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ABSTRACT 
We present Gestalt, a development environment designed to 
support the process of applying machine learning. While 
traditional programming environments focus on source 
code, we explicitly support both code and data. Gestalt 
allows developers to implement a classification pipeline, 
analyze data as it moves through that pipeline, and easily 
transition between implementation and analysis. An 
experiment shows this significantly improves the ability of 
developers to find and fix bugs in machine learning 
systems. Our discussion of Gestalt and our experimental 
observations provide new insight into general-purpose 
support for the machine learning process. 

Author Keywords: Gestalt, machine learning, software 
development. 

ACM Classification Keywords 
H5.2 Information Interfaces and Presentation: User Interfaces; 
D2.6 Programming Environments: Integrated Environments. 

General Terms: Human Factors  

INTRODUCTION AND MOTIVATION 
Machine learning is at the core of many advances in science 
and technology. Within HCI, researchers have applied 
machine learning to search [9], facilitating creativity [18], 
and helping people live healthier lives [6]. Within computer 
science, machine learning can reduce system downtime [3] 
and detect anomalous network behavior [5]. In humanity’s 
greatest pursuits, machine learning can help understand 
cancer [7] and the beginnings of the universe [1]. 

Despite the sophistication of machine learning methods and 
their widespread impact in research, these algorithms are 
seldom applied in practice by ordinary software engineers. 
One reason is that applying machine learning is difficult in 
ways different than traditional programming. Traditional 
programming is often discrete and deterministic, but most 
machine learning is stochastic. Traditional programming 
focuses on modules and lines of code, but machine learning 
focuses on pipelines and data. Traditional programming is 
often debugged with print statements and breakpoints, but 

machine learning requires analyses with visualizations and 
statistics. Traditional programming allows developers to 
explicitly describe the behavior of a program, but systems 
that use machine learning must learn behavior from data. 
Developers need new methods and tools to support the task 
of applying machine learning to their everyday problems. 

Prior research has examined domain-specific support for 
applying machine learning to solve several important 
problems. Crayons uses a coloring metaphor for training 
image segmentation classifiers [8]. Eyepatch allows 
composition and training of classifiers to create vision 
systems. Exemplar supports direct manipulation methods 
for specifying simple sensor-based recognizers [14]. The 
domain-specific nature of such tools is both a strength and a 
weakness. Domain knowledge allows tools to limit the 
decisions required for a developer to create a system. But 
these same limitations also constrain the developer if a 
tool’s assumptions do not match the developer’s needs.  

This paper presents Gestalt, a general-purpose tool for 
applying machine learning. Gestalt targets developers, 
providing full support for writing code to specify the series 
of steps in a classification pipeline (Figure 1). In supporting 
a wide range of classification problems, Gestalt generalizes 
the lessons of prior domain-specific tools. Specifically, 
Gestalt allows developers to implement a classification 
pipeline, analyze data as it moves through that pipeline, and 
easily transition between implementation and analysis. 

The specific contributions of this work include: 
 Discussion of general-purpose development environment

support for the application of machine learning.
 The Gestalt development environment. Gestalt supports

the implementation of a classification pipeline, analysis
of data as it moves through that pipeline, and easy
transitions between implementation and analysis.

 Discussion of Gestalt’s capabilities, including a focus on
generalizing lessons from domain-specific tools to
provide general-purpose support for machine learning.

 An evaluation demonstrating that Gestalt significantly
improves developer ability to find and fix bugs in two
typical applications of machine learning.

 Discussion of current limitations and future opportunities
for general-purpose machine learning support.
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THE MACHINE LEARNING PROCESS 
Gestalt supports two high-level tasks in applying machine 
learning: implementing a classification pipeline and 
analyzing data as it moves through that pipeline.  

Implementation requires both the creation of a classification 
pipeline and collection of data to train and test that pipeline. 
Figure 1 shows two example pipelines, in which: (a) data is 
transformed into discrete examples, (b) attributes† are 
computed over each example, (c) a learning algorithm is 
used to train a model, and (d) the accuracy of that model is 
evaluated. Not all pipelines are identical, but their structure 
is similar: a linear progression of computation transforms 
data into a model that can be experimentally evaluated.  

Analysis allows developers to understand the behavior of a 
classification pipeline by examining how data moves 
through that pipeline. Beyond the correctness of any 
individual line of code, analysis requires developing an 
understanding of complex relationships between data, 
attributes, and model output [16]. In addition to final model 
output, this requires examination of intermediate data to 
ensure that each step in the pipeline behaves as expected. 
Developers examine whether data is correctly parsed and 
discretized, whether attributes are correctly computed, and 
whether the overall performance is sufficient for a problem. 

Although the structure of a classification pipeline is linear, 
the process of implementing and analyzing it is not. 
Analysis of a current implementation informs a developer’s 
next implementation action. Developers often revisit prior 
steps, such as collecting additional data, debugging 
implementation of attributes, brainstorming new attributes, 
or reconsidering their modeling algorithm. The process of 
applying machine learning thus requires repeated transition 
between implementation and analysis. Gestalt is defined by 
supporting both implementation and analysis so that these 
transitions can be fast, fluid, and easy.  

PROVIDING GENERAL-PURPOSE SUPPORT 
This section introduces two canonical machine learning 
problems: movie review sentiment analysis and pen-based 
gesture recognition. We discuss important differences 
between these problems, as these differences illustrate a 

range of support needed in a general-purpose tool. We then 
discuss their similarity, as their common structure provides 
the basis for Gestalt’s integrated support. 

Two Canonical Problems 
Sentiment analysis consists of categorizing text (e.g., movie 
reviews) according to some sentiment expressed in that text 
(e.g., whether a reviewer had a positive or negative 
impression of the movie). A canonical machine learning 
solution was developed by Pang et al. [15]. Following Pang 
et al.’s process, a developer collects positive and negative 
movie reviews, formats reviews to plain text, and computes 
word-count attributes (the number of times the word 
appears in the review). They then prune words that are too 
common, too rare, or not descriptive. The resulting pipeline 
can be evaluated in a standard cross-validation experiment. 
This involves randomly splitting data into testing and 
training sets, creating models using the training sets, and 
evaluating the accuracy of those models on the test sets.  

Pen-based gesture recognition is well studied, with Rubine 
providing a canonical approach [17]. A developer collects 
strokes defined as sets of (x, y, t) triples, where x and y are 
2D points and t is time. Because different people may draw 
the same gesture differently, data is typically collected from 
a large pool of people to help ensure learned models are 
robust to such variance. Strokes are normalized by rotating, 
translating, and scaling them to facilitate comparison. The 
normalized strokes are then used to compute attributes (e.g., 
the length of the stroke, measures of angles in the stroke). 
Cross-validation experiments then evaluate the pipeline.  

Problem Differences 
Sentiment analysis is a two-class problem, but gesture 
recognition is multi-class. In the sentiment problem, 
classification errors are binary (i.e., reviews can be only 
positive or negative). In the gesture problem, it also matters 
how an example is misclassified. For example, it is 
important to know if rectangles are commonly misclassified 
as triangles. This added information can help a developer 
identify the part of the pipeline responsible for that error. 

These problems also differ in the visual representation of 
their data. Pen-based gestures have a natural and compact 
visual representation. A developer can easily verify the 
label of a gesture by simply looking at a drawing of the 
stroke. In contrast, the sentiment of movie reviews requires 

 
Figure 1: A wide variety of machine learning problems share a common classification pipeline. The pipeline describes how data is
transformed into a model: (a) raw data is parsed, (b) attributes are computed from parsed data, (c) a model is trained, and (d) the
model is tested. This figure above shows two problems, sentiment analysis and gesture recognition, that share the same pipeline. 

 

†
 We avoid the overloaded term feature, which could refer to either an

attribute of data or a capability of Gestalt. Both alternatives are
descriptive, though not as commonly used as the word feature. 

38



 

 

 

significantly more time and effort to interpret. They are still 
human verifiable, but require more attention than a gesture.  

These problems also illustrate differing interpretability of their 
attributes, including verifiability and sparseness. Individual 
values of sentiment attributes are easier to verify. A developer 
can quickly check the value of a word-count attribute against 
the text of a review. In contrast, it is difficult to gauge the 
correctness of angle values and distances computed over the 
normalized points of a gesture. On the other hand, sentiment 
attributes are sparse. Each review has a large number of 
attributes, most word-count values are zero, and only non-zero 
values have an effect on the final model. The gesture 
recognition problem is defined by a small set of dense 
attributes, where each attribute may have a distinct value and 
an effect on the final model.  

A final difference we emphasize is how solutions are evaluated 
in cross-validation experiments. Random splitting of data into 
training and testing sets is generally effective for sentiment 
analysis and other problems. Applied to gesture recognition, 
however, it can often be misleading. People may differ in how 
they draw a gesture, and random sampling ignores this lack of 
independence. Because the goal is to evaluate how well a 
model is likely to generalize onto people who are not in the 
training set, leave-one-out cross-validation is used. Models are 
trained with data from all but one person, then tested with data 
from that person.  

Problem Similarity 
Although these problems are different at nearly every step, 
Figure 1 shows there is a similar structure to their classification 
pipelines. Both separate data into discrete examples, compute 
attributes describing each example, and conduct experiments 
that identify sets of examples that are correctly or incorrectly 
classified by the pipeline. This common structure provides 
leverage for a general-purpose tool. In our development of 
Gestalt, we have examined how an integrated environment can 
provide necessary flexibility at every stage of a process while 
also leveraging this common structure to make developers 
more effective in their application of machine learning. The 
next section introduces Gestalt and its capabilities. In later 

discussion, we consider limitations of our current 
implementation and the general-purpose approach. 

GESTALT 
Developers interact with a classification pipeline in Gestalt 
through two high-level perspectives: an implementation 
perspective and an analysis perspective (Figure 2). This 
parallels the common distinction between coding and debug 
perspectives in modern development environments (e.g., 
Eclipse, Microsoft Visual Studio). The implementation 
perspective allows developers to edit code and manage the 
classification pipeline. The analysis perspective visualizes the 
information computed as data moves through that pipeline. 
This section describes the specific capabilities of Gestalt and 
discusses how these capabilities work together to support 
developers as they implement a pipeline, analyze data, and 
transition between these perspectives.  

Providing Structure While Maintaining Flexibility 
How do I represent my problem? 
Domain-specific tools use an understanding of a particular 
machine learning problem to constrain and hide some parts of 
the classification pipeline, exposing only the parts a developer 
needs to interact with to create a solution. For example, 
Crayons allows developers to input data and see the output of a 
model, but provides no control over the attributes or the 
learning algorithm [8]. Crayons achieves its ease of use by 
cloaking this complexity. However, it is thus impossible to 
directly modify Crayons to solve a different machine learning 
problem (even if that problem has a similar classification 
pipeline).  

A key realization in Gestalt is that general support cannot be 
achieved by hiding steps in the pipeline. The classification 
pipeline is similar for many problems, but the relative 
importance of different steps varies from problem to problem. 
Gestalt provides general support through a structured set of 
explicit steps with standardized inputs and outputs (Figure 2a). 
Gestalt preserves flexibility by defining each step using 
IronPython scripts written in a built-in text editor (Figure 2b). 
This combination provides an explicit structure without 
constraining what a developer can do in that structure. Gestalt 

Figure 2: The implementation perspective provides developers with structure through its classification pipeline view (a) and 
flexibility by allowing them to write code to represent their specific problem (b). A common data structure (c), shared 
between analysis and implementation, allows developers to quickly switch between the two tasks. The analysis perspective 
allows developers to interact with the provided visualizations (e) by filtering, sorting, and coloring (d).  
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thus provides the same flexibility as general-purpose 
programming environments (e.g., Eclipse, MATLAB). 

Gestalt’s explicit structure provides a basis for its other 
functionality. For example, Figure 2a shows how Gestalt can 
help developers locate execution errors within specific steps. A 
circle next to each step is colored grey, yellow, green, or red 
according to whether the step still needs to be executed, is 
currently being executed, executed successfully, or failed due 
to an execution error. The structured and typed sequence of 
steps also allows Gestalt to capture and visualize computation 
at intermediate steps throughout the pipeline. This section 
discusses how each step can be used as a launching point for 
analysis, helping developers better understand the behavior of 
their system through inspection of the input and output at each 
step. 

Appropriate Data Structures 
Where do I store my data? 
Implementing a classification pipeline requires loading data 
and storing it in some representation for use throughout the 
remainder of the pipeline. Domain-specific tools often hide 
seedy details of this portion of a machine learning system. But 
data comes in many forms and sizes, so effective data 
management is a requirement for general tools. 

Gestalt stores all information from the entire classification 
pipeline in a relational data table. Relational tables are a natural 
representation for discrete examples with many attributes. 
Because of this, they are also the backbone of many other 
general-purpose tools (e.g., Weka, Tableau). Gestalt differs 
from such tools because they do not address the entire 
classification pipeline (e.g., Weka focuses on a library of 
modeling algorithms, Tableau focuses on powerful 
visualizations of tabular data). Despite their common tabular 
nature, data representations in such tools are not identical. 
Developers using combinations of tools to address an entire 
pipeline must therefore explicitly attend to format conversion. 
The narrowed focus of each tool also means that information is 
often lost or unavailable when converting between tools. For 
example, Weka and other tools that represent examples as 
vectors of attributes generally lack support for examining the 
original data used to compute those attributes (the raw data is 
typically not propagated forward by the attribute generation 
script). 

Gestalt’s use of a single unified table means developers are 
freed from managing data conversion or moving data between 

tools. This is critical to enabling fluid and easy movement 
between interpretation and analysis. Gestalt’s data 
representation implements several enhancements to a standard 
table. First, attribute columns are typed and tagged according 
to where they are used in the classification pipeline. All 
attributes can be used to summarize, visualize, and interact 
with data, but only some of those attributes can be used to 
build a model. Tagging of columns allows Gestalt to track 
which attributes should be used by a learning algorithm to train 
a model. Instead of creating a separate data table in each step 
of the pipeline, Gestalt uses a cascaded table structure to 
reduce the overhead of storing intermediate data. Finally, 
Gestalt provides a sparse representation for storing large sets of 
sparse attributes found in many problems (e.g., sentiment 
analysis).  

Visualizing and Aggregating Examples: 
How do I see my data? 
Developers reason about system behavior by examining data 
and its relationship to attributes and classification. Domain-
specific tools generally include a visual component that 
provides this feedback. This allows developers to examine 
individual examples as well as compare multiple examples. 
For example, Crayons presents images with translucent 
highlights indicating how pixels are classified by a learned 
model. This shows how individual examples are classified 
(individual pixels) and also provides relevant examples for 
comparison (the other pixels in the image). 

Gestalt’s support for many data types is enabled by a key 
distinction between individual and aggregate visualizations. It 
is impossible for a general tool to provide pre-packaged 
visualizations for all possible types of data. Gestalt instead 
supports data visualization by separating the logic needed to 
view one example from the logic to combine many single 
examples into an aggregate view. Developers can write code to 
visualize an example, and Gestalt then integrates that into 
aggregate visualizations throughout the pipeline. Two 
examples of aggregate visualizations are the grid view (Figure 
3a, 4a, 4c) and the table view (Figure 3b). 

We also note that aggregate views begin to demonstrate how 
Gestalt’s capabilities work together to create an integrated 
environment. Gestalt’s structured representation of the 
classification pipeline defines boundaries between steps where 
developers can use aggregate views to gain insight into 
their data. Gestalt’s emphasis on code-based flexibility 

 
Figure 3: By looking at the raw data next to the attributes computed from that data, developers can gain a better 
understanding of system behavior. Here a developer is shown a thumbnail of movie review data (a). The developer clicks on 
the thumbnail to examine the raw data, attributes computed from it, and the fact that it is currently misclassified (b). 
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allows developers to adapt those visualizations to meet the 
needs of their particular data.  

Interactive, Connected Visualizations  
How can I relate my data, attributes, and results? 
Grouping and summarizing examples can help a developer 
understand a classification pipeline. Gestalt’s analysis 
emphasizes interactive visualizations, inspired by work in 
interactive visualization tools [4]. Support is provided for 
faceted browsing, filtering, sorting, and coloring examples. 
Grouping and summarization operations can be applied 
according to attribute values, according to columns added 
to examples by steps in the classification pipeline, and 
according to tags added to examples by a developer. 

Gestalt’s support for machine learning goes beyond such 
prior general-purpose visualization tools by connecting data 
generated across the entire classification pipeline. In the 
case of domain-specific tools, consider that the coloring 
metaphor in Crayons is effective in part because it connects 
the pipeline’s beginning (labeling data) and end (analyzing 
model classification) within a single visualization. Gestalt 
generalizes this with visualizations that connect data from 
different steps in the pipeline to help developers understand 
relationships between data, attributes, and results.  

Figure 3 shows one approach to a connected visualization, 
side-by-side presentation of information about the same 
example from different parts of the pipeline. Working on a 
sentiment analysis problem, a developer hovers over an 
item in a grid view to see a preview of the document. They 
then click into the grid for a side-by-side view of the 
document, its computed attributes, and its classification. 
Pulling this into a single view allows a developer to 
understand how an example moved through the pipeline. 

A second approach to connected visualizations emphasizes 
filtering and grouping examples based on information from 
different steps in the pipeline. Figure 4 presents an example 
of a developer clicking into a confusion matrix to isolate 
examples labeled as triangles and classified as rectangles. 
In this case, it seems likely that several of these instances 
are mislabeled. As another example, a developer might 
apply a filter to isolate examples that have a particular 
attribute value. Examining these might suggest a possible 

bug in the code computing that attribute. Connected 
visualizations allow developers to quickly assemble the 
information needed to examine such questions. 

The “Gestalt” of Gestalt 
Each of Gestalt’s capabilities is important, but Gestalt’s real 
power comes from how they relate and are combined. 
Figure 4’s clicking into a confusion matrix to see 
misclassified examples requires a structured understanding 
of the pipeline, the flexibility to implement an appropriate 
visualization of the individual examples, and a data 
representation capturing how each example moved through 
the pipeline. All of these pieces work together. 

As a whole, these capabilities serve to accelerate the 
interactive loop: developers can more quickly implement 
and analyze different potential versions of a machine 
learning system. Gestalt’s approach provides both structure 
and flexibility for rapid implementation, the shared data 
table removes data conversion and management to make it 
easy to switch between implementation and analysis, and 
connected visualizations allow developers to quickly 
analyze the important parts of their system. 

CURRENT TOOL WORK 
Several categories of tools can be used in machine learning 
applications and warrant discussion with regard to Gestalt.  

Domain-Specific Tools 
Domain-specific tools support both implementation and 
analysis, but do so at the expense of flexibility. For 
example, Crayons supports the learning of models that 
segment images [8]. A developer captures an image and 
colors regions that correspond to different segments. The 
system learns a model from these labeled pixels, and the 
developer analyzes the model’s performance by applying it 
to new images and overlaying the results on those images. 
The designer iterates by correcting model mistakes, thus 
providing new data for the classification pipeline. Crayons 
achieves this ease of use by limiting flexibility. Input is 
limited to providing more training examples, and analysis is 
limited to looking at classification results overlaid on 
images. Developers cannot access other information that 
might help them iterate (e.g., attribute values). 

 
Figure 4: In Gestalt developers can use faceted browsing techniques to understand data. Here a developer tries to 
understand why triangles are confused with rectangles by filtering the full set of examples (a) through a click on a 
confusion matrix cell (b). The filtered examples (c) show that the confusion is due to mislabeled data.  
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Domain-specific tools have been created for a variety of 
problems, including computer vision systems [14], simple 
sensor-based recognizers [11], and interactive concept 
learning in image search [9]. Because the number of domains 
affected by machine learning is large and growing, designing 
domain-specific tools for each is untenable. Domain-specific 
tools often target non-programmers, who are unlikely to be 
able to make major changes to the inner workings of a 
system. Gestalt targets developers and can take a different 
approach. Gestalt focuses on providing the necessary 
development support to make implementation and analysis 
easier for a wide variety of domains. We are thus lowering 
the barrier to using machine learning, so that the large 
population of developers can join the ranks of expert 
researchers in their ability to apply machine learning.  

Disconnected General-Purpose Tools 
A variety of general-purpose tools support either 
implementation or analysis of machine learning systems. 
Weka is a well-known example, providing developers with a 
large library of machine learning algorithms [20]. Interactive 
visualization tools like Tableau can be applied to data 
exported from machine learning systems [19].  

Tools that each support a portion of the machine learning 
pipeline create gaps that are a fundamental obstacle to 
effectively moving between implementation and analysis. 
Developers must explicitly choose to move from one tool to 
another, typically losing any established working context. It 
is entirely upon the developer to bridge the gaps between 
tools: writing custom scripts to convert between data formats 
exported by different tools, aggregating and visualizing raw 
data, storing and linking intermediate information computed 
throughout the pipeline. For example, a canonical pipeline 
for the sentiment analysis problem might use Python to 
process reviews and obtain word-count attributes, then Weka 
to train a model, then Tableau to analysis experimental 
results. Reproducing the interactions from Figure 3 and 
Figure 4 would require extensive developer effort. Gestalt 
connects steps, aggregates examples, and enables 
interactivity to allow developers to focus on the logic of their 
pipeline and analyses of how data is transformed in that 
pipeline.  

Connected General-Purpose Tools 
Connected general-purpose tools are capable of addressing 
the entire classification pipeline. These can be further 
decomposed into dataflow and programming environments.  

Dataflow environments provide sets of discrete components 
that can be combined to implement desired behaviors [2]. 
Some dataflow tools even provide components targeting 
machine learning problems [10]. Dataflow tools generally 
focus on using pre-built components, so it is relatively 
difficult to create new components or modify the behavior of 
existing components. In contrast, machine learning problems 
vary in behavior. The structures of the sentiment analysis and 
gesture recognition problems are similar, but the behaviors of 
steps for data parsing and attribute generation are very 

different and unlikely to be provided as part of any standard 
set of prebuilt components. Gestalt’s focus on developer 
flexibility, critical to allowing rapid iteration on a pipeline, is 
more similar to the support provided by general 
programming environments.  

Modern general programming environments work well for 
writing code that describes the behavior of a program, but are 
not designed for writing code that learns from data. Many 
people experienced in the application of machine learning 
report a preference for MATLAB, because it provides better 
support than most programming environments. Matrices are 
first-class objects, a good fit for tabular data representations. 
Many machine learning algorithms include solving linear 
algebra problems, also well-supported by MATLAB. 
MATLAB makes analysis easier by reducing the need to 
write boilerplate code needed to sort, filter, and create basic 
visualizations. Finally, MATLAB provide sufficient 
functionality to significantly reduce the overhead of 
switching between applications and connecting information 
across tools. 

Despite these advantages of a connected environment like 
MATLAB, it still falls short in addressing the difficulties 
developers face when using machine learning. Developers 
must still construct a classification pipeline from scratch, as 
the environment does not understand the structure of the 
problem being solved. MATLAB’s data representation has 
not been designed for machine learning, and all elements in a 
matrix are of a single datatype. Developers therefore must 
maintain multiple parallel matrices to store raw data, 
numerical attributes, string attributes, and attribute names. 
Finally, MATLAB visualizations are simple charts. They do 
not support the aggregation or visualization of raw data, 
interactively grouping examples within visualizations, or 
connecting information between different steps in the 
machine learning process. To support any of these 
capabilities, developers would need to rewrite most of the 
functionality provided by Gestalt within MATLAB.  

EVALUATING BUG FINDING IN GESTALT 
Our study compared bug-finding performance for 
participants using Gestalt with a baseline condition similar to 
MATLAB. Prior research shows the developers consider 
connected environments, like MATLAB, to provide the best 
support for the machine learning process [16]. This section 
describes our baseline system, the tasks in our study design, 
and the major results of our experiment. 

Participants 
We recruited 8 participants (2 female) for our study. All were 
computer science graduate students. All had some experience 
programming in Python, had taken at least one course that 
taught machine learning algorithms, and had worked on at 
least one project that used supervised machine learning. This 
population is consistent with the target audience of Gestalt: 
software developers who know how to apply machine 
learning. 
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Baseline vs. Gestalt 
The baseline condition was a general-purpose development 
environment in which participants created, edited, and 
executed scripts. Like in MATLAB, participants created 
visualizations by calling functions and writing scripts to 
sort, filter, and color. We provided an API with which 
could be used to reproduce all of Gestalt’s visualizations.  

The baseline condition and Gestalt used the same data table 
structure to store data. Unlike Gestalt, the data table in the 
baseline did not keep track of information generated across 
the pipeline.  Participants had to write code to connect raw 
data, attribute values, and classification results or to create 
side-by-side visualizations. 

Other than these differences, Gestalt and the baseline were 
identical. The entire process was integrated, all of the code 
for the learning process was written within the same 
framework, using the same data structures, with the same 
programming language. We chose this study design, instead 
of a design that compared Gestalt directly to MATLAB, 
because we wanted to increase our confidence that any 
differences we observed were due to the capabilities we had 
taken away (and not other differences in the tools, such as 
the syntax of the programming language).  

Study Design 
The study was a within-subjects design, comparing Gestalt 
with the baseline across two debugging tasks. To account 
for carryover or interaction effects based on the ordering of 
interface conditions (e.g., ordering or pairing of interface 
and task), we counterbalanced the task with condition 
(Gestalt and baseline) and order (first and second). 

Our dependent measures included the number of bugs found 
and the number of bugs fixed within the one-hour time span 
of each task. A bug was counted as found if the participant 
verbalized the root cause. For example, “The data is 
mislabeled” or “This line of code should be using this 
variable instead”. If the participant just speculated about the 
cause, the bug would not be counted as found. 

We did not measure time to fix a bug, because it was not 
feasible to ascertain which bug a participant was working 
on at any given time. Participants were cognizant of the 
existence of multiple bugs. While trying to find and fix a 
primary bug, participants often gathered information 
needed to find and fix other bugs. Instead of the time to fix 
each bug, we focus on such measurements as the time spent 
in various visualizations over the entire study.  

Sentiment Analysis and Gesture Recognition Tasks 
Participants built solutions for the two problems discussed 
earlier: sentiment analysis and gesture recognition. Each 
contained data and five scripts: parsing, attributes, 
splitting, training, and testing. We created 
working solutions for both Gestalt and the baseline, then 
injected five bugs into each solution. The machine learning 
code for the baseline and Gestalt differed only in how 
scripts were called and how data was maintained between 

steps. These factors were intrinsic to the differences 
measured in our results. Although we have described the 
two problems previously, we provide additional details 
about their implementation. 

The sentiment analysis task classified movie reviews as 
positive or negative. We used 1,000 negative and 1,000 
positive reviews from a standard sentiment analysis dataset 
[15]. We computed word-count attributes, built a Naïve 
Bayes model, and evaluated using three-fold cross 
validation. After building a working system, we introduced 
the following bugs into the sentiment analysis problems:  

S1: mislabeled 300 positive and 300 negative  
examples [data] 

S2: positive examples are read in twice [parsing] 
S3: instead of removing stop words, the code removes 

everything except for stop words [attributes] 
S4: only updates the count for one  

attribute [attributes] 
S5: each fold tests on the training set [splitting] 

The gesture recognition task involved building a model that 
classifies a pen-stroke as one of 16 different gestures. We 
used a standard dataset of 5280 gestures collected from 11 
different people [21]. We normalized strokes, computed 
attributes, built a Rubine model, and evaluated using per-
person cross-validation. We introduced the following bugs: 

G1: mislabeled gestures (30 triangles swapped with 
rectangles, 30 circles with stars, and 30 carets with 
checks) [data] 

G2: (x, y, t) points are loaded as (t, x, y) [parsing] 
G3: does not load all of the examples [parsing] 
G4: sine and cosine values are the same for one of the 

attributes [attributes] 
G5: tests on the same person in each fold [splitting] 

We chose all of the bugs based on common programming 
errors or common machine learning process errors. For 
example, earlier versions of the Pang et al. dataset included 
problems with mislabeled data that were later discovered 
and reported [15]. The cross-validation bug in our gesture 
recognition task is the same one reported by Hodges and 
Pollack in their work [12]. Other bugs were based on 
common mistakes, such copy-paste errors [13].  

Participants were told that (except for the actual training 
and testing of the model) there could be bugs at any step in 
the pipeline. This included bugs in the raw data. They were 
assured the structure of the pipeline was correct and the task 
was not one of attribute generation or algorithm 
development. As a stopping condition, they were given a 
target accuracy range suggesting they had fixed all of the 
bugs. This was a realistic stopping criterion in the context 
of our task, repairing existing machine learning programs 
that were known to have achieved a certain level of accuracy 
in the past. 

Data-labeling bugs in each task would have taken more time to 
fix than was allotted. To make fixing mislabeled data tractable, 
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participants had to clearly state why examples were mislabeled 
(associate the mislabeling with bad data rather than a 
programming error). We then pointed them to a directory 
containing correctly labeled data.   

Finally, because the inserted bugs interacted with each other, 
the accuracy of the classifier could increase or decrease 
erratically (even going above the target accuracy). This was a 
deliberate choice; erroneous high accuracy values may be 
more dangerous because they provide a false sense of success. 
Additionally, it can often be the case that an existing solution 
may have multiple bugs and reported accuracy itself may not 
be the best metric for debugging.  

Procedure 
After providing consent, participants completed a one-page 
survey detailing their prior machine learning and Python 
experience. The experimenter provided a document detailing 
the first task. Both tasks were presented as salvaging code 
written by another developer. The document detailed the steps 
taken by the previous developer, and participants were 
informed the developer had chosen a good strategy but there 
were mistakes in the execution. After explaining the task, the 
experimenter provided participants a one-page questionnaire 
asking what tools they would normally use to implement the 
outlined task.  

After completing the questionnaire, participants followed a 
tutorial on each tool. In the Gestalt condition, the tutorial 
discussed the capabilities of the implementation and analysis 
perspectives. The baseline tutorial contained information about 
the capabilities of the editor and the visualization API. After 
the tutorials, the experimenter provided quick reference sheets 
for the included APIs. Because we were studying the effect of 
Gestalt’s novel capabilities and not the usability or learnability 
of the system, participants were told they could use the 
experimenter as an intelligent help system during the task. This 
included asking questions about APIs, visualizations, the 
machine learning problems, and error messages.  

Participants were asked to talk aloud, describing their progress 
in the bug finding process. Participants were told the 
experimenter might ask questions about their state or current 
action. We asked participants to think aloud about the states: 
(1) I have no idea what the bug is, (2) I have a guess, (3) I'm 
checking my guess, (4) I'm fixing the bug, and (5) I'm confident 
I fixed the bug. Participants were given one hour to complete 
the task. After they finished, the experimenter saved their data 
and started the next task, providing descriptions of the new 
machine learning problem and the new development 
environment.  

After completing the second task, participants were given a 
final questionnaire asking them to rate the usefulness of the 
visualizations and faceted search capabilities. They were also 
asked to compare the two development environments and to 
compare to the existing tools they had reported they would use 
for these tasks. Participants then completed a recording 

consent form and were paid $50 for their time. The entire 
study took between 3 and 3.5 hours. 

RESULTS  
Participants unanimously preferred Gestalt and were able to 
find and fix more bugs using Gestalt than using the baseline. 
Figure 5 shows an overview of bugs per condition. To examine 
our found and fixed measures, we conducted a mixed-model 
analysis of variance. We modeled participant as a random 
effect and modeled condition (Gestalt vs. baseline), task 
(sentiment analysis vs. gesture recognition), and trial (first vs. 
second) as fixed effects. We also modeled the interactions 
condition×trial and condition×task. We used these same 
independent variables in all of the analyses we report in this 
section. 

We found a marginal effect of trial on the number of bugs 
found, with participants finding more in the second trial (3.1 
vs. 4.0 bugs, F1,5=4.62, p ≈ .084). This suggests some learning, 
as there were commonalities among the bugs in the two tasks. 
We verified the interaction condition×trial was not significant 
(p > .42), confirming the effectiveness of our counterbalanced 
design. Participants in the Gestalt condition found significantly 
more bugs (4.25 vs. 2.88 bugs, F1,5=11.42, p ≈ .019). 

We also found a marginal effect of trial for bugs fixed (2.88 vs. 
3.63 bugs, F1,5=4.09, p ≈ .099) and again confirmed our 
counterbalance effectiveness by verifying the lack of 
significant interaction condition×trial (p > .72). Participants in 
the Gestalt condition fixed significantly more bugs (3.75 vs. 
2.75 bugs, F1,5=7.27, p ≈ .042).  

DISCUSSION 
This section discusses how Gestalt was used, the process 
participants followed to solve machine learning problems, and 
possible explanations for Gestalt’s better performance. We 
ground our observations in free response questions from our 
questionnaire and secondary measures of performance. We 
also discuss limitations of our study, Gestalt’s implementation, 
and general-purpose tools. 

The Importance of Structure 
We hypothesized a structured representation would be most 
useful when developers first started a project, as it would be 

Figure 5: Developers found and fixed significantly 
more bugs in the Gestalt condition. 

44



 

 

 

less daunting than a blank slate. Because we provided a mostly 
working implementation of the project, we felt the importance 
of structure would be diminished in our study. Consequently, 
we did not explicitly ask participants whether they found the 
structure helpful.  

However, we included open-ended questions asking 
participants what capabilities they found the most useful. In 
this open-ended portion of the questionnaire, five of eight 
participants said the explicit structure provided by viewing and 
interacting with the classification pipeline was one of the most 
useful components of Gestalt. They stated they would like to 
see it in their own tools, with one participant writing “The 
[classification pipeline view] was very helpful. When I am 
running these types of experiments, I often get lost in all of the 
processing steps. This seems like a useful way to organize the 
workflow.”  

Creating Individual Example Visualizations 
Even though we provided standard visualizations of the 
individual examples in both conditions, some participants 
created their own. Both the baseline and the Gestalt conditions 
provided developers with the ability to make charts, including 
the ability to plot points. Two participants in the baseline 
condition (p5 and p7) used this to plot a gesture’s stroke. This 
confirms developers can and will develop quick, simple 
visualizations of raw data when given proper tools. This is 
promising evidence for Gestalt’s approach of using developer-
created visualizations of individual examples in aggregate 
visualizations to help developers understand data, attributes, 
and results. 

The Need for Connectivity 
Participants in both conditions actively tried to relate attribute 
values and results to their raw data. Gestalt’s connected 
visualizations make it easy to compare their data, attributes, 
and classification results. When taken away in the baseline, 
participants expressed frustration. One participant, who 
worked in Gestalt first, explicitly described that he wanted to 
see the raw data next to the attributes in the baseline and was 
annoyed that it was not as easy as in the prior condition.  

To make up for a lack of connectivity in the baseline, three 
participants (p1, p3, and p8) went to great lengths to cobble 
together their own combined table view; two did this before 
having used Gestalt. In all three cases, they opened two 
separate table views, one after parsing and one after attribute 
computation. They then resized these tables and placed them 
side-by-side so they could visually compare attributes with 
data.  

Interactivity 
We also observed that the interactivity of visualizations was 
critical. Because we logged the active window as well as input 
(e.g., mouse clicks, key strokes), we could determine if 
participants spent their time implementing or analyzing. 
Participants in Gestalt spent significantly more time analyzing 
(37.3% vs. 18.9%, F1,5=5.44, p ≈ 0.001).  

Participants also used more kinds of views. In our post-study 
questionnaire, we asked participants to tell us which faceted 
search capabilities (e.g., filtering) and views they used (e.g., 
grid view). We found that participants tried significantly more 
views in the Gestalt condition (3.4 vs. 2.5 views, F1,5=18.84, p 
≈ .007) and marginally more faceted search techniques (2.0 vs. 
1.1 techniques, F1,5=5.44, p ≈ 0.067). The gesture recognition 
task also led participants to spend more time in visualizations 
(32.9% vs. 23.3%, F1,5=11.15, p ≈ .021), look at more views 
(3.4 vs. 2.5 views, F1,5=18.84, p ≈ .0074), and use more faceted 
search techniques (2.3 vs. 0.9 techniques, F1,5=13.44, p ≈ .015) 
than the sentiment analysis task. This is likely because there 
were more classes in the gesture condition and the data was 
easier to visualize. These differences suggest that spending 
more time looking at more kinds of views might allow 
developers to better formulate and test possible explanations 
that lead them to find and fix more bugs.  

In both conditions, most participants used filtering and sorting 
to group relevant examples. Gestalt made this easier. One 
participant followed the exact process shown in Figure 4. He 
clicked in a confusion matrix to see examples of triangles 
classified as rectangles, then found the mislabeled examples.  

Study Limitations 
Our study has several limitations. Both tasks had pipelines that 
could be run in real-time (loading and processing data, 
generating attributes, training a model, testing the model). 
Many important learning problems are too expensive to be 
computed in real-time. We chose this limitation to allow 
participants to explore a large number of different bug 
hypotheses within our time constraint. It is possible that 
Gestalt may be more useful in situations where models take 
longer to train. Developers might enjoy greater benefit from 
using visualizations to explore data and attributes while 
waiting for updated results in a longer feedback cycle.  

Our study was also limited to finding bugs in unfamiliar code. 
The challenges in the middle of a development process are 
different from those at the beginning, and setting up a 
workflow for a learning task can be daunting. Participants 
found value in Gestalt’s pipeline structure. Their comments in 
the open-ended questionnaire lead us to believe Gestalt’s 
structure will also assist developers solving machine learning 
problems from scratch. 

Our study focused on two problems for which developers had 
some intuition about the data. They knew gestures that looked 
similar should be in the same dataset, and they knew words in 
movie review text should appear as non-zero attributes. 
Developers may not always have such a clear understanding of 
the data at the onset of the project. They may instead develop 
understanding over time. Flexible visualizations seem crucial 
for this, as they can allow developers to create individual 
visualizations embodying information to best help them to 
understand their data.  
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Limitations of Gestalt 
Our study revealed some unexpected work patterns that 
suggest new opportunities for Gestalt and other tools. 
Participants p7 and p8 created toy review datasets to see if 
reviews were being correctly parsed and word counts were 
being correctly computed. Participant p8 also created simple 
strokes that consisted of a few (x, y, t) points. He then 
manually computed attributes (using pen and paper) and 
compared them to the values computed during attribute 
generation. Other participants created filters by manually 
selecting a small set of examples and examining them through 
the entire pipeline. These behaviors collectively suggest 
support for unit testing practices could be a good addition to 
Gestalt and other machine learning tools. 

While Gestalt can be used to build machine learning systems 
for many domains, there are some problems Gestalt does not 
completely support. A key limitation is that Gestalt assumes 
individual examples can be processed without the context of 
the larger dataset. This impacts the types of learning 
algorithms Gestalt supports, but also some of Gestalt’s core 
capabilities. For example, our current grid and table aggregate 
visualizations cannot properly visualize relationships inherent 
to sequential data (e.g., time-series). It is also non-obvious how 
to implement the interaction in Crayons, where individual 
pixels have meaning only in the aggregate context of an image. 
New general methods for describing relationships between 
examples would benefit Gestalt and future general-purpose 
tools. 

The difficulty of implementing the core Crayons interaction 
within Gestalt raises a question of whether general-purpose 
tools can be as effective as domain-specific tools. Both styles 
of tool are important. It is almost certain that a highly-
specialized tool will be more effective for its particular 
problem. However, general tools provide two advantages. We 
have noted that the number of domains affected by machine 
learning is large and growing. General tools can support 
problems for which domain-specific tools have not yet been 
developed. Further, distilling general mechanisms, like those in 
Gestalt, informs domain tools by allowing a focus on domain-
specific extensions instead of re-inventing general 
mechanisms. 

CONCLUSION 
Gestalt supports the entire process of applying machine 
learning: implementing a classification pipeline, analyzing data 
as it moves through that pipeline, and easily transitioning 
between these perspectives. We have discussed how Gestalt’s 
capabilities generalize advances from prior domain-specific 
tools to provide general-purpose support. A comparison of 
participants using Gestalt with a baseline condition similar to 
MATLAB showed participants find and fix more bugs with 
Gestalt and that Gestalt’s flexibility and visualizations were 
primary contributors to their success. These results show that 
helping developers understand relationships between the 
various steps in a classification pipeline is important to their 
success. 
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