et al. used their Retention of Flow
framework to analyze Hour of Code activity data collected
from 5,512 student projects during CSEdWeek 2014, where
students viewed a tutorial and built a Frogger game using an
online programming environment. Their analysis showed that
the loss of retention might result from cognitive, technical, and
practical challenges [26]. Outside programming, researchers
have built predictive models of learners’ motivational states
in similar interactive learning environments [27], [28], finding
features related to help-seeking with manuals and tool-tips to
have strong predictive power.

These and other efforts from prior work have several im-
plications for coding tutorial abandonment prediction. First,
many of the most predictive features in prior work have
concerned social, instructional, and motivational factors, all
of which are difficult to detect in coding tutorials, especially

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

192

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 26,2020 at 00:14:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Gidget’s Level 5, showing the code editor, level goals, objects in the
world container, mission text, and runtime state. Gidget logs all interactions
with all components.

if used anonymously. Moreover, the majority of studies have
considered dropout at the end of a course in learning, leaving
open the possibility that early detection of dropout is not
feasible. That said, prior work suggests that some behavioral
features, such as different types of learners’ actions, may
be strong indicators of either engagement or disengagement.
In this paper, we will assess the feasibility of predicting
abandonment in an online coding tutorial, investigate which
features, if any, are most predictive of abandonment, and how
they influence a learner’s decision to abandon the tutorial.

III. METHOD

In this section, we detail the online tutorial for which we
predicted abandonment, introduce the dataset, and describe our
classification approach.

A. The Gidget Programming Game

We selected the Gidget programming game (shown in Fig-
ure 1 and available at www.helpgidget.org) as our tutorial for
investigation, as the game was heavily instrumented to record
learner activity. Gidget teaches CS1 programming concepts
such as variables, conditionals, loops, and functions to novice
learners, along with concepts of testing and debugging. The
game is structured as a sequence of levels, each presenting a
defective program for the learner to fix. Each level focuses on a
specific programming language concept, providing instruction
by encouraging learners to step through the program’s exe-
cution (as when using an interactive debugger), while Gidget

Fig. 2. Percent of learners remaining after each level (N = 5,038).

the Robot explains the execution of each step in the program.
The game also includes assessments between units of the
curriculum to test and reinforce understanding of the concepts
taught in the unit [2].

As with most coding tutorials, the goal of Gidget is to
provide a basic understanding of a programming language.
However, because it is a game, it does differ from other
tutorials in a few notable ways. First, the level of detail
given about program execution is much higher than in most
interactive tutorials, which tend to provide basic error feedback
but do not provide granular feedback. Unlike most tutorials,
the game also provides a story, which aims to motivate learners
to continue through the game [29]. The environment also offers
a syntax guide, abundant example code, and contextual hints,
as described in prior work [30]–[32].

Despite these engagement-oriented features, learners who
find the game online still abandon it at high rates. Figure 2
shows the percent of learners remaining after each level of the
game, showing that only a few percent of learners complete
the entire game. Figure 3 shows the per-level abandonment
rate, ranging from 0% to 34.3%, with a mean rate of 13.4%
per level. Levels that introduce new programming concepts
generally have higher abandonment rates. Levels with lower
abandonment rates include Gidget’s assessment levels, which
present multiple choice and open-ended questions along with
answers that attempt to correct learners’ misconceptions with
the concepts presented earlier [2].

Due to the minimum requirements required by our analyses
and low number of data points for later levels, this paper
focuses on predicting learner abandonment between Levels 1
through 5, which have the most learner activity. In these levels,
the game taught commands for moving Gidget the Robot
around the world and commands for picking up and dropping
objects (which were necessary for achieving game goals like
those shown in the bottom-left portion of Figure 1, requiring
objects to be moved and placed on other objects). Level 6
assessed learners’ knowledge of the prior levels, asking them
to predict output of a program that used commands introduced
in the first five levels. Subsequent levels introduced more
advanced concepts, including conditionals, variables, loops,
functions, and objects.

Fig. 3. Learners’ abandonment rate on each level, ranging from 0-34.3%.

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

193

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 26,2020 at 00:14:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I
FEATURES EXTRACTED FOR ABANDONMENT PREDICTION.

FEATURE DEFINITION RATIONALE

CUMULATIVE
FEATURES
Based on activities
in the current and
prior levels.

cml total dur Cumulative total non-idle time spent on all activities Indicates effort
cml idle time Cumulative total idle-time lacking mouse and keyboard events Suggests disengagement
cml code time Cumulative total time code editor had keyboard focus Suggests persistence
cml test time Cumulative total time spent in program execution mode Suggests desire to succeed
cml help time Cumulative total time focused on tutorial and reference guide Suggests desire to learn
cml mission time Cumulative total time spent on reading mission texts Suggests engagement
cml world time Cumulative total time spent on world container Suggests engagement
cml n restart Cumulative sum of # of stop button and retry button clicks Indicates difficulty
cml n step Cumulative # of one-step execution button clicks Indicates difficulty
cml n line Cumulative # of one-line execution button clicks Indicates difficulty
cml n play Cumulative # of “run to end” button clicks Indicates evaluation activities

LEARNER
FEATURES
Gathered upon reg-
istration.

activated Player registered an account (1), or did not (0) Indicates commitment to learn
experience Prior experience programming (1), or none (0) Predictive in [1], [22]
age Age in years Predictive in [1], [22]
gender Male or female Predictive in [1], [22]

B. Data Collection

The Gidget game records learner activity, including discrete
information for each learner, for each level, including data
such as the total time spent on a level, the total number of times
specific buttons were clicked, the total time help was used, the
total time spent on different interface elements, all code edits,
whether or not a level was completed, and so on. Creating an
account is optional, but ensures the player can return to his or
her game at a later time. When creating an account, learners
indicate their e-mail address, age, gender, and whether or not
they have prior programming experience. Those who choose
not to create an account can still play through the entirety of
the game, but would lose access to their progress after their
web session expires, or their web browsers’ cache is cleared.

We obtained a database snapshot of 5,038 unique learners’
activity logs spanning 23,647 level plays, representing 20
months of activities of all learners. We extracted most of
our features from these logs. Gidget’s developers primarily
relied on word-of-mouth to recruit learners. Internet Protocol
(IP) address logs and Google Analytics data indicate that
learners accessed the game from a total of 103 countries,
with the large majority of visitors coming from the USA
(65.2%) and Russia (16.4%). Aggregate Google Analytics data
indicates that Gidget users consisted of 55.7% males and
44.3% females, which is consistent with previously reported
user demographics [33]. Google Analytics only collects data
for users who are at least 18 years old, and reported that 22.7%
of Gidget’s users were 18-24 years old, 38.6% were 25-24
years old, 21.2% were 35-55 years old, 10.2% were 45-54
years old, and 7.1% were 55+ years old. We exclude further
demographic data in this study because most users did not
provide it, preventing us from tying particular demographic
attributes to individual users.

C. Prediction Problem Definition

We define abandonment as a binary outcome for each level:
either a learner completed a level or they did not, as specified
by the game’s level completion rules (which consisted of one

or more test case assertions about program state, as shown
in the left portion of Figure 1). For example, learners who
abandoned at Level 1 means they did not satisfy Level 1’s
tests, and learners who abandoned at Level 2 means that they
finished Level 1 and began playing Level 2, but did not satisfy
Level 2’s tests. Learners had the option to replay previously
completed levels, but we always use their highest level played
when defining abandonment.

Our prediction problem was as follows: for a given com-
pleted Level n (where n ≥ 1), predict whether a learner who
has completed that level will complete Level n+1 based on
features of the learner and the learner’s activities in Levels 1
through n. This prediction would allow the game to provide
encouragement just after the completion of a Level n, or at
the beginning of Level n+1.

D. Feature Extraction

To determine features for predicting abandonment, we
considered five sources: 1) factors that appeared related to
engagement from previous work on Gidget [2], [3], [25], [29];
2) factors from studies of MOOCs and in-person CS1 courses;
3) features that we brainstormed based on the available data in
the Gidget activity logs; 4) features proven to be significant in
existing work on MOOC dropout prediction; and 5) features
that are straightforward to interpret and informative to game
designers. Table I lists the 12 features from this brainstorming
process. Features with strikethroughs were excluded because
they had too many missing values.

For each of these features, we computed the cumulative
values from activity logs for each level (excluding the ac-
tivated feature, which only had one value per learner). The
cumulative features were the sum of per-level features in
completed levels. For example, cml total dur in Level 3 was
the sum of total dur in Level 1, Level 2, and Level 3.

The 12 features largely reflect factors reported in the
prior discussed in Section II. For example, cml n step is
the cumulative number of time executing the program step-
by-step, which measures a testing behavior. A large value

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

194

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 26,2020 at 00:14:35 UTC from IEEE Xplore. Restrictions apply.

of cml n step might be a sign of difficulty. However, some
of the features have ambiguous indications. For instance,
cml test time, which measures the total time a player spent
on code execution, can either suggest difficulty or desire to
succeed. We therefore lack an understanding of how important
the features selected are in a learner’s decision to stay and
if they possess consistent signals of abandonment (either
abandon or not) across levels. We answer this question by
assessing feature importance and feature impact in Sections
IV-B and IV-C.

E. Data Preprocessing

Our data cleaning focused on excluding invalid values. We
found that because most learners did not register an account,
most learner features had large amounts of missing data:
age was missing 76.0%, experience was missing 86.7%, and
gender was missing 77.4%. We removed these features as
there was no way to estimate their missing values. Then, we
computed cumulative features from corresponding per level
features. Next, for each level, we extracted features for only
the set of learners who had completed the level, ensuring that
predictions were only based on learners that were active on
that level. This resulted in a smaller set of labeled data for
each level, mirroring abandonment. Defects in logging had
also caused some missing values in total dur, n play, n line,
n step, n restart and their corresponding cumulative features,
but we retained them because they were missing less than 5%
of their values in each level.

Since we did not have a large dataset, we wanted to retain
as much of the useful signal in the data without weakening the
classifier performance or inducing bias. Therefore, we used K
nearest neighbor (KNN) imputation, which has proven to be
a simple but robust way of offering accurate missing value
estimation [34]. We implemented KNN imputation with the R
package “VIM” for each level’s feature data. Lastly, we nor-
malized the imputed datasets as z-scores, giving all features a
zero-mean and unit standard deviation. Normalization rescales
features that have a wide range of values, preparing them for
use by many machine learning algorithms that assume features
with consistent scales. After preprocessing, we had 3,292 users
for level 1 predictions, and 2,841, 2,256, 1,702, and 1,298
users for levels 2, 3, 4 and 5, respectively.

F. Classifier Building and Evaluation

After feature extraction, we built classifiers for Levels 1
to 5 using three classifiers: Logistic Regression with L1
regularization (LR), Random Forest (RF) from the Python
Sklearn Library [35], and Gradient Boosting Decision Tree
(GBDT) algorithm implemented in the XGBoost system [36],
[37]. These classifiers are widely utilized machine learning
techniques across numerous disciplines including education
research, and have been used effectively for dropout prediction
in many previous works [17], [38]–[40]. Moreover, XGBoost
has dominated the winning solutions in recent machine learn-
ing and data science challenges such as in the KDDCup and
Kaggle challenges.

Logistic Regression is a log-linear model for binary clas-
sification based on a set of features. L1 regularization is a
technique to avoid over-fitting and increase model generaliz-
ability. Random Forests [41] is an ensemble learning method
for classification and regression based on decision trees. A
decision tree can model a binary decision making process
and can learn a higher order of interactions between features
than Logistic Regression. Random Forests are constructed
with decision trees by randomly sampling with replacements
from training data (see Section IV-B for further explanation).
Gradient Boosting Decision Tree is similar to Random Forest
in that they are both a set of decision trees. While each tree in
Random Forests is trained independently, GBDT adds one tree
at a time aimed to minimize the errors from the already-trained
set of trees.

Each classifier predicted whether a learner would abandon
the next level of the game based on cumulative features from
prior levels plus learner features. For each level, we randomly
split the dataset into a training set (80%) and a test set (20%).
For the training set of each level, we applied 10-fold cross-
validation, where 90% of the data were used for training and
10% reserved for evaluation in each of the ten total trials.

We compared our classifiers with three baseline classifiers.
One classifier (baseline 1) randomly predicted abandonment
by respecting the label distribution of learners in training data
at each level, a second classifier (baseline 2) always predicted
abandonment, and a third classifier (baseline 3) never predicted
abandonment. These baseline classifiers mirror the currently
available alternatives to designers of online coding tutorials
wanting to predict abandonment.

In evaluating the classifiers, we defined success as balanc-
ing both precision and recall (true positives, TP), weighing
equally the encouragement of learners likely to abandon, while
avoiding unnecessarily encouraging learners who were likely
to complete the next level. Therefore, we computed a number
of evaluation metrics, including precision, recall, and F1 (the
harmonic mean of precision and recall) on a test dataset for
each level. For all of these metrics, we treated a learner
abandoning a level as “positive” and learner completing a
level as “negative.” We also computed AUC to measure the
robustness of the classifiers across different baseline rates
of per-level abandonment. AUC curves represent the trade-
off between the true positives and false positives and are
independent of abandonment rate, therefore providing a single
scalar metric to model comparison.

G. Feature Importance

We evaluated feature importance by examining the con-
tribution of a feature in constructing gradient boosted trees
in GBDT. In a single decision tree, the feature importance
is concerned with the improvement in accuracy brought by
adding a feature as a split. GBDT are constructed by adding
one new tree at a time based on what the classifier already
learned with existing trees, and then the relative rank of
a feature in GBDT can be assessed by summing accuracy
reduction for this feature over all trees [42]. The tree structure

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

195

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 26,2020 at 00:14:35 UTC from IEEE Xplore. Restrictions apply.

TABLE II
GBDT PERFORMANCE METRICS ON LEVELS 1 THROUGH 5 PREDICTIONS.

Level 1 Level 2 Level 3 Level 4 Level 5

GBDT bl1 bl2 bl3 GBDT bl1 bl2 bl3 GBDT bl1 bl2 bl3 GBDT bl1 bl2 bl3 GBDT bl1 bl2 bl3

AUC 0.64 0.51 0.50 0.50 0.68 0.51 0.50 0.50 0.70 0.50 0.50 0.50 0.61 0.47 0.50 0.50 0.77 0.53 0.50 0.50
Prec 0.19 0.16 0.14 / 0.29 0.22 0.21 / 0.42 0.29 0.29 / 0.37 0.21 0.26 / 0.37 0.23 0.18 /
Recall 0.75 0.17 1.00 0.00 0.76 0.21 1.00 0.00 0.65 0.23 1.00 0.00 0.61 0.18 1.00 0.00 0.72 0.21 1.00 0.00
F1 0.30 0.16 0.25 / 0.42 0.22 0.34 / 0.51 0.25 0.45 / 0.46 0.20 0.42 / 0.50 0.22 0.31 /

can reveal complex interactions among features because every
splitting node should respect the condition made by its parent
node and a feature can appear multiple times in a tree.

However, the ranking only provides a rough picture of
feature importance as there are several correlated features in
our choice of input. Specifically, there is up to 68.8% pair-wise
correlation among cml n line, cml n restart, cml n play, and
cml n step within all five levels. We did not discard any of
these features because we did not know which would be more
predictive than the others. Although the performance of GBDT
is robust to correlated features, when it comes to ranking
feature importance, it will try to attach a higher score to only
one of them and lower scores to the other correlated ones1.

H. Feature Impact

We also examined the direction of these relationships with
abandonment: on some levels, they may have been positive
and on some they may have been negative. To get a sense
of how a feature impacted abandonment prediction, we ran
Logistic Regression on training data of every level. We then
used Odds Ratios (OR) of each feature to assess the direction
of its impact [43]. The goal of using Logistic Regression here
is different from Logistic Regression in Section III-F, the
former is to interpret features, while the latter is to achieve
good performance in classification tasks.

IV. RESULTS

In this section, we evaluate the classifiers, discuss the
relative importance of their features in prediction, and assess
how these features were associated with abandonment.

A. Classifier Performance

We report here in detail our best results from GBDT using
cumulative features and learner features (12 features in total).
Table II shows the results for the five per-level classifiers,
along with the results for the three baseline classifiers, indi-
cated as “bl1,” “bl2,” and “bl3” for each level.

The AUC scores (Table II, row 1) across the Level 1 to 5
classifiers ranged from 0.61 to 0.77 with a mean of 0.68. A
random binary predictor has an AUC of 0.5, which is usually
used as a baseline for prediction evaluation. Therefore, our
classifiers did better than chance at predicting abandonment.

1Understand your dataset with XGBoost (XGBoost 0.6 docu-
mentation): http : //xgboost.readthedocs.io/en/latest/R −
package/discoverY ourData.html#feature− importance

That said, maximum AUC is not always the optimal choice
for a problem [44].

Our precision results (Table II, row 2) represent the percent
of all learners our classifiers predicted would abandon the next
level that actually did. From an encouragement perspective,
precision represents the proportion of learners that would
receive encouragement that actually needed it. Our classifiers’
precisions ranged from 0.19 to 0.42. The low precision for
Level 1 is not surprising since there was very little on which to
predict abandonment and the data was skewed with very high
abandonment to non-abandonment ratios (1:6 for Level 2).
This low precision means that the game might unnecessarily
encourage many learners. Similarly, false positive (FP) rates
indicate the percent of learners that completed the next level
that we incorrectly predicted would abandon. This would be
the percent of learners receiving encouragement that did not
need it. We attained an average FP of 0.37 across all 5 levels of
prediction, suggesting that we might unnecessarily encourage
37% of learners.

Table II (row 3) shows the recall of our classifiers. In the
context of abandonment prediction, recall was the percent of
all learners that abandoned a level that our classifiers suc-
cessfully identified. From an encouragement perspective, this
would be the percent of learners who needed encouragement
that our classifiers successfully encouraged. Over all levels,
the recall of our classifiers was above 0.6 with an average of
0.70, showing that the classifiers could identify on average
about 70% of learners likely to abandon. However, within
the classifiers’ limited prediction capability, there is always
a tradeoff between TP and FP, meaning the higher percent
of learners we successfully encouraged, the higher percent of
learners we unnecessarily encouraged, and vice versa.

The F1 scores reported in row four of Table II measure the
balance between precision and recall, or, the balance between
necessary and unnecessary encouragement. Our classifiers
produced varied F1 scores ranging from 0.30 to 0.51, with our

TABLE III
PERFORMANCE ON LEVELS 1–5 PREDICTIONS OF LOGISTIC REGRESSION

AND RANDOM FORESTS.

Level 1 Level 2 Level 3 Level 4 Level 5

LR RF LR RF LR RF LR RF LR RF

AUC 0.61 0.62 0.64 0.64 0.65 0.64 0.60 0.61 0.65 0.66
F1 0.30 0.32 0.42 0.42 0.53 0.52 0.45 0.46 0.40 0.43

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

196

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 26,2020 at 00:14:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. A decision tree in GBDT for Level 5 prediction.

lowest performing classifiers again on Level 1 and 2 because
of the low precision on early levels. This suggests that while
achieving a balance between these goals is possible on many
levels of the game, the classifiers did not perform well until
they had enough data from prior levels to have a strong signal
of engagement. While these classifier results are far from
optimal, they are consistently better than the three baseline
classifiers according to AUC scores and F1 scores.

Table III shows the results from Logistic Regression with
L1 penalty and Random Forests for each of the five levels.
Although inferior to GBDT, these classifiers outperformed
the three baselines, demonstrating the set of features chosen
influence prediction. Additionally, we ran GBDT with a set of
23 features consisting of 11 cumulative features, 11 per-level
features, and 1 learner feature across Levels 1 through 5. The
extra per-level features did not lead to a noticeable increase
or decrease in the classifiers’ performance.

B. Feature Importance

Having demonstrated the feasibility of predicting abandon-
ment, we now turn to the underlying features that were most
predictive of abandonment. First, we illustrate with an example
how GBDT works in classification and determining feature
importance. Figure 4 shows one of the many decision trees
with depth = 2 built by GBDT for a Level 5 prediction. Each
leaf node is associated with a score used for classification.
Negative scores will be classified as “stay” and positive ones
as “abandon.” The larger the absolute value of a score, the
more likely its resulting class label. Since all continuous
features were z-score normalized before classification, the
actual input to classifiers are different than the values in
the tree splits shown in Figure 4. The topmost splitting
node corresponds to the best predictor in this tree. In this
case, cml total dur (appearing in the top row) bears more
importance than cml idle time and activated (appearing in the
middle row).

To reveal a larger picture of feature importance assessed
by all trees in a GBDT classifier, we repeated the pro-
cess described in Section III-G for each classifier and for
each level, again obtaining relative importance measures.
Figure 5 shows the relative importance scores of Level 5,
resulting in the following top five features: cml total dur
(0.327), cml idle time (0.125), cml n restart (0.104), acti-

Fig. 5. Level 5 classifier’s relative importance of 12 features.

vated (0.100), and cml help time (0.096). Based on these
results, we know that these features are important in predicting
abandonment (or staying) for this level, but it is difficult to
interpret these results without knowing if these are positively
or negatively related to abandonment. To address this issue,
we examine these relationships below, in Section IV-C.

Finally, examining the feature ranking across all five levels
reveals there are two features with high relative importance
across all levels: whether a learner had created an account
(activated) and cumulative non-idle time spent playing through
the levels (cml total dur). This suggests that the effort to fill
out the registration form (which required an email address
and a few demographic details) was a strong indicator of
engagement and commitment. cml total dur was also of high
importance, suggesting that overall time actively interacting
with the game was related to engagement. These results in the
context of an online coding tutorial are consistent with findings
from existing literature showing that indicators of commitment
and/or effort have high predictive power in MOOCs or in-
person scenarios [15], [22].

C. Feature Impact

To examine the direction of impact each feature has on
abandonment, we ran a logistic regression for each level. Table
IV shows the odds ratios (OR) of each feature in each level

TABLE IV
ODDS RATIO OF EACH FEATURE IN EACH LEVEL.

Feature Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4 Lvl. 5

cml help time 0.77(–) 0.91(–) 0.90(–) 0.92(–) 0.95(–)
activated 0.02(–) 0.06(–) 0.07(–) 0.11(–) 0.09(–)
cml total dur 1.07(+) 1.11(+) 1.06(+) 1.24(+) 1.51(+)
cml n step 1.18(+) 1.03(+) 1.25(+) 1.10(+) 1.44(+)
cml idle time 1.21(+) 1.38(+) 1.33(+) 1.11(+) 1.30(+)
cml n restart 1.05(+) 1.28(+) 1.11(+) 1.14(+) 1.27(+)
cml mission time 0.94(–) 1.06(+) 1.08(+) 0.99(–) 1.35(+)
cml test time 1.10(+) 1.03(+) 1.00(+) 0.94(–) 0.90(–)
cml code time 0.89(–) 0.99(–) 1.03(+) 0.92(–) 0.74(–)
cml world time 0.96(–) 0.99(–) 0.87(–) 1.07(+) 0.95(–)
cml n line 0.98(–) 0.93(–) 0.98(–) 0.99(–) 1.12(+)
cml n play 0.94(–) 0.91(–) 1.08(+) 0.98(–) 1.10(+)

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

197

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 26,2020 at 00:14:35 UTC from IEEE Xplore. Restrictions apply.

of logistic regression. OR > 1 suggests that there is a positive
association between the feature and abandonment, OR < 1
suggests a negative association, and OR = 1 means the feature
did not have an impact on abandonment. The further the
absolute value of OR away from 1, the stronger the association.
Features that consistently had a positive association with aban-
donment were cml total dur, cml n step, cml idle time, and
cml n restart, as highlighted in dark gray. Conversely, features
that consistently had a negative association with abandonment
were cml help time and activated, as highlighted in light gray.

V. DISCUSSION

This study is the first to examine factors that predict aban-
donment in an online coding tutorial using machine learned
classifiers. Overall, our results suggest several things. First,
classifiers using the features in Table I can do a much
better job than baseline classifiers in identifying learners likely
to abandon. Even with a small dataset of a few thousand
learners, we can effectively separate the ones that are likely to
abandon from the others. Second, these features do not provide
as much predictive power as some of the social, identity,
and motivational features more easily obtained in classroom
settings, nor do they compete with dropout prediction models
in MOOC settings, which have a wider set of features and
interactions data with other users and instructors. Although
our classifiers would likely to achieve better performance with
more complex features through proper feature engineering, we
have demonstrated that even simple features have measurable
predictive value.

These discoveries have several implications for the design
of online coding tutorials. First and foremost, designers can
begin exploring how to use targeted abandonment prediction to
encourage and engage learners online. Tutorials could provide
encouraging messages at the beginning of a lesson; they could
use avatars to convey encouraging words when learners at risk
of abandoning encounter difficulty; they could even provide
more targeted, context-relevant encouragement in response
to learners’ progress. Designers could also use abandonment
prediction to predict the likelihood of success on the next
level or lesson, adapting future levels to reduce difficulty,
review challenging concepts, or present additional instruction
before the learner proceeds to the next level. Of course, we
have little evidence about whether such interventions would
be effective; our feasibility assessment presented in this paper
enables researchers to evaluate such interventions.

Our results also suggest several improvements to the clas-
sifiers we explored in this paper. For example, future work
could explore the use of real-time predictions, using data not
only from prior lessons in a tutorial, but more granular data
about the current lesson a learner is engaged in. For exam-
ple, real-time features might consider code testing, inactivity,
and help seeking features, looking for signs of frustration,
disengagement, and confusion. Real-time predictions would
pose new interface design challenges as well, as intervening
at arbitrary points in a lesson might pose some of the same
challenges presented by intelligent assistants like “Clippy,”

who seemed to interrupt at just the wrong times. Future work
could also explore automatic hint generation based on the
current progress presented by the a learner.

There are several limitations in this work. First, because
Gidget is an interactive game, we had access to features of
engagement that many less interactive coding tutorials do not
have. Other tutorials may need to enhance their interactivity to
instrument the features that we utilized. Second, some of the
features we used were dependent on each other, undermining
our ability to assess feature importance. Additionally, we could
not predict beyond Gidget’s Level 6 due to a lack of sufficient
data. There may be other interesting and different predictive
possibilities for learners that persist to more advanced parts of
coding tutorials, but we could not analyze these. We hope to
do so in future work.

VI. CONCLUSION

In this paper, we predicted abandonment of an online
coding tutorial using machine learning classifiers, examined
the importance of features that informed this prediction, and
explored how these features associated with abandonment. Our
results show that even with a small dataset and a few features
related to engagement, classifiers can target encouragement
to an average of 70% of learners likely to abandon the next
level, with the tradeoff of unnecessarily encouraging about
37% of learners who will complete the next level. We found
that these models gain their predictive power primarily from
features related to commitment (e.g., account activation) and
effort (non-idle time spent on all activities). For example,
features that were consistently and positively associated with
abandonment—cml total dur, cml n step, cml idle time, and
cml n restart—likely characterized learners that spent a lot of
time on the game, clicked the single execution button many
times, had long periods of inactivity, and restarted/retried the
level many times. Features that were consistent negatively as-
sociated with abandonment—cml help time and activated—
likely characterized learners who were motivated enough to
save their progress and seek further instruction from the
game’s help features.

Ultimately, prediction efforts such as ours aim to provide
some surrogate for the type of personalized, meaningful
encouragement that teachers provide to their students. We
are unlikely to ever have enough teachers online to provide
encouragement to the tens of millions of people trying to learn
to code from interactive tutorials. If we can provide even a
fraction of this encouragement through automation, however,
we might just nudge millions of people to the next lesson,
further democratizing computing education.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation (NSF) under grants IIS-1657160, CNS-1240786,
CNS-1240957, CNS-1339131, CCF-0952733, CCF-1339131,
IIS-1314399, and IIS-1314384. Any opinions, findings, con-
clusions or recommendations are those of the authors and do
not necessarily reflect the views of NSF.

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

198

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 26,2020 at 00:14:35 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. F. Kizilcec and S. Halawa, “Attrition and achievement gaps in online
learning,” in Conference on Learning@Scale. ACM, 2015, pp. 57–66.

[2] M. J. Lee, A. J. Ko, and I. Kwan, “In-game assessments increase novice
programmers’ engagement and level completion speed,” in Conference
on International Computing Education Research. ACM, 2013, pp.
153–160.

[3] M. J. Lee and A. J. Ko, “Personifying programming tool feedback
improves novice programmers’ learning,” in Workshop on International
Computing Education Research. ACM, 2011, pp. 109–116.

[4] C. Gtl, R. H. Rizzardini, V. Chang, and M. Morales, “Attrition in MOOC:
Lessons learned from drop-out students,” in International Workshop on
Learning Technology for Education in Cloud. Springer, 2014, pp. 37–
48.

[5] R. Hitz and A. Driscoll, “Praise or encouragement? New insights into
praise: Implications for early childhood teachers.” Young Children, 1988.

[6] J. E. Stake, “The Critical Mediating Role of Social Encouragement
for Science Motivation and Confidence Among High School Girls and
Boys,” Journal of Applied Social Psychology, vol. 36, no. 4, pp. 1017–
1045, 2006.

[7] B. W. Tuckman and T. L. Sexton, “The effect of teacher encouragement
on student self-efficacy and motivation for self-regulated performance,”
Journal of Social Behavior and Personality, vol. 6, no. 1, p. 137, 1991.

[8] L. N. Brown and A. M. Howard, “The positive effects of verbal
encouragement in mathematics education using a social robot,” in
Integrated STEM Education Conference (ISEC), 2014 IEEE. IEEE,
2014, pp. 1–5.

[9] M. Guzdial and E. Soloway, “Teaching the Nintendo generation to
program,” Communications of the ACM, vol. 45, no. 4, pp. 17–21, 2002.

[10] P. Kinnunen and L. Malmi, “Why students drop out CS1 course?” in
Workshop on Computing Education Research. ACM, 2006, pp. 97–108.

[11] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming,” ACM SIGCSE Bulletin, vol. 39, no. 2, pp. 32–36, 2007.

[12] C. Watson and F. W. Li, “Failure rates in introductory programming
revisited,” in Conference on Innovation & Technology in Computer
Science Education. ACM, 2014, pp. 39–44.

[13] V. Ramalingam, D. LaBelle, and S. Wiedenbeck, “Self-efficacy and
mental models in learning to program,” in ACM SIGCSE Bulletin,
vol. 36. ACM, 2004, pp. 171–175.

[14] B. C. Wilson and S. Shrock, “Contributing to success in an introductory
computer science course: a study of twelve factors,” in ACM SIGCSE
Bulletin, vol. 33. ACM, 2001, pp. 184–188.

[15] P. R. V. Jr, “Identifying predictors of success for an objects-first CS1,”
Computer Science Education, vol. 15, no. 3, pp. 223–243, Sep. 2005.

[16] A. Ramesh, D. Goldwasser, B. Huang, H. Daum III, and L. Getoor,
“Modeling learner engagement in MOOCs using probabilistic soft
logic,” in NIPS Workshop on Data Driven Education, vol. 21, 2013,
p. 62.

[17] C. Taylor, K. Veeramachaneni, and U.-M. O’Reilly, “Likely to stop?
Predicting stopout in massive open online courses,” arXiv preprint
arXiv:1408.3382, 2014.

[18] G. Balakrishnan and D. Coetzee, “Predicting student retention in massive
open online courses using hidden markov models,” Electrical Engineer-
ing and Computer Sciences University of California at Berkeley, 2013.

[19] P. Adamopoulos, “What makes a great MOOC? An interdisciplinary
analysis of student retention in online courses,” 2013.

[20] F. Hermans and E. Aivaloglou, “Teaching software engineering princi-
ples to k-12 students: a mooc on scratch,” in Conference on Software
Engineering: Software Engineering and Education Track. IEEE Press,
2017, pp. 13–22.

[21] D. Yang, T. Sinha, D. Adamson, and C. P. Ros, “Turn on, tune in, drop
out: Anticipating student dropouts in massive open online courses,” in
NIPS Data-driven Education Workshop, vol. 11, 2013, p. 14.

[22] J. A. Greene, C. A. Oswald, and J. Pomerantz, “Predictors of retention
and achievement in a massive open online course,” American Educa-
tional Research Journal, p. 0002831215584621, 2015.

[23] W. Xing, X. Chen, J. Stein, and M. Marcinkowski, “Temporal predi-
cation of dropouts in MOOCs: Reaching the low hanging fruit through
stacking generalization,” Computers in Human Behavior, vol. 58, pp.
119–129, May 2016.

[24] S. Halawa, D. Greene, and J. Mitchell, “Dropout prediction in MOOCs
using learner activity features,” Experiences and best practices in and
around MOOCs, vol. 7, 2014.

[25] M. J. Lee and A. J. Ko, “Comparing the effectiveness of online learning
approaches on CS1 learning outcomes,” in Conference on International
Computing Education Research. ACM, 2015, pp. 237–246.

[26] A. Repenning, A. Basawapatna, D. Assaf, C. Maiello, and N. Escherle,
“Retention of flow: Evaluating a computer science education week
activity,” in Technical Symposium on Computing Science Education.
ACM, 2016, pp. 633–638.

[27] M. Cocea and S. Weibelzahl, “Eliciting motivation knowledge from log
files towards motivation diagnosis for Adaptive Systems,” in Interna-
tional Conference on User Modeling. Springer, 2007, pp. 197–206.

[28] L. Qu and W. L. Johnson, “Detecting the learner’s motivational states
in an interactive learning environment,” in Conference on Artificial
Intelligence in Education: Supporting Learning through Intelligent and
Socially Informed Technology. IOS Press, 2005, pp. 547–554.

[29] M. J. Lee and A. J. Ko, “Investigating the role of purposeful goals on
novices’ engagement in a programming game,” in 2012 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC),
Sept 2012, pp. 163–166.

[30] M. J. Lee, F. Bahmani, I. Kwan, J. LaFerte, P. Charters, A. Horvath,
F. Luor, J. Cao, C. Law, M. Beswetherick et al., “Principles of a
debugging-first puzzle game for computing education,” in Visual Lan-
guages and Human-Centric Computing (VL/HCC). IEEE, 2014, pp.
57–64.

[31] W. Jernigan, A. Horvath, M. Lee, M. Burnett, T. Cuilty, S. Kuttal,
A. Peters, I. Kwan, F. Bahmani, and A. Ko, “A principled evaluation
for a principled Idea Garden,” in Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 2015, pp. 235–243.

[32] W. Jernigan, A. Horvath, M. Lee, M. Burnett, T. Cuilty, S. Kuttal,
A. Peters, I. Kwan, F. Bahmani, A. Ko et al., “General principles for
a generalized idea gardenimage 1,” Journal of Visual Languages &
Computing, vol. 39, pp. 51–65, 2017.

[33] M. J. Lee, “Teaching and engaging with debugging puzzles,” Ph.D.
dissertation, 2015.

[34] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshi-
rani, D. Botstein, and R. B. Altman, “Missing value estimation methods
for DNA microarrays,” Bioinformatics, vol. 17, no. 6, pp. 520–525, 2001.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and
others, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[36] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Conference on Knowledge Discovery and Data Mining. ACM, 2016,
pp. 785–794.

[37] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[38] J. Liang, C. Li, and L. Zheng, “Machine learning application in MOOCs:
Dropout prediction,” in 11th International Conference on Computer
Science Education (ICCSE), Aug. 2016, pp. 52–57.

[39] D. Thammasiri, D. Delen, P. Meesad, and N. Kasap, “A critical assess-
ment of imbalanced class distribution problem: The case of predicting
freshmen student attrition,” Expert Systems with Applications, vol. 41,
no. 2, pp. 321–330, Feb. 2014.

[40] Y. Huang, F. Zhu, M. Yuan, K. Deng, Y. Li, B. Ni, W. Dai, Q. Yang,
and J. Zeng, “Telco churn prediction with big data,” in SIGMOD
International Conference on Management of Data. ACM, 2015, pp.
607–618.

[41] T. K. Ho, “Random decision forests,” in Document Analysis and
Recognition, 1995., Proceedings of the Third International Conference
on, vol. 1. IEEE, 1995, pp. 278–282.

[42] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah,
R. Herbrich, S. Bowers, and others, “Practical lessons from predicting
clicks on ads at facebook,” in Workshop on Data Mining for Online
Advertising. ACM, 2014, pp. 1–9.

[43] M. Szumilas, “Explaining Odds Ratios,” Journal of the Canadian
Academy of Child and Adolescent Psychiatry, vol. 19, no. 3, pp. 227–
229, Aug. 2010.

[44] J. M. Lobo, A. Jimnez-Valverde, and R. Real, “AUC: a misleading
measure of the performance of predictive distribution models,” Global
ecology and Biogeography, vol. 17, no. 2, pp. 145–151, 2008.

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

199

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 26,2020 at 00:14:35 UTC from IEEE Xplore. Restrictions apply.

