
Gestalt: Integrated Support for
Implementation and Analysis in Machine Learning

Kayur Patel
†
, Naomi Bancroft

†
, Steven M. Drucker

‡
, James Fogarty

†
, Amy J. Ko

+
, James A. Landay

†

†
Computer Science & Engineering

DUB Group, University of Washington
Seattle, WA 98195

{ kayur, bancron, jfogarty, landay }@cs.washington.edu

‡
Microsoft Research
One Microsoft Way

Redmond, WA 98052
sdrucker@microsoft.com

+
The Information School

DUB Group, University of Washington
Seattle, WA 98195

ajko@u.washington.edu

ABSTRACT
We present Gestalt, a development environment designed to
support the process of applying machine learning. While
traditional programming environments focus on source
code, we explicitly support both code and data. Gestalt
allows developers to implement a classification pipeline,
analyze data as it moves through that pipeline, and easily
transition between implementation and analysis. An
experiment shows this significantly improves the ability of
developers to find and fix bugs in machine learning
systems. Our discussion of Gestalt and our experimental
observations provide new insight into general-purpose
support for the machine learning process.

Author Keywords: Gestalt, machine learning, software
development.

ACM Classification Keywords
H5.2 Information Interfaces and Presentation: User Interfaces;
D2.6 Programming Environments: Integrated Environments.

General Terms: Human Factors

INTRODUCTION AND MOTIVATION
Machine learning is at the core of many advances in science
and technology. Within HCI, researchers have applied
machine learning to search [9], facilitating creativity [18],
and helping people live healthier lives [6]. Within computer
science, machine learning can reduce system downtime [3]
and detect anomalous network behavior [5]. In humanity’s
greatest pursuits, machine learning can help understand
cancer [7] and the beginnings of the universe [1].

Despite the sophistication of machine learning methods and
their widespread impact in research, these algorithms are
seldom applied in practice by ordinary software engineers.
One reason is that applying machine learning is difficult in
ways different than traditional programming. Traditional
programming is often discrete and deterministic, but most
machine learning is stochastic. Traditional programming
focuses on modules and lines of code, but machine learning
focuses on pipelines and data. Traditional programming is
often debugged with print statements and breakpoints, but

machine learning requires analyses with visualizations and
statistics. Traditional programming allows developers to
explicitly describe the behavior of a program, but systems
that use machine learning must learn behavior from data.
Developers need new methods and tools to support the task
of applying machine learning to their everyday problems.

Prior research has examined domain-specific support for
applying machine learning to solve several important
problems. Crayons uses a coloring metaphor for training
image segmentation classifiers [8]. Eyepatch allows
composition and training of classifiers to create vision
systems. Exemplar supports direct manipulation methods
for specifying simple sensor-based recognizers [14]. The
domain-specific nature of such tools is both a strength and a
weakness. Domain knowledge allows tools to limit the
decisions required for a developer to create a system. But
these same limitations also constrain the developer if a
tool’s assumptions do not match the developer’s needs.

This paper presents Gestalt, a general-purpose tool for
applying machine learning. Gestalt targets developers,
providing full support for writing code to specify the series
of steps in a classification pipeline (Figure 1). In supporting
a wide range of classification problems, Gestalt generalizes
the lessons of prior domain-specific tools. Specifically,
Gestalt allows developers to implement a classification
pipeline, analyze data as it moves through that pipeline, and
easily transition between implementation and analysis.

The specific contributions of this work include:
 Discussion of general-purpose development environment

support for the application of machine learning.
 The Gestalt development environment. Gestalt supports

the implementation of a classification pipeline, analysis
of data as it moves through that pipeline, and easy
transitions between implementation and analysis.

 Discussion of Gestalt’s capabilities, including a focus on
generalizing lessons from domain-specific tools to
provide general-purpose support for machine learning.

 An evaluation demonstrating that Gestalt significantly
improves developer ability to find and fix bugs in two
typical applications of machine learning.

 Discussion of current limitations and future opportunities
for general-purpose machine learning support.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’10, October 3–6, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0271-5/10/10....$10.00.

37 Most up-to-date version: 06/22/2021

THE MACHINE LEARNING PROCESS
Gestalt supports two high-level tasks in applying machine
learning: implementing a classification pipeline and
analyzing data as it moves through that pipeline.

Implementation requires both the creation of a classification
pipeline and collection of data to train and test that pipeline.
Figure 1 shows two example pipelines, in which: (a) data is
transformed into discrete examples, (b) attributes† are
computed over each example, (c) a learning algorithm is
used to train a model, and (d) the accuracy of that model is
evaluated. Not all pipelines are identical, but their structure
is similar: a linear progression of computation transforms
data into a model that can be experimentally evaluated.

Analysis allows developers to understand the behavior of a
classification pipeline by examining how data moves
through that pipeline. Beyond the correctness of any
individual line of code, analysis requires developing an
understanding of complex relationships between data,
attributes, and model output [16]. In addition to final model
output, this requires examination of intermediate data to
ensure that each step in the pipeline behaves as expected.
Developers examine whether data is correctly parsed and
discretized, whether attributes are correctly computed, and
whether the overall performance is sufficient for a problem.

Although the structure of a classification pipeline is linear,
the process of implementing and analyzing it is not.
Analysis of a current implementation informs a developer’s
next implementation action. Developers often revisit prior
steps, such as collecting additional data, debugging
implementation of attributes, brainstorming new attributes,
or reconsidering their modeling algorithm. The process of
applying machine learning thus requires repeated transition
between implementation and analysis. Gestalt is defined by
supporting both implementation and analysis so that these
transitions can be fast, fluid, and easy.

PROVIDING GENERAL-PURPOSE SUPPORT
This section introduces two canonical machine learning
problems: movie review sentiment analysis and pen-based
gesture recognition. We discuss important differences
between these problems, as these differences illustrate a

range of support needed in a general-purpose tool. We then
discuss their similarity, as their common structure provides
the basis for Gestalt’s integrated support.

Two Canonical Problems
Sentiment analysis consists of categorizing text (e.g., movie
reviews) according to some sentiment expressed in that text
(e.g., whether a reviewer had a positive or negative
impression of the movie). A canonical machine learning
solution was developed by Pang et al. [15]. Following Pang
et al.’s process, a developer collects positive and negative
movie reviews, formats reviews to plain text, and computes
word-count attributes (the number of times the word
appears in the review). They then prune words that are too
common, too rare, or not descriptive. The resulting pipeline
can be evaluated in a standard cross-validation experiment.
This involves randomly splitting data into testing and
training sets, creating models using the training sets, and
evaluating the accuracy of those models on the test sets.

Pen-based gesture recognition is well studied, with Rubine
providing a canonical approach [17]. A developer collects
strokes defined as sets of (x, y, t) triples, where x and y are
2D points and t is time. Because different people may draw
the same gesture differently, data is typically collected from
a large pool of people to help ensure learned models are
robust to such variance. Strokes are normalized by rotating,
translating, and scaling them to facilitate comparison. The
normalized strokes are then used to compute attributes (e.g.,
the length of the stroke, measures of angles in the stroke).
Cross-validation experiments then evaluate the pipeline.

Problem Differences
Sentiment analysis is a two-class problem, but gesture
recognition is multi-class. In the sentiment problem,
classification errors are binary (i.e., reviews can be only
positive or negative). In the gesture problem, it also matters
how an example is misclassified. For example, it is
important to know if rectangles are commonly misclassified
as triangles. This added information can help a developer
identify the part of the pipeline responsible for that error.

These problems also differ in the visual representation of
their data. Pen-based gestures have a natural and compact
visual representation. A developer can easily verify the
label of a gesture by simply looking at a drawing of the
stroke. In contrast, the sentiment of movie reviews requires

Figure 1: A wide variety of machine learning problems share a common classification pipeline. The pipeline describes how data is
transformed into a model: (a) raw data is parsed, (b) attributes are computed from parsed data, (c) a model is trained, and (d) the
model is tested. This figure above shows two problems, sentiment analysis and gesture recognition, that share the same pipeline.

†
 We avoid the overloaded term feature, which could refer to either an

attribute of data or a capability of Gestalt. Both alternatives are
descriptive, though not as commonly used as the word feature.

38

significantly more time and effort to interpret. They are still
human verifiable, but require more attention than a gesture.

These problems also illustrate differing interpretability of their
attributes, including verifiability and sparseness. Individual
values of sentiment attributes are easier to verify. A developer
can quickly check the value of a word-count attribute against
the text of a review. In contrast, it is difficult to gauge the
correctness of angle values and distances computed over the
normalized points of a gesture. On the other hand, sentiment
attributes are sparse. Each review has a large number of
attributes, most word-count values are zero, and only non-zero
values have an effect on the final model. The gesture
recognition problem is defined by a small set of dense
attributes, where each attribute may have a distinct value and
an effect on the final model.

A final difference we emphasize is how solutions are evaluated
in cross-validation experiments. Random splitting of data into
training and testing sets is generally effective for sentiment
analysis and other problems. Applied to gesture recognition,
however, it can often be misleading. People may differ in how
they draw a gesture, and random sampling ignores this lack of
independence. Because the goal is to evaluate how well a
model is likely to generalize onto people who are not in the
training set, leave-one-out cross-validation is used. Models are
trained with data from all but one person, then tested with data
from that person.

Problem Similarity
Although these problems are different at nearly every step,
Figure 1 shows there is a similar structure to their classification
pipelines. Both separate data into discrete examples, compute
attributes describing each example, and conduct experiments
that identify sets of examples that are correctly or incorrectly
classified by the pipeline. This common structure provides
leverage for a general-purpose tool. In our development of
Gestalt, we have examined how an integrated environment can
provide necessary flexibility at every stage of a process while
also leveraging this common structure to make developers
more effective in their application of machine learning. The
next section introduces Gestalt and its capabilities. In later

discussion, we consider limitations of our current
implementation and the general-purpose approach.

GESTALT
Developers interact with a classification pipeline in Gestalt
through two high-level perspectives: an implementation
perspective and an analysis perspective (Figure 2). This
parallels the common distinction between coding and debug
perspectives in modern development environments (e.g.,
Eclipse, Microsoft Visual Studio). The implementation
perspective allows developers to edit code and manage the
classification pipeline. The analysis perspective visualizes the
information computed as data moves through that pipeline.
This section describes the specific capabilities of Gestalt and
discusses how these capabilities work together to support
developers as they implement a pipeline, analyze data, and
transition between these perspectives.

Providing Structure While Maintaining Flexibility
How do I represent my problem?
Domain-specific tools use an understanding of a particular
machine learning problem to constrain and hide some parts of
the classification pipeline, exposing only the parts a developer
needs to interact with to create a solution. For example,
Crayons allows developers to input data and see the output of a
model, but provides no control over the attributes or the
learning algorithm [8]. Crayons achieves its ease of use by
cloaking this complexity. However, it is thus impossible to
directly modify Crayons to solve a different machine learning
problem (even if that problem has a similar classification
pipeline).

A key realization in Gestalt is that general support cannot be
achieved by hiding steps in the pipeline. The classification
pipeline is similar for many problems, but the relative
importance of different steps varies from problem to problem.
Gestalt provides general support through a structured set of
explicit steps with standardized inputs and outputs (Figure 2a).
Gestalt preserves flexibility by defining each step using
IronPython scripts written in a built-in text editor (Figure 2b).
This combination provides an explicit structure without
constraining what a developer can do in that structure. Gestalt

Figure 2: The implementation perspective provides developers with structure through its classification pipeline view (a) and
flexibility by allowing them to write code to represent their specific problem (b). A common data structure (c), shared
between analysis and implementation, allows developers to quickly switch between the two tasks. The analysis perspective
allows developers to interact with the provided visualizations (e) by filtering, sorting, and coloring (d).

39

thus provides the same flexibility as general-purpose
programming environments (e.g., Eclipse, MATLAB).

Gestalt’s explicit structure provides a basis for its other
functionality. For example, Figure 2a shows how Gestalt can
help developers locate execution errors within specific steps. A
circle next to each step is colored grey, yellow, green, or red
according to whether the step still needs to be executed, is
currently being executed, executed successfully, or failed due
to an execution error. The structured and typed sequence of
steps also allows Gestalt to capture and visualize computation
at intermediate steps throughout the pipeline. This section
discusses how each step can be used as a launching point for
analysis, helping developers better understand the behavior of
their system through inspection of the input and output at each
step.

Appropriate Data Structures
Where do I store my data?
Implementing a classification pipeline requires loading data
and storing it in some representation for use throughout the
remainder of the pipeline. Domain-specific tools often hide
seedy details of this portion of a machine learning system. But
data comes in many forms and sizes, so effective data
management is a requirement for general tools.

Gestalt stores all information from the entire classification
pipeline in a relational data table. Relational tables are a natural
representation for discrete examples with many attributes.
Because of this, they are also the backbone of many other
general-purpose tools (e.g., Weka, Tableau). Gestalt differs
from such tools because they do not address the entire
classification pipeline (e.g., Weka focuses on a library of
modeling algorithms, Tableau focuses on powerful
visualizations of tabular data). Despite their common tabular
nature, data representations in such tools are not identical.
Developers using combinations of tools to address an entire
pipeline must therefore explicitly attend to format conversion.
The narrowed focus of each tool also means that information is
often lost or unavailable when converting between tools. For
example, Weka and other tools that represent examples as
vectors of attributes generally lack support for examining the
original data used to compute those attributes (the raw data is
typically not propagated forward by the attribute generation
script).

Gestalt’s use of a single unified table means developers are
freed from managing data conversion or moving data between

tools. This is critical to enabling fluid and easy movement
between interpretation and analysis. Gestalt’s data
representation implements several enhancements to a standard
table. First, attribute columns are typed and tagged according
to where they are used in the classification pipeline. All
attributes can be used to summarize, visualize, and interact
with data, but only some of those attributes can be used to
build a model. Tagging of columns allows Gestalt to track
which attributes should be used by a learning algorithm to train
a model. Instead of creating a separate data table in each step
of the pipeline, Gestalt uses a cascaded table structure to
reduce the overhead of storing intermediate data. Finally,
Gestalt provides a sparse representation for storing large sets of
sparse attributes found in many problems (e.g., sentiment
analysis).

Visualizing and Aggregating Examples:
How do I see my data?
Developers reason about system behavior by examining data
and its relationship to attributes and classification. Domain-
specific tools generally include a visual component that
provides this feedback. This allows developers to examine
individual examples as well as compare multiple examples.
For example, Crayons presents images with translucent
highlights indicating how pixels are classified by a learned
model. This shows how individual examples are classified
(individual pixels) and also provides relevant examples for
comparison (the other pixels in the image).

Gestalt’s support for many data types is enabled by a key
distinction between individual and aggregate visualizations. It
is impossible for a general tool to provide pre-packaged
visualizations for all possible types of data. Gestalt instead
supports data visualization by separating the logic needed to
view one example from the logic to combine many single
examples into an aggregate view. Developers can write code to
visualize an example, and Gestalt then integrates that into
aggregate visualizations throughout the pipeline. Two
examples of aggregate visualizations are the grid view (Figure
3a, 4a, 4c) and the table view (Figure 3b).

We also note that aggregate views begin to demonstrate how
Gestalt’s capabilities work together to create an integrated
environment. Gestalt’s structured representation of the
classification pipeline defines boundaries between steps where
developers can use aggregate views to gain insight into
their data. Gestalt’s emphasis on code-based flexibility

Figure 3: By looking at the raw data next to the attributes computed from that data, developers can gain a better
understanding of system behavior. Here a developer is shown a thumbnail of movie review data (a). The developer clicks on
the thumbnail to examine the raw data, attributes computed from it, and the fact that it is currently misclassified (b).

40

allows developers to adapt those visualizations to meet the
needs of their particular data.

Interactive, Connected Visualizations
How can I relate my data, attributes, and results?
Grouping and summarizing examples can help a developer
understand a classification pipeline. Gestalt’s analysis
emphasizes interactive visualizations, inspired by work in
interactive visualization tools [4]. Support is provided for
faceted browsing, filtering, sorting, and coloring examples.
Grouping and summarization operations can be applied
according to attribute values, according to columns added
to examples by steps in the classification pipeline, and
according to tags added to examples by a developer.

Gestalt’s support for machine learning goes beyond such
prior general-purpose visualization tools by connecting data
generated across the entire classification pipeline. In the
case of domain-specific tools, consider that the coloring
metaphor in Crayons is effective in part because it connects
the pipeline’s beginning (labeling data) and end (analyzing
model classification) within a single visualization. Gestalt
generalizes this with visualizations that connect data from
different steps in the pipeline to help developers understand
relationships between data, attributes, and results.

Figure 3 shows one approach to a connected visualization,
side-by-side presentation of information about the same
example from different parts of the pipeline. Working on a
sentiment analysis problem, a developer hovers over an
item in a grid view to see a preview of the document. They
then click into the grid for a side-by-side view of the
document, its computed attributes, and its classification.
Pulling this into a single view allows a developer to
understand how an example moved through the pipeline.

A second approach to connected visualizations emphasizes
filtering and grouping examples based on information from
different steps in the pipeline. Figure 4 presents an example
of a developer clicking into a confusion matrix to isolate
examples labeled as triangles and classified as rectangles.
In this case, it seems likely that several of these instances
are mislabeled. As another example, a developer might
apply a filter to isolate examples that have a particular
attribute value. Examining these might suggest a possible

bug in the code computing that attribute. Connected
visualizations allow developers to quickly assemble the
information needed to examine such questions.

The “Gestalt” of Gestalt
Each of Gestalt’s capabilities is important, but Gestalt’s real
power comes from how they relate and are combined.
Figure 4’s clicking into a confusion matrix to see
misclassified examples requires a structured understanding
of the pipeline, the flexibility to implement an appropriate
visualization of the individual examples, and a data
representation capturing how each example moved through
the pipeline. All of these pieces work together.

As a whole, these capabilities serve to accelerate the
interactive loop: developers can more quickly implement
and analyze different potential versions of a machine
learning system. Gestalt’s approach provides both structure
and flexibility for rapid implementation, the shared data
table removes data conversion and management to make it
easy to switch between implementation and analysis, and
connected visualizations allow developers to quickly
analyze the important parts of their system.

CURRENT TOOL WORK
Several categories of tools can be used in machine learning
applications and warrant discussion with regard to Gestalt.

Domain-Specific Tools
Domain-specific tools support both implementation and
analysis, but do so at the expense of flexibility. For
example, Crayons supports the learning of models that
segment images [8]. A developer captures an image and
colors regions that correspond to different segments. The
system learns a model from these labeled pixels, and the
developer analyzes the model’s performance by applying it
to new images and overlaying the results on those images.
The designer iterates by correcting model mistakes, thus
providing new data for the classification pipeline. Crayons
achieves this ease of use by limiting flexibility. Input is
limited to providing more training examples, and analysis is
limited to looking at classification results overlaid on
images. Developers cannot access other information that
might help them iterate (e.g., attribute values).

Figure 4: In Gestalt developers can use faceted browsing techniques to understand data. Here a developer tries to
understand why triangles are confused with rectangles by filtering the full set of examples (a) through a click on a
confusion matrix cell (b). The filtered examples (c) show that the confusion is due to mislabeled data.

41

Domain-specific tools have been created for a variety of
problems, including computer vision systems [14], simple
sensor-based recognizers [11], and interactive concept
learning in image search [9]. Because the number of domains
affected by machine learning is large and growing, designing
domain-specific tools for each is untenable. Domain-specific
tools often target non-programmers, who are unlikely to be
able to make major changes to the inner workings of a
system. Gestalt targets developers and can take a different
approach. Gestalt focuses on providing the necessary
development support to make implementation and analysis
easier for a wide variety of domains. We are thus lowering
the barrier to using machine learning, so that the large
population of developers can join the ranks of expert
researchers in their ability to apply machine learning.

Disconnected General-Purpose Tools
A variety of general-purpose tools support either
implementation or analysis of machine learning systems.
Weka is a well-known example, providing developers with a
large library of machine learning algorithms [20]. Interactive
visualization tools like Tableau can be applied to data
exported from machine learning systems [19].

Tools that each support a portion of the machine learning
pipeline create gaps that are a fundamental obstacle to
effectively moving between implementation and analysis.
Developers must explicitly choose to move from one tool to
another, typically losing any established working context. It
is entirely upon the developer to bridge the gaps between
tools: writing custom scripts to convert between data formats
exported by different tools, aggregating and visualizing raw
data, storing and linking intermediate information computed
throughout the pipeline. For example, a canonical pipeline
for the sentiment analysis problem might use Python to
process reviews and obtain word-count attributes, then Weka
to train a model, then Tableau to analysis experimental
results. Reproducing the interactions from Figure 3 and
Figure 4 would require extensive developer effort. Gestalt
connects steps, aggregates examples, and enables
interactivity to allow developers to focus on the logic of their
pipeline and analyses of how data is transformed in that
pipeline.

Connected General-Purpose Tools
Connected general-purpose tools are capable of addressing
the entire classification pipeline. These can be further
decomposed into dataflow and programming environments.

Dataflow environments provide sets of discrete components
that can be combined to implement desired behaviors [2].
Some dataflow tools even provide components targeting
machine learning problems [10]. Dataflow tools generally
focus on using pre-built components, so it is relatively
difficult to create new components or modify the behavior of
existing components. In contrast, machine learning problems
vary in behavior. The structures of the sentiment analysis and
gesture recognition problems are similar, but the behaviors of
steps for data parsing and attribute generation are very

different and unlikely to be provided as part of any standard
set of prebuilt components. Gestalt’s focus on developer
flexibility, critical to allowing rapid iteration on a pipeline, is
more similar to the support provided by general
programming environments.

Modern general programming environments work well for
writing code that describes the behavior of a program, but are
not designed for writing code that learns from data. Many
people experienced in the application of machine learning
report a preference for MATLAB, because it provides better
support than most programming environments. Matrices are
first-class objects, a good fit for tabular data representations.
Many machine learning algorithms include solving linear
algebra problems, also well-supported by MATLAB.
MATLAB makes analysis easier by reducing the need to
write boilerplate code needed to sort, filter, and create basic
visualizations. Finally, MATLAB provide sufficient
functionality to significantly reduce the overhead of
switching between applications and connecting information
across tools.

Despite these advantages of a connected environment like
MATLAB, it still falls short in addressing the difficulties
developers face when using machine learning. Developers
must still construct a classification pipeline from scratch, as
the environment does not understand the structure of the
problem being solved. MATLAB’s data representation has
not been designed for machine learning, and all elements in a
matrix are of a single datatype. Developers therefore must
maintain multiple parallel matrices to store raw data,
numerical attributes, string attributes, and attribute names.
Finally, MATLAB visualizations are simple charts. They do
not support the aggregation or visualization of raw data,
interactively grouping examples within visualizations, or
connecting information between different steps in the
machine learning process. To support any of these
capabilities, developers would need to rewrite most of the
functionality provided by Gestalt within MATLAB.

EVALUATING BUG FINDING IN GESTALT
Our study compared bug-finding performance for
participants using Gestalt with a baseline condition similar to
MATLAB. Prior research shows the developers consider
connected environments, like MATLAB, to provide the best
support for the machine learning process [16]. This section
describes our baseline system, the tasks in our study design,
and the major results of our experiment.

Participants
We recruited 8 participants (2 female) for our study. All were
computer science graduate students. All had some experience
programming in Python, had taken at least one course that
taught machine learning algorithms, and had worked on at
least one project that used supervised machine learning. This
population is consistent with the target audience of Gestalt:
software developers who know how to apply machine
learning.

42

Baseline vs. Gestalt
The baseline condition was a general-purpose development
environment in which participants created, edited, and
executed scripts. Like in MATLAB, participants created
visualizations by calling functions and writing scripts to
sort, filter, and color. We provided an API with which
could be used to reproduce all of Gestalt’s visualizations.

The baseline condition and Gestalt used the same data table
structure to store data. Unlike Gestalt, the data table in the
baseline did not keep track of information generated across
the pipeline. Participants had to write code to connect raw
data, attribute values, and classification results or to create
side-by-side visualizations.

Other than these differences, Gestalt and the baseline were
identical. The entire process was integrated, all of the code
for the learning process was written within the same
framework, using the same data structures, with the same
programming language. We chose this study design, instead
of a design that compared Gestalt directly to MATLAB,
because we wanted to increase our confidence that any
differences we observed were due to the capabilities we had
taken away (and not other differences in the tools, such as
the syntax of the programming language).

Study Design
The study was a within-subjects design, comparing Gestalt
with the baseline across two debugging tasks. To account
for carryover or interaction effects based on the ordering of
interface conditions (e.g., ordering or pairing of interface
and task), we counterbalanced the task with condition
(Gestalt and baseline) and order (first and second).

Our dependent measures included the number of bugs found
and the number of bugs fixed within the one-hour time span
of each task. A bug was counted as found if the participant
verbalized the root cause. For example, “The data is
mislabeled” or “This line of code should be using this
variable instead”. If the participant just speculated about the
cause, the bug would not be counted as found.

We did not measure time to fix a bug, because it was not
feasible to ascertain which bug a participant was working
on at any given time. Participants were cognizant of the
existence of multiple bugs. While trying to find and fix a
primary bug, participants often gathered information
needed to find and fix other bugs. Instead of the time to fix
each bug, we focus on such measurements as the time spent
in various visualizations over the entire study.

Sentiment Analysis and Gesture Recognition Tasks
Participants built solutions for the two problems discussed
earlier: sentiment analysis and gesture recognition. Each
contained data and five scripts: parsing, attributes,
splitting, training, and testing. We created
working solutions for both Gestalt and the baseline, then
injected five bugs into each solution. The machine learning
code for the baseline and Gestalt differed only in how
scripts were called and how data was maintained between

steps. These factors were intrinsic to the differences
measured in our results. Although we have described the
two problems previously, we provide additional details
about their implementation.

The sentiment analysis task classified movie reviews as
positive or negative. We used 1,000 negative and 1,000
positive reviews from a standard sentiment analysis dataset
[15]. We computed word-count attributes, built a Naïve
Bayes model, and evaluated using three-fold cross
validation. After building a working system, we introduced
the following bugs into the sentiment analysis problems:

S1: mislabeled 300 positive and 300 negative
examples [data]

S2: positive examples are read in twice [parsing]
S3: instead of removing stop words, the code removes

everything except for stop words [attributes]
S4: only updates the count for one

attribute [attributes]
S5: each fold tests on the training set [splitting]

The gesture recognition task involved building a model that
classifies a pen-stroke as one of 16 different gestures. We
used a standard dataset of 5280 gestures collected from 11
different people [21]. We normalized strokes, computed
attributes, built a Rubine model, and evaluated using per-
person cross-validation. We introduced the following bugs:

G1: mislabeled gestures (30 triangles swapped with
rectangles, 30 circles with stars, and 30 carets with
checks) [data]

G2: (x, y, t) points are loaded as (t, x, y) [parsing]
G3: does not load all of the examples [parsing]
G4: sine and cosine values are the same for one of the

attributes [attributes]
G5: tests on the same person in each fold [splitting]

We chose all of the bugs based on common programming
errors or common machine learning process errors. For
example, earlier versions of the Pang et al. dataset included
problems with mislabeled data that were later discovered
and reported [15]. The cross-validation bug in our gesture
recognition task is the same one reported by Hodges and
Pollack in their work [12]. Other bugs were based on
common mistakes, such copy-paste errors [13].

Participants were told that (except for the actual training
and testing of the model) there could be bugs at any step in
the pipeline. This included bugs in the raw data. They were
assured the structure of the pipeline was correct and the task
was not one of attribute generation or algorithm
development. As a stopping condition, they were given a
target accuracy range suggesting they had fixed all of the
bugs. This was a realistic stopping criterion in the context
of our task, repairing existing machine learning programs
that were known to have achieved a certain level of accuracy
in the past.

Data-labeling bugs in each task would have taken more time to
fix than was allotted. To make fixing mislabeled data tractable,

43

participants had to clearly state why examples were mislabeled
(associate the mislabeling with bad data rather than a
programming error). We then pointed them to a directory
containing correctly labeled data.

Finally, because the inserted bugs interacted with each other,
the accuracy of the classifier could increase or decrease
erratically (even going above the target accuracy). This was a
deliberate choice; erroneous high accuracy values may be
more dangerous because they provide a false sense of success.
Additionally, it can often be the case that an existing solution
may have multiple bugs and reported accuracy itself may not
be the best metric for debugging.

Procedure
After providing consent, participants completed a one-page
survey detailing their prior machine learning and Python
experience. The experimenter provided a document detailing
the first task. Both tasks were presented as salvaging code
written by another developer. The document detailed the steps
taken by the previous developer, and participants were
informed the developer had chosen a good strategy but there
were mistakes in the execution. After explaining the task, the
experimenter provided participants a one-page questionnaire
asking what tools they would normally use to implement the
outlined task.

After completing the questionnaire, participants followed a
tutorial on each tool. In the Gestalt condition, the tutorial
discussed the capabilities of the implementation and analysis
perspectives. The baseline tutorial contained information about
the capabilities of the editor and the visualization API. After
the tutorials, the experimenter provided quick reference sheets
for the included APIs. Because we were studying the effect of
Gestalt’s novel capabilities and not the usability or learnability
of the system, participants were told they could use the
experimenter as an intelligent help system during the task. This
included asking questions about APIs, visualizations, the
machine learning problems, and error messages.

Participants were asked to talk aloud, describing their progress
in the bug finding process. Participants were told the
experimenter might ask questions about their state or current
action. We asked participants to think aloud about the states:
(1) I have no idea what the bug is, (2) I have a guess, (3) I'm
checking my guess, (4) I'm fixing the bug, and (5) I'm confident
I fixed the bug. Participants were given one hour to complete
the task. After they finished, the experimenter saved their data
and started the next task, providing descriptions of the new
machine learning problem and the new development
environment.

After completing the second task, participants were given a
final questionnaire asking them to rate the usefulness of the
visualizations and faceted search capabilities. They were also
asked to compare the two development environments and to
compare to the existing tools they had reported they would use
for these tasks. Participants then completed a recording

consent form and were paid $50 for their time. The entire
study took between 3 and 3.5 hours.

RESULTS
Participants unanimously preferred Gestalt and were able to
find and fix more bugs using Gestalt than using the baseline.
Figure 5 shows an overview of bugs per condition. To examine
our found and fixed measures, we conducted a mixed-model
analysis of variance. We modeled participant as a random
effect and modeled condition (Gestalt vs. baseline), task
(sentiment analysis vs. gesture recognition), and trial (first vs.
second) as fixed effects. We also modeled the interactions
condition×trial and condition×task. We used these same
independent variables in all of the analyses we report in this
section.

We found a marginal effect of trial on the number of bugs
found, with participants finding more in the second trial (3.1
vs. 4.0 bugs, F1,5=4.62, p ≈ .084). This suggests some learning,
as there were commonalities among the bugs in the two tasks.
We verified the interaction condition×trial was not significant
(p > .42), confirming the effectiveness of our counterbalanced
design. Participants in the Gestalt condition found significantly
more bugs (4.25 vs. 2.88 bugs, F1,5=11.42, p ≈ .019).

We also found a marginal effect of trial for bugs fixed (2.88 vs.
3.63 bugs, F1,5=4.09, p ≈ .099) and again confirmed our
counterbalance effectiveness by verifying the lack of
significant interaction condition×trial (p > .72). Participants in
the Gestalt condition fixed significantly more bugs (3.75 vs.
2.75 bugs, F1,5=7.27, p ≈ .042).

DISCUSSION
This section discusses how Gestalt was used, the process
participants followed to solve machine learning problems, and
possible explanations for Gestalt’s better performance. We
ground our observations in free response questions from our
questionnaire and secondary measures of performance. We
also discuss limitations of our study, Gestalt’s implementation,
and general-purpose tools.

The Importance of Structure
We hypothesized a structured representation would be most
useful when developers first started a project, as it would be

Figure 5: Developers found and fixed significantly
more bugs in the Gestalt condition.

44

less daunting than a blank slate. Because we provided a mostly
working implementation of the project, we felt the importance
of structure would be diminished in our study. Consequently,
we did not explicitly ask participants whether they found the
structure helpful.

However, we included open-ended questions asking
participants what capabilities they found the most useful. In
this open-ended portion of the questionnaire, five of eight
participants said the explicit structure provided by viewing and
interacting with the classification pipeline was one of the most
useful components of Gestalt. They stated they would like to
see it in their own tools, with one participant writing “The
[classification pipeline view] was very helpful. When I am
running these types of experiments, I often get lost in all of the
processing steps. This seems like a useful way to organize the
workflow.”

Creating Individual Example Visualizations
Even though we provided standard visualizations of the
individual examples in both conditions, some participants
created their own. Both the baseline and the Gestalt conditions
provided developers with the ability to make charts, including
the ability to plot points. Two participants in the baseline
condition (p5 and p7) used this to plot a gesture’s stroke. This
confirms developers can and will develop quick, simple
visualizations of raw data when given proper tools. This is
promising evidence for Gestalt’s approach of using developer-
created visualizations of individual examples in aggregate
visualizations to help developers understand data, attributes,
and results.

The Need for Connectivity
Participants in both conditions actively tried to relate attribute
values and results to their raw data. Gestalt’s connected
visualizations make it easy to compare their data, attributes,
and classification results. When taken away in the baseline,
participants expressed frustration. One participant, who
worked in Gestalt first, explicitly described that he wanted to
see the raw data next to the attributes in the baseline and was
annoyed that it was not as easy as in the prior condition.

To make up for a lack of connectivity in the baseline, three
participants (p1, p3, and p8) went to great lengths to cobble
together their own combined table view; two did this before
having used Gestalt. In all three cases, they opened two
separate table views, one after parsing and one after attribute
computation. They then resized these tables and placed them
side-by-side so they could visually compare attributes with
data.

Interactivity
We also observed that the interactivity of visualizations was
critical. Because we logged the active window as well as input
(e.g., mouse clicks, key strokes), we could determine if
participants spent their time implementing or analyzing.
Participants in Gestalt spent significantly more time analyzing
(37.3% vs. 18.9%, F1,5=5.44, p ≈ 0.001).

Participants also used more kinds of views. In our post-study
questionnaire, we asked participants to tell us which faceted
search capabilities (e.g., filtering) and views they used (e.g.,
grid view). We found that participants tried significantly more
views in the Gestalt condition (3.4 vs. 2.5 views, F1,5=18.84, p
≈ .007) and marginally more faceted search techniques (2.0 vs.
1.1 techniques, F1,5=5.44, p ≈ 0.067). The gesture recognition
task also led participants to spend more time in visualizations
(32.9% vs. 23.3%, F1,5=11.15, p ≈ .021), look at more views
(3.4 vs. 2.5 views, F1,5=18.84, p ≈ .0074), and use more faceted
search techniques (2.3 vs. 0.9 techniques, F1,5=13.44, p ≈ .015)
than the sentiment analysis task. This is likely because there
were more classes in the gesture condition and the data was
easier to visualize. These differences suggest that spending
more time looking at more kinds of views might allow
developers to better formulate and test possible explanations
that lead them to find and fix more bugs.

In both conditions, most participants used filtering and sorting
to group relevant examples. Gestalt made this easier. One
participant followed the exact process shown in Figure 4. He
clicked in a confusion matrix to see examples of triangles
classified as rectangles, then found the mislabeled examples.

Study Limitations
Our study has several limitations. Both tasks had pipelines that
could be run in real-time (loading and processing data,
generating attributes, training a model, testing the model).
Many important learning problems are too expensive to be
computed in real-time. We chose this limitation to allow
participants to explore a large number of different bug
hypotheses within our time constraint. It is possible that
Gestalt may be more useful in situations where models take
longer to train. Developers might enjoy greater benefit from
using visualizations to explore data and attributes while
waiting for updated results in a longer feedback cycle.

Our study was also limited to finding bugs in unfamiliar code.
The challenges in the middle of a development process are
different from those at the beginning, and setting up a
workflow for a learning task can be daunting. Participants
found value in Gestalt’s pipeline structure. Their comments in
the open-ended questionnaire lead us to believe Gestalt’s
structure will also assist developers solving machine learning
problems from scratch.

Our study focused on two problems for which developers had
some intuition about the data. They knew gestures that looked
similar should be in the same dataset, and they knew words in
movie review text should appear as non-zero attributes.
Developers may not always have such a clear understanding of
the data at the onset of the project. They may instead develop
understanding over time. Flexible visualizations seem crucial
for this, as they can allow developers to create individual
visualizations embodying information to best help them to
understand their data.

45

Limitations of Gestalt
Our study revealed some unexpected work patterns that
suggest new opportunities for Gestalt and other tools.
Participants p7 and p8 created toy review datasets to see if
reviews were being correctly parsed and word counts were
being correctly computed. Participant p8 also created simple
strokes that consisted of a few (x, y, t) points. He then
manually computed attributes (using pen and paper) and
compared them to the values computed during attribute
generation. Other participants created filters by manually
selecting a small set of examples and examining them through
the entire pipeline. These behaviors collectively suggest
support for unit testing practices could be a good addition to
Gestalt and other machine learning tools.

While Gestalt can be used to build machine learning systems
for many domains, there are some problems Gestalt does not
completely support. A key limitation is that Gestalt assumes
individual examples can be processed without the context of
the larger dataset. This impacts the types of learning
algorithms Gestalt supports, but also some of Gestalt’s core
capabilities. For example, our current grid and table aggregate
visualizations cannot properly visualize relationships inherent
to sequential data (e.g., time-series). It is also non-obvious how
to implement the interaction in Crayons, where individual
pixels have meaning only in the aggregate context of an image.
New general methods for describing relationships between
examples would benefit Gestalt and future general-purpose
tools.

The difficulty of implementing the core Crayons interaction
within Gestalt raises a question of whether general-purpose
tools can be as effective as domain-specific tools. Both styles
of tool are important. It is almost certain that a highly-
specialized tool will be more effective for its particular
problem. However, general tools provide two advantages. We
have noted that the number of domains affected by machine
learning is large and growing. General tools can support
problems for which domain-specific tools have not yet been
developed. Further, distilling general mechanisms, like those in
Gestalt, informs domain tools by allowing a focus on domain-
specific extensions instead of re-inventing general
mechanisms.

CONCLUSION
Gestalt supports the entire process of applying machine
learning: implementing a classification pipeline, analyzing data
as it moves through that pipeline, and easily transitioning
between these perspectives. We have discussed how Gestalt’s
capabilities generalize advances from prior domain-specific
tools to provide general-purpose support. A comparison of
participants using Gestalt with a baseline condition similar to
MATLAB showed participants find and fix more bugs with
Gestalt and that Gestalt’s flexibility and visualizations were
primary contributors to their success. These results show that
helping developers understand relationships between the
various steps in a classification pipeline is important to their
success.

ACKNOWLEDGEMENTS
We thank Morgan Dixon, Joe Devietti, and Scott Saponas for
their invaluable feedback. This work has been supported in
part by MSR and NDSEG fellowships for Kayur Patel and by
the National Science Foundation under grants IIS-0812590 and
CCF-0952733.

REFERENCES
1. Ball, N.M. and Brunner, R.J. Data Mining and Machine

Learning in Astronomy. 2009.
2. Blume, P.A. The LabVIEW Style Book. Prentice Hall 2007.
3. Candea, G. and Fox, A. Recursive Restartability: Turning the

Reboot Sledgehammer into a Scalpel. HotOS 2001.
4. Card, S.K., Mackinlay, J.D., and Shneiderman, B. Readings in

Information Visualization: Using Vision to Think. 1999.
5. Chen, M.Y., Accardi, A., Kiciman, E., Lloyd, J., Patterson, D.,

Fox, A., and Brewer, E. Path-based Failure and Evolution
Management. NSDI 2004.

6. Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y.,
Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand,
L., Libby, R., Smith, I., and Landay, J.A. Activity Sensing in the
Wild: A Field Trial of UbiFit Garden. CHI 2008.

7. Cruz, J.A. and Wishart, D.S. Applications of Machine Learning
in Cancer Prediction and Prognosis. Cancer Informatics 2,
(2007).

8. Fails, J.A. and Olsen, D.R. Interactive Machine Learning. CHI
2003.

9. Fogarty, J., Tan, D., Kapoor, A., and Winder, S. CueFlik:
Interactive Concept Learning in Image Search. CHI 2008.

10. Gil, Y., Ratnakar, V., Kim, J., Gonzalez-Calero, P.A., Groth, P.,
Moody, J., and Deelman, E. Wings: Intelligent Workflow-Based
Design of Computational Experiments. IEEE Intelligent Systems,
To Appear.

11. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S.R.
Authoring Sensor-based Interactions by Demonstration with
Direct Manipulation and Pattern Recognition. CHI 2007.

12. Hodges, M.R. and Pollack, M.E. An ‘Object-Use Fingerprint’:
The Use of Electronic Sensors for Human Identification.
UbiComp 2007.

13. Juergens, E., Deissenboeck, F., Hummel, B., and Wagner, S. Do
Code Clones Matter? ICSE 2009.

14. Maynes-Aminzade, D., Winograd, T., and Igarashi, T. Eyepatch:
Prototyping Camera-based Interaction Through Examples. UIST
2007.

15. Pang, B., Lee, L., and Vaithyanathan, S. Thumbs Up?: Sentiment
Classification Using Machine Learning Techniques. EMNLP
2002.

16. Patel, K., Fogarty, J., Landay, J.A., and Harrison, B.
Investigating Statistical Machine Learning as a Tool for Software
Development. CHI 2008.

17. Rubine, D. Specifying Gestures by Example. SIGGRAPH 1991.
18. Simon, I., Morris, D., and Basu, S. MySong: Automatic

Accompaniment Generation for Vocal Melodies. CHI 2008.
19. Stolte, C. Visual Interfaces to Data. SIGMOD 2010.
20. Witten, I.H. and Frank, E. Data Mining: Practical Machine

Learning Tools and Techniques. 2005.
21. Wobbrock, J.O., Wilson, A.D., and Li, Y. Gestures Without

Libraries, Toolkits or Training: A $1 Recognizer for User
Interface Prototypes. UIST 2007.

46

