
More Natural End-User Software Engineering
Brad A. Myers, Amy Ko, Sun Young Park, Jeffrey Stylos, Thomas D. LaToza, Jack Beaton

Human Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA 15213
412-268-5150

bam@cs.cmu.edu http://www.cs.cmu.edu/~NatProg

ABSTRACT
The “Natural Programming” project at Carnegie Mellon
University has been working for more than 10 years to
make programming more “natural”, or closer to the way
people think. We have addressed the needs of all kinds of
programmers: novices, professionals and end-user pro-
grammers. Many studies were performed which provided
new insights and led to new models of programmers. From
these insights and models, we created new programming
languages and environments. Evaluations of the resulting
systems have shown that they are effective and successful.
This paper provides an overview of the entire 10-year
Natural Programming project, but focuses on our new re-
sults since WEUSE-III in Dagstuhl.

Categories and Subject Descriptors
H5.2. Information Interfaces and Presentation – User Interfaces;
D.2.6. Programming Environments. D.2.5 [Testing and Debug-
ging]: Debugging aids, tracing. D.2.6 [Programming Environ-
ments]: Integrated environments.

General Terms
Design, Human Factors, Languages.

Keywords
Designer, Interactive Behaviors, Survey, Authoring, End-User
Software Engineering, Natural Programming, Programming by
Demonstration.

1. INTRODUCTION
The Natural Programming Project [33] has been applying human-
computer interaction (HCI) techniques to develop and evaluate
models and tools to help novice, professional, and “end-user” [32]
programmers.

We started by studying how people think about programming
concepts and algorithms [36, 38]. Participants in these studies did
not know how to program, but they were familiar with a variety of

computer applications. The goal was for the language to work in
the way that people who do not have programming experience
(novice programmers) expected. We then used these results to
design a new programming language and environment [35, 37]. A
summative study showed that it did help novice programmers
create programs more easily [37].

Figure 1: The original Whyline for Alice. The “Why” menu is at
the top, and the time-line visualization of the answer is at the bot-
tom. [19]

Next, we performed several studies of programming environment
use. One study focused on novice programmers learning to use
Visual Basic.NET [21]. Another looked at the influence of the
programming environment on the types of errors that users of
Alice [39] inserted into their code [18]. In another study, we in-
vestigated experienced programmers using Eclipse on several
software maintenance tasks [22]. Our observations from these
studies led to a number of design ideas for more helpful tools. For
example, we designed the Whyline, which allows programmers to
ask “Why” and “Why not” questions about their program’s be-
havior, in order to help them better understand the causes behind
their program’s execution (see Figure 1) [19]. This led to the de-
sign of a similar tool, Crystal, which helped end users ask why
questions about the behaviors of word processors, including the
application’s more complicated features, such as the “styles”
mechanism and auto-correction [31]. We also created Mica,
which helps programmers solve the vocabulary problem [13] by
using Google to find example code and documentation from the
words that the programmer can think of [44]. Our Jasper tool [9]
allows programmers to select fragments of relevant code, and also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
WEUSE IV’08, May 12, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-034-0/08/05...$5.00.

30 Most up-to-date version: 06/03/2021

choose other types of data from web pages and write notes about
a task. All of this information is collected and presented in a sin-
gle place, and saved in a single document, so that it can be re-
turned to later and shared with coworkers who might also work on
the task.

2. NEW WORK
In this workshop position paper, we focus on our new work, even
though some of it is more related to professional programmers
than EUP. Our earlier EUP systems are well-documented in other
papers; those who are interested can see the citations above or our
WEUSE-II overview [30]. The four topics on which we are cur-
rently working are how designers think about authoring behav-
iors, transitioning the Whyline to work for Java, studying how to
make APIs more usable, and improving how people understand
existing code.

2.1 Studying Designers
Designers are skilled at sketching and prototyping the look of
interfaces, but to explore various behaviors (what the interface
does) typically requires writing scripting code using Javascript,
Flash or other programming tools. There have been many previ-
ous studies of the processes, techniques and tools that are used by
designers, but none has focused on how the interactive behavior
of the interface is created and communicated. We conducted field
studies of 13 designers, and a web-based survey, which received
231 responses, to investigate the particular issues for the design of
interactive behaviors. We particularly focused on people who are
not programmers, but rather who are trained and work on Interac-
tion Design, Graphics Design, Information Architecture, Experi-
ence Design, Visual Design, User Interface Design, or equivalent.

Many of our findings confirmed what others have reported in
previous surveys, for example that designers prefer to start by
sketching (about 97% in our survey), and most designers (88% in
our survey) also use storyboards.

However, we did find some interesting new results that have not
been previously reported:

• By a large margin, the participants in our survey agreed that
prototyping the behaviors was more difficult than the design of
the appearance (86% said prototyping the behaviors was more
difficult).

• Sketches and storyboards cannot adequately convey the behav-
iors by themselves, so designers must augment them with anno-
tations such as arrows and many textual descriptions of the de-
sired behaviors (see Figure 2).

• The purpose of implementing the interactive behaviors, and for
the annotations on the pictures, is often primarily to serve as
documentation and specifications for others. Almost all design-
ers worked in teams, and communicating with others is a key
part of their jobs. Communicating the design of behaviors to
developers was reported to be difficult by 40% of the designers
in our study.

• The behaviors that the designers wanted were quite complex
and diverse, beyond what could plausibly be provided by a sys-
tem that provided only a few built-in behaviors or a selection of
predefined widgets, and therefore seemingly requires full pro-
gramming capabilities.

• As reported for other kinds of design [6], in our survey, the
designers agreed that the design of interactive behaviors
emerge through the process of exploration. In other words, the
designers do not have a final conception of the behavior before
they start. However, whereas iterating on the look of the inter-
face can be easily done by sketching, designers felt it difficult
to iterate on the behavior. Today’s authoring tools make it dif-
ficult or impossible to have two implementations of behaviors
side-by-side to compare them, and even keeping around and
reverting to old versions of code is difficult.

Figure 2: Sketches by a contextual inquiry participant showing
two different options being investigated for an interaction, with
lines and textual annotations to explain what is intended.

We are currently designing a new study to evaluate how designers
express the low-level components of behaviors. We have con-
structed a Flash program that shows various primitive animations,
such as an object disappearing, moving, changing colors, respond-
ing to the mouse, etc. We will ask designers to describe what
happens in their own words. In previous studies [36, 38], this kind
of exploration has revealed interesting data about how people
naturally express and think about these behaviors.

2.2 Whyline for Java
Our research showed that virtually all debugging sessions start
with asking “Why” and “Why Not” questions – why something
did something, and in about 60% of the cases, why something did
not do something [18]. Our initial prototype tool, called the
“Whyline” (see Figure 1) [19] allowed programmers to pop up
menus to ask “Why” and “Why Not” questions in the Alice pro-
gramming environment for kids [39]. In lab studies, the Whyline
decreased the time to find and fix bugs by a factor of eight, and
increased programmer productivity by 40%.

We have since developed a version of the Whyline in Java [20]
and found similar success. In a study comparing rank novice pro-
grammers to experienced programmers, novices were able to
complete a debugging task significantly faster, describing the
work “like a treasure hunt” and saying “It was fun! I didn’t know
debugging was like this.” In a second study comparing experts
using the Java Whyline to experts using a conventional debugger,
Whyline users completed tasks twice as fast and with significantly
higher rates of success, saying, “My god, this is so cool” and
“When can I get this for C?”

Although the Whyline for Java is designed explicitly for experi-
enced Java developers, many of the issues of scale and generality
that we have addressed in the design will influence the design of a

31

Whyline tool for simpler languages meant for domain experts. For
example, we have found that illustrating program execution by
annotating code is perhaps even more effective than listing events
in a timeline. This calls for rich, interactive code editors in EUP
tools and not just plain text. We have also developed algorithms
and data structures that allow recording, asking, and answering to
work at interactive speeds. To support Whyline questions, these
techniques need to be integrated into the runtime environments
for EUP languages. We have also generalized the notion of “pro-
gram output” and found that questions about output in a particular
medium requires a careful design customized to the form of out-
put—intuitively asking questions about rendered graphics is quite
different than asking about text printed to a console. Since many
end-user programming languages produce specific kinds of do-
main output, it will be important to customize the question-asking
experience to these domains and users’ expert knowledge.

2.3 API Usability
Most of programming today involves using complex software
libraries, toolkits, software development kits (SDKs), frameworks
and other application programming interfaces (APIs). This is
equally true of novice, professional and end-user programmers. In
fact, most EUP code serves to control and glue together high-level
complex operations. However, to use an API, the programmer
must first understand how the various functions work, and in par-
ticular, how they work together. Our research has shown that this
is a significant barrier [21]. Making it even more difficult is that
most APIs have not been designed with usability as a design goal.
Designers of APIs have many competing goals and many design
decisions to make [43]. We have begun a series of studies to in-
vestigate how to make APIs more usable, and to develop models
and new tools to help with API use.

In the first study [42], we compared objects with “required pa-
rameters” that must be supplied when an object is created, versus
having “default constructors” with no parameters that just create
an empty object. We found the surprising result that, contrary to
the intuition of experienced API designers, all of the kinds of
programmers we studied were more effective at using objects that
did not have required parameters. Some API designers had as-
serted that having required parameters on constructors would
make it clearer to users that instances are not valid until those
parameters were provided. Our second study [12] showed that
APIs that used “factory” classes instead of constructors to create
objects (a pattern recommended by API designers [4, 10] and
software engineers [14]) came with severe usability disadvantages
not previously documented. Our current study is looking at how
programmers investigate documentation to find classes to imple-
ment a desired function, and how object hierarchies and name-
spaces can be designed to increase usability. Along with recom-
mendations for the design of new APIs, we will also create new
tools and documentation techniques to increase the usability of
existing APIs.

In a collaborative project with SAP (the third largest software
company in the world), we examined the usability of their
“BRFPlus” business rules framework API, and used our observa-
tions to create a prototype for a new version of the API. The busi-
ness rules framework is used by programmers, but it is also used
by business experts who are not programmers. The business rules
framework comes with GUI tools with which business experts

create rules that are end-user programs, specifying case-logic and
procedural behavior. As business rules systems become more
popular, business experts are becoming an increasingly important
class of EUP. There remains much work to be done in improving
the usability of the business rule tools that these business experts
use.

Inspired by these results SAP has asked us to investigate the us-
ability of their new APIs for Enterprise Service Oriented Archi-
tecture (E-SOA). These APIs may be used by professional pro-
grammers, but the eventual goal includes allowing business proc-
ess experts to create their own E-SOA applications through EUP.

2.4 Understanding Code
A significant portion of all programmers’ time in the real world is
spent trying to understand how code works. Surprisingly little is
known about what programmers do during this time, or what tools
would help. A new series of studies by our group [17, 24, 26] and
elsewhere [29, 40, 41] are showing that these investigations start
with questions that programmers want to answer (e.g., “under
what conditions does this code need to be called?”) and result in a
set of facts that the programmer must keep track of (e.g., “this
code must be called each time the cursor moves”). Developers
seek, learn, critique, and explain these facts to generate proposals
of what to change and reject proposals which violate perceived
constraints.

One interesting new result is that a number of questions about
what a program is doing are related to update paths [25]. An “up-
date path” is a sequence of method calls and field assignments
which link a trigger application state change to an effect applica-
tion state change. Developers navigate long sequences of control
and data flow relationships to discover these rules. Today’s tools
make this difficult. For example, our research shows that when
programmers are trying to determine what code caused a particu-
lar program behavior, they often search the code for a keyword
they think might be related, but that such guesses led to relevant
code in only 12% of searches [22]. Existing development envi-
ronments provide static views (e.g., Eclipse’s call hierarchy tree
of callers or callees) and dynamic views (e.g., the call stack of the
current execution). Our study revealed numerous ways in which
using the static call hierarchy to answer update path questions
resulted in wasted time, inferior changes, and bugs. These prob-
lems occurred because the tools do not filter by trigger, show
infeasible update paths, do not show how update paths interact,
and do not show class structure or fields. Dynamic views, such as
the Whyline or the Eclipse debugger, show only a single execu-
tion path rather than all feasible paths, and are not a reliable way
to discover all relevant effects. In typical GUI code, it is common
for there to be large switch statements, such as branching based
on the event type, so our static analyses that can propagate values
(such as which kind of event), can provide a display that is sig-
nificantly pruned from the full call graph, and therefore much
more useful and understandable. From these insights, we are cre-
ating new tools to address these problems.

3. RELATED WORK
Of course, for all of these projects, there is significant work by
others that is related, but there is only room here for a brief over-
view. Please see the related work sections of our other papers for
more.

32

In the area of studying designers, it long been well known that
designers prefer sketching for early phases of design [6, 34, 46].
Other surveys have shown that designers make extensive use of
informal tools [34] and storyboards [11]. Many research tools
have been created to help designers with sketching and authoring
behaviors, for example, SILK [23], DENIM [34], DEMAIS [2]
and Designer’s Outpost [16].

The Whyline for Java builds on more than half a century of re-
search on debuggers [27], including recent work such as Abraham
and Erwig’s goal-directed debugging [1], which allows a devel-
oper to choose a wrong value in a spreadsheet and specify the
correct value. The analyses that the Whyline uses are based on
static and dynamic program slicing [3].

The API usability work was directly inspired by usability studies
of specific APIs done at Microsoft [7, 8] and elsewhere [5, 28].
Our approach instead focuses more on patterns used by many
APIs, so the results will be more directly generalizable.

Finally, there is an enormous literature on reverse engineering and
code understanding (e.g. [22, 40, 45]). All show differences be-
tween novices and experts, and some have documented questions
that programmers investigate [41, 45]. New tools have been based
on these results, such as Mylar [15] which presents relevant code
and methods to help with navigation and selection.

4. CONCLUSIONS
The Natural Programming project has followed a human-centered
approach to software engineering. This approach of designing
from data about what people do and what is natural for people,
has resulted in new knowledge, models and tools that are relevant
for novice, professional, and end-user programmers.

Although we have described multiple projects led by different
people, they are all related. A future system should combine the
dynamic analysis of the Whyline with the static analysis of update
paths to produce a more comprehensive debugging and under-
standing environment, since these tasks are often linked. New
tools for designers will require APIs that are quite usable, along
with a good debugging system such as those in the Whyline. The
models we have developed in all projects about how programmers
work is relevant to future design of all tools.

We look forward to discussing our results with other members of
the WEUSE-IV workshop.

ACKNOWLEDGMENTS
This work was supported in part by the National Science Founda-
tion under NSF grant IIS-0329090 and the EUSES consortium
under NSF grant ITR CCR-0324770. Additional support has come
from IBM, SAP and Adobe.

REFERENCES
[1] Abraham, R. and Erwig, M. “Goal-Directed Debugging of

Spreadsheets,” in VL/HCC 2005. September 20-24, 2005.
Dallas, TX: pp. 37-44.

[2] Bailey, B.P., Konstan, J.A., and Carlis, J.V. “Supporting Mul-
timedia Designers: Towards more Effective Design Tools,”
in 8th International Conference on Multimedia Modeling.
2001. pp. 267-286.

[3] Baowen, X., Ju, Q., Xiaofang, Z., Zhongqiang, W., and Lin,
C., “A brief survey of program slicing.” SIGSOFT Software
Engineering Notes, 2005. 30(2): pp. 1-36.

[4] Bloch, J., Effective Java Programming Language Guide.
2001, Boston, MA: Addison-Wesley.

[5] Bore, C. and Bore, S., “Profiling software API usability for
consumer electronics.” Consumer Electronics, 2005.

[6] Buxton, B., Sketching User Experiences: Getting the Design
Right and the Right Design. 2007, San Francisco, CA: Mor-
gan Kaufmann.

[7] Clarke, S., “Measuring API Usability.” Dr. Dobbs Journal,
May, 2004. pp. S6-S9.

[8] Clarke, S. “Describing and Measuring API Usability with the
Cognitive Dimensions,” in Cognitive Dimensions of Nota-
tions 10th Anniversary Workshop. 2005.
www.cl.cam.ac.uk/~afb21/CognitiveDimensions/workshop2
005/Clarke_position_paper.pdf.

[9] Coblenz, M.J., Ko, A.J., and Myers, B.A. “JASPER: An
Eclipse Plug-In to Facilitate Software Maintenance Tasks,”
in Eclipse Technology eXchange (ETX) Workshop at OOP-
SLA 2006. October 22-23, 2006. Portland, Oregon: pp. 65-
69.

[10] Cwalina, K. and Abrams, B., Framework Design Guidelines.
2005, Upper-Saddle River, NJ: Addison-Wesley.

[11] Davis, R.C. and Landay, J.A. “Informal Animation Sketch-
ing: Requirements and Design,” in AAAI 2004 Fall Sympo-
sium on Making Pen-Based Interaction Intelligent and Natu-
ral. October 21-24, 2004. pp. 42-48.

[12] Ellis, B., Stylos, J., and Myers, B. “The Factory Pattern in
API Design: A Usability Evaluation,” in International Con-
ference on Software Engineering (ICSE'2007). May 20-26,
2007. Minneapolis, MN: pp. 302-312.

[13] Furnas, G.W., Landauer, T.K., Gomez, L.M., and Dumais,
S.T., “The vocabulary problem in human-system communi-
cation.” Commun. ACM, 1987. 30(11): pp. 964-971.

[14] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
Patterns. 1995, Reading, MA: Addison-Wesley.

[15] Kersten, M. and Murphy, G.C. “Mylar: a degree-of-interest
model for IDEs,” in AOSD '05: 4th international Conference
on Aspect-Oriented Software Development. March 14 - 18,
2005. Chicago, Illinois: pp. 159-168.

[16] Klemmer, S.R., Thomsen, M., Phelps-Goodman, E., Lee, R.,
and Landay, J.A. “Where do web sites come from? capturing
and interacting with design history,” in Proceedings of
CHI'2002: the SIGCHI conference on Human factors in
computing systems. 2002. Minneapolis, Minnesota: pp. 1-8.

[17] Ko, A.J. and DeLine, R. “A Field Study of Information
Needs in Collocated Software Development Teams,” in In-
ternational Conference on Software Engineering
(ICSE'2007). May 20-26, 2007. Minneapolis, MN:

[18] Ko, A.J. and Myers, B.A. “Development and Evaluation of a
Model of Programming Errors,” in IEEE Symposium on End-
User and Domain-Specific Programming (EUP'03), part of
the IEEE Symposia on Human-Centric Computing Lan-
guages and Environments. October 28-31, 2003. Auckland,
New Zealand: pp. 7-14.

[19] Ko, A.J. and Myers, B.A. “Designing the Whyline, A De-
bugging Interface for Asking Why and Why Not questions
about Runtime Failures,” in Proceedings CHI'2004: Human
Factors in Computing Systems. April 24-29, 2004. Vienna,
Austria: pp. 151-158.

33

[20] Ko, A.J. and Myers, B.A. “Debugging, Reinvented: Asking
and Answering Why and Why Not Questions about Program
Behavior,” in ICSE'2008: 30th International Conference on
Software Engineering. 10 - 18 May, 2008. Leipzig, Ger-
many: pp. To appear.

[21] Ko, A.J., Myers, B.A., and Aung, H.H. “Six Learning Barri-
ers in End-User Programming Systems,” in IEEE Symposium
on Visual Languages and Human-Centric Computing. Sep-
tember 26-29, 2004. Rome, Italy: pp. 199-206.

[22] Ko, A.J., Myers, B.A., Coblenz, M., and Aung, H.H., “An
Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance
Tasks.” IEEE Transactions on Software Engineering, Dec,
2006. 33(12): pp. 971-987.

[23] Landay, J. and Myers, B., “Sketching Interfaces: Toward
More Human Interface Design.” IEEE Computer, March,
2001. 34(3): pp. 56-64.

[24] LaToza, T.D., Garlan, D., Herbsleb, J.D., and Myers, B.A.
“Program comprehension as fact finding,” in ESEC/FSE
2007: ACM SIGSOFT Symposium on the Foundations of
Software Engineering. September 3-7, 2007. Dubrovnik,
Croatia: pp. 361-370.

[25] LaToza, T.D. and Myers, B.A., “How Developers Reason
about Update Paths.” Submitted for publication, 2008.

[26] LaToza, T.D., Venolia, G., and DeLine, R. “Maintaining
Mental Models: A Study of Developer Work Habits,” in
Proceedings of the International Conference on Software
Engineering (ICSE'2006). 2006. Shanghai, China: pp. 492 -
501.

[27] Lieberman, H., “The Debugging Scandal and What to Do
About It.” CACM, April, 1997. 40(4): pp. 26-78. Special Is-
sue.

[28] McLellan, S.G. and Roesler, A.W., “Building More Usable
APIs.” IEEE Software, 1998. 15(3): pp. 78-86.

[29] Murphy, G.C., Kersten, M., and Findlater, L., “How are Java
software developers using the Eclipse IDE?” IEEE Software,
Jul/Aug, 2006. pp. 76-83.

[30] Myers, A.J.K.B.A., Coblenz, M.J., and Stylos, J. “End-User
Programming Productivity Tools,” in The Next Step: From
End-User Programming to End-User Software Engineering
(WEUSE II) at CHI'2006. April 23, 2006. Montreal, Canada:
http://www.cs.cmu.edu/~ajko/papers/Ko2005ProductivityTo
ols.pdf.

[31] Myers, B., Weitzman, D.A., Ko, A.J., and Chau, D.H. “An-
swering Why and Why Not Questions in User Interfaces,” in
Proceedings CHI'2006: Human Factors in Computing Sys-
tems. April 22-27, 2006. Montreal, Canada: pp. 397-406.

[32] Myers, B.A., Ko, A.J., and Burnett, M.M. “Invited Research
Overview: End-User Programming,” in Extended Abstracts,
CHI'2006. April 22-27, 2006. Montreal, Canada: pp. 75-80.

[33] Myers, B.A., Pane, J.F., and Ko, A., “Natural Programming
Languages and Environments.” CACM, Sept, 2004. 47(9):
pp. 47-52.

[34] Newman, M.W. and Landay, J.A. “Sitemaps, Storyboards,
and Specifications: A Sketch of Web Site Design Practice,”
in Designing Interactive Systems, DIS 2000. August, 2000.
New York City: pp. 263-274.

[35] Pane, J., A Programming System for Children that is De-
signed for Usability. PhD Thesis, Computer Science De-
partment, Carnegie Mellon University, 2002, Pittsburgh, PA.
http://www.cs.cmu.edu/~pane/thesis/. Computer Science
Technical Report CMU-CS-02-127.

[36] Pane, J.F. and Myers, B.A. “Tabular and Textual Methods
for Selecting Objects from a Group,” in Proceedings of VL
2000: IEEE International Symposium on Visual Languages.
September 10-13, 2000. Seattle, WA: IEEE Computer Soci-
ety. pp. 157-164.

[37] Pane, J.F. and Myers, B.A. “The Impact of Human-Centered
Features on the Usability of a Programming System for Chil-
dren,” in CHI. Apr 1-6, 2002. Minneapolis, MN: pp. 684-
685. http://www-2.cs.cmu.edu/~pane/research.html. Ex-
tended Abstracts for CHI'2002.

[38] Pane, J.F., Ratanamahatana, C.A., and Myers, B.A., “Study-
ing the Language and Structure in Non-Programmers' Solu-
tions to Programming Problems.” International Journal of
Human-Computer Studies, February, 2001. 54(2): pp. 237-
264. http://www.cs.cmu.edu/~pane/IJHCS.html.

[39] Pausch, R., Burnette, T., Capehart, A.C., Conway, M.,
Cosgrove, D., DeLine, R., Durbin, J., Gossweiler, R., Koga,
S., and White, J., “Alice: A Rapid Prototyping System for
3D Graphics.” IEEE Computer Graphics and Applications,
1995. 15(3): pp. 8-11. May.

[40] Robillard, M.P., Coelho, W., and Murphy, G.C., “How Ef-
fective Developers Investigate Source Code: An Exploratory
Study.” IEEE Transactions on Software Engineering, De-
cember, 2004. 30(12): pp. 889-903.

[41] Sillito, J., Murphy, G.C., and De Volder, K. “Questions pro-
grammers ask during software evolution tasks,” in SIG-
SOFT'06/FSE-14: Proceedings of the 13th ACM SIGSOFT
and 14th international symposium on Foundations of Soft-
ware Engineering. 2006. Portland, Oregon: pp. 23 - 34.

[42] Stylos, J. and Clarke, S. “Usability Implications of Requiring
Parameters in Objects' Constructors,” in International Con-
ference on Software Engineering (ICSE'2007). May 20-26,
2007. Minneapolis, MN: pp. to appear. Submitted for Publi-
cation.

[43] Stylos, J. and Myers, B. “Mapping the Space of API Design
Decisions,” in 2007 IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC'07. Sept 23-27,
2007. Coeur d'Alene, Idaho: pp. 50-57.

[44] Stylos, J. and Myers, B.A. “Mica: A Programming Web-
Search Aid,” in IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC'06. Sept 4-8, 2006.
Brighton, UK: pp. 195-202.

[45] Vans, A.M., Mayrhauser, A.v., and Somlo, G., “Program
Understanding Behavior during Corrective Maintenance of
Large-Scale Software.” Int’l J. Human-Computer Studies,
July, 1999. 51(1): pp. 31-70.

[46] Wong, Y.Y. “Rough and Ready Prototypes: Lessons from
Graphic Design,” in Extended Abstracts, SIGCHI'92. May,
1992. Monterey, CA: pp. 685.

34

	1. INTRODUCTION
	NEW WORK
	2.1 Studying Designers
	2.2 Whyline for Java
	2.3 API Usability
	2.4 Understanding Code

	3. RELATED WORK
	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

