
 1

More Natural and Open User Interface Tools
Proposal to attend the ACM CHI 2005 Workshop on the Future of User Interface Design Tools

ABSTRACT
Our research is highlighting some potential directions for
the future of user interface design tools. One approach is to
make the tools and their SDKs more usable, effective and
understandable by making them more natural. Another is to
take advantage of an “open data model” to more easily in-
tegrate new components. In addition, programming-by-
demonstration techniques and model-based automatic gen-
eration still hold much promise.

INTRODUCTION
We would like to attend the CHI 2005 Workshop on The
Future of User Interface Design Tools. Members of our
group have created many user interface tools, including
Garnet, Amulet and their many components, as well as a
variety of handheld and model-based systems [7]. We have
also created many tools that used programming-by-
demonstration (PBD) [3], and participated in past “futures”
discussions (e.g., [5, 6]).

In this paper, however, we would like to focus on two other
aspects of our work with which the community may not be
as familiar: Natural Programming and the preliminary work
on an Open Data Model.

NATURAL PROGRAMMING
The goal of the Natural Programming research project [8] is
to make it easier to write programs by taking HCI principles
into account in the design of programming languages, pro-
gramming environments, and software development kits
(SDKs). Since programmers are people, it makes sense to
utilize all of the available HCI techniques to improve the
tools that programmers use. The first assignment in one of
the first author’s courses is for students to apply Nielsen’s
10 heuristics to evaluate the UI and/or API for a UI tool.
Students always generate long lists of problems that could
be corrected. Of course, our own toolkits try to follow these
HCI guidelines in their user interfaces (e.g., all the names in
Amulet use a consistent naming scheme).

We go much further in the Natural Programming project,
where we begin all new research with extensive user studies
about how people naturally perform tasks, and then try to
embody these new findings in our designs of new pro-
gramming tools.

Our early Natural Programming research was focused on
the design of a new language for children [11]. Since the
goal of the environment was to make it particularly easy to
create animated interactive software, the results are relevant
to future tools in this area. As part of this research, we dis-
covered that people often drew pictures to show the graphi-
cal parts of an interface, but preferred to use language to
describe the dynamic behaviors. People generally used an
event-based phrasing to discuss responses to actions (e.g.,
“when PacMan loses all his lives, it’s game over”) but a
constraint-based phrasing was also sometimes used
(“PacMan cannot go through a wall”). Aggregate operators
(acting on multiple objects at once) were used much more
often than iterating through a set and acting on each object
individually (e.g., “Move everyone below the 5th place
down by one”). Participants rarely used Boolean expres-
sions, and were likely to make errors when they did (i.e.,
their expressions were not correct if interpreted according
to the rules of Boolean logic). We invented a new format
for entering Boolean operations that appeared to be more
successful [10]. Based on all of these findings, we designed
a new programming language, called HANDS, which a
study showed could be used by children with no experience
to create small programs [8]. This research can provides
guidance on language design and environment structures
for future user interface design tools so it will be easier for
programmers to create graphical interactive programs.

Our current work in the Natural Programming project is
focusing on the programming environment itself. We stud-
ied novices writing interactive programs in Visual Basic,
and found that entering code took a small fraction of the
time compared to debugging This was due to errors made
while coding and poor debugging tools [2]. We are building
new debugging and code construction tools to help address
both of these problems. The WhyLine [1] helps with de-
bugging by allowing programmers to ask why events did or
did not happen in their program. For construction, the envi-
ronment will help keep track of dependencies, necessary
transformations, and other to-do items.

Another branch of research is studying how people learn
new SDKs [12]. Internet resources, particularly Google,
have emerged as new and effective tools that provide quick
access to a large collection of tutorials and sample code.

Brad A. Myers and Amy J. Ko
Human-Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA 15213
{bam, ajko}@cs.cmu.edu

http://www.bam.hcii.cmu.edu/

 2

However, we observed common difficulties in integrating
example code and using search engines to find different
ways to accomplish similar tasks. Preliminary findings sug-
gest that help systems, documentation and tools can be im-
proved to make the learning and use of SDKs substantially
easier, which could influence future UI tools.

OPEN DATA MODEL
At the end of the Amulet project, it became apparent that
one of the advantages of the Amulet toolkit programming
model was that there was a well-defined and “open” de-
scription of all application data, which was available for
other applications to inspect and modify. While this might
seem to fly in the face of information hiding, we argued that
there were substantial advantages to this “open data model”
including: support for increased automation, extensive end-
user customization capabilities, external agents and tutors,
sophisticated search and replace, scripting and macros, al-
ternative interfaces without re-implementing the applica-
tion, plug-ins that operate in the same space, and signifi-
cantly higher re-use of common code [4]. Now we are start-
ing to see applications such as most of Microsoft Office do
a reasonable job of exposing their internal data structures
through COM interfaces. Similarly, with XML and the
“semantic web,” there is an increased interest in the concept
of providing a standard, well-documented description of an
application’s internal data. Note that this is not the same as
having the UI generated from an XML description, as in a
number of projects, such as XIML, XAML, MXML, XUL,
XUIML, PUC [9], etc. However, an application that sup-
ported both might also provide for external modification
and control of the user interface elements, such as adding
new visualizations to the Outlook calendar.

One place we have recently used a related concept is in the
Citrine smart clipboard tool [13]. Citrine attempts to parse
any data that is copied to the clipboard and places a stan-
dard XML description of what it recognizes onto the clip-
board, thereby providing a structured interchange format
between applications. This permits more intelligent copy-
and-paste among applications.

OTHER WORK
The tremendous success of Interface Builders (also called
resource editors) shows that at least part of a user interface
is best created graphically. Our PBD research [3] showed
that it is possible—but difficult—to expand what can be
created to also support the dynamic behaviors of interfaces.
We still think that PBD has potential, at least for the
graphical parts of interfaces that are created dynamically.

Also promising is our work on model-based tools, where
the user interface is automatically generated from a high-
level description (model) [9].

CONCLUSION
Although new UI tools are clearly needed for new user in-
terface styles and features (recognition-based input, multi-
user, ubiquitous computing, etc.), the research discussed

here focuses on fundamental issues about the design of the
tools and toolkits themselves, which transcend the target of
the tool. We expect research in all these areas to be impor-
tant for improving future tools.

ACKNOWLEDGMENTS
Thanks to my many students who have contributed to these ideas.
Support for this research has come from DARPA, NSF, and many
companies.

REFERENCES
1. Ko, A.J. and Myers, B.A. “Designing the Whyline, A

Debugging Interface for Asking Why and Why Not ques-
tions about Runtime Failures,” in CHI. 2004. pp. 151-
158.

2. Ko, A.J., Myers, B.A., and Aung, H.H. “Six Learning
Barriers in End-User Programming Systems,” in IEEE
VL/HCC. 2004. pp. 199-206.

3. Myers, B., McDaniel, R., and Wolber, D., “Programming
by example: Intelligence in Demonstrational Interfaces.”
Communications of the ACM, 2000. 43(3): pp. 82-89.

4. Myers, B.A., The Case for an Open Data Model. Carne-
gie Mellon University, School of Computer Science
Technical Report, CMU-CS-98-153, August, 1998.
http://reports-archive.adm.cs.cmu.edu/anon/1998/CMU-
CS-98-153.pdf.

5. Myers, B.A., Hollan, J., and Cruz, I., “Strategic Direc-
tions in Human Computer Interaction.” Computing Sur-
veys, 1996. 28(4): pp. 794-809.

6. Myers, B.A., Hudson, S.E., and Pausch, R., “Past, Pre-
sent and Future of User Interface Software Tools.” ACM
Transactions on Computer Human Interaction, 2000.
7(1): pp. 3-28.

7. Myers, B.A., et al., “Taking Handheld Devices to the
Next Level.” IEEE Computer, 2004. 37(12): pp. 36-43.

8. Myers, B.A., Pane, J.F., and Ko, A., “Natural Program-
ming Languages and Environments.” Communications of
the ACM, 2004. 47(9): pp. 47-52.

9. Nichols, J. and Faulring, A., “Automatic Interface Gen-
eration and Future User Interface Tools.” Submitted for
Publication, 2005.

10. Pane, J.F. and Myers, B.A. “Tabular and Textual Meth-
ods for Selecting Objects from a Group,” in Proceedings
of VL 2000: IEEE International Symposium on Visual
Languages. 2000. Seattle, WA: IEEE Computer Society.
pp. 157-164.

11. Pane, J.F., Ratanamahatana, C.A., and Myers, B.A.,
“Studying the Language and Structure in Non-
Programmers' Solutions to Programming Problems.” In-
ternational Journal of Human-Computer Studies, 2001.
54(2): pp. 237-264.

12. Stylos, J. and Myers, B.A., “How Programmers Use
Internet Resources to Aid Programming.” Submitted for
Publication, 2005.

13. Stylos, J., Myers, B.A., and Faulring, A. “Citrine: Pro-
viding Intelligent Copy-and-Paste,” in ACM Symposium
on User Interface Software and Technology, UIST'04.
2004. Santa Fe, NM: pp. 185-188.

