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ABSTRACT 
While prior work has investigated many aspects of programming 
problem solving, the role of self-regulation in problem solving 
success has received little attention. In this paper we contribute a 
framework for reasoning about self-regulation in programming 
problem solving. We then use this framework to investigate how 
37 novice programmers of varying experience used self-regulation 
during a sequence of programming problems. We analyzed the 
extent to which novices engaged in five kinds of self-regulation 
during their problem solving, how this self-regulation varied 
between students enrolled in CS1 and CS2, and how self-regulation 
played a role in structuring problem solving. We then investigated 
the relationship between self-regulation and programming errors. 
Our results indicate that while most novices engage in self-
regulation to navigate and inform their problem solving efforts, 
these self-regulation efforts are only effective when accompanied 
by programming knowledge adequate to succeed at solving a given 
problem, and only some types of self-regulation appeared related to 
errors. We discuss the implications of these findings on problem 
solving pedagogy in computing education. 

CCS Concepts
• Social and professional topics~Computer science
education   • Social and professional topics~CS1 
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1. INTRODUCTION
Programming problem solving is a complex activity that poses 
many diverse cognitive demands on learners. As Elliot Soloway 
argued thirty years ago, expert programmers “have built up large 
libraries of stereotypical solutions to problems as well as strategies 
for coordinating and composing them. Students should be taught 
explicitly about these libraries and strategies for using them.” [30]. 
Students are often left to develop these strategies on their own, and 
when they fail to do so, they quit [2]. 
Prior work has investigated a wide range of materials, pedagogies, 
and techniques for teaching programming problem solving 
strategies. For example, recent studies have explored worked 
examples and the effect of sub-goal labels, finding that examples 

and sub-goal labels can promote greater problem solving success 
[20,22,23]. Other efforts such as the Idea Garden have investigated 
strategy hints, giving learners suggestions about how to approach a 
problem (e.g., divide and conquer), finding that hints can promote 
independence and self-efficacy [5]. Similarly, Linn & Clancy found 
that case studies including code and expert explanations can lead to 
a more integrated understanding of programming process and some 
gains in problem solving success [18].  

While these pedagogies and materials improve learner’s content 
knowledge for programming, prior work in the learning sciences 
literature suggests process skills, and in particular self-regulation, 
are equally critical. Self-regulation is the ability to be aware of 
one’s thoughts and actions and evaluate how well they are moving 
one closer towards a goal [28]. Several studies have investigated 
self-regulation in learning, finding, for example, that successful 
learners generate self-explanations of material and use self-
explanations to monitor for misconceptions [21]; that self-
explanation prompts can improve problem-solving skill and self-
efficacy [8]; that high performing CS students use more 
metacognitive and resource management strategies [3]; and that 
general metacognitive training can promote improvements in 
domain-specific skills such as listening and science inquiry [10]. 

Only a handful of studies have explicitly investigated self-
regulation in the context of programming. One of the earliest was 
conducted by Clements & Gullo, investigating the effect of 
teaching programming problem solving [7]. They found that 
teaching programming via Logo, relative to teaching computer use, 
subjectively promoted greater “reflectivity.” Pea and Kurland 
reviewed this and other work on the effects of learning to code, 
finding little evidence that learning to code promoted self-
regulation or metacognition. However, they they did draw upon 
learning sciences literature to argue that programming itself 
requires self-regulation for planning programming solutions [24]. 
This is consistent with more recent work, identifying self-regulated 
learning strategies [11,12], and showing that programming 
expertise demands a high degree of self-awareness and self-
monitoring [9,17]. 

Acknowledging that programming requires self-regulation, more 
recent studies have investigated ways of teaching self-regulation 
for programming. Bielaczyc et al. investigated the impact of 
teaching self-explanation, finding that students who received 
explicit training on self-explanation strategies used these strategies 
more than those without the training, increasing problem solving 
success [4]. More recently, Loksa et al. found that combining 
similar self-regulation instruction with a framework for 
programming problem solving activities promoted not only greater 
problem solving success, but also gains in productivity, self-
efficacy and growth mindset [19]. 

While prior work provides compelling evidence that self-regulation 
is key to successful programming, it leaves several open questions: 
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• To what extent do novices self-regulate when programming? 
• To what extent does programming experience in CS1 and 

CS2 promote self-regulation in programming? 
• To what extent is self-regulation related to successful 

programming problem solving? 
In this paper, we investigate these questions, first proposing a 
theoretical framework for self-regulation in the context of 
programming. We then present an empirical analysis of novice 
programmers’ self-regulation activities and explore how variation 
in self-regulation was associated with problem solving success. We 
end with a discussion our findings on computing education, with 
several ideas for how to promote self-regulation through teaching. 

2. THEORETICAL FRAMEWORK 
Lacking an existing theoretical framework of self-regulation in 
computing, we derive our framework from key self-regulation 
elements which are common across prior work. Prior work frames 
self-regulation as the ability to monitor and control one’s behaviors, 
thoughts, and emotions for the demands of the moment, and 
monitoring progress toward goals [16]. In the context of learning, 
self-regulation involves metacognition (thinking about one’s 
thoughts) [10], planning (evaluating progress toward a learning 
goal), and motivation (manipulating one’s intrinsic and extrinsic 
goals to make progress toward learning) [31]. 

In the context of programming, we propose that self-regulation 
helps plan and evaluate progress toward writing a program that 
solves some computational problem. Our hypothesis is that the 
more a participant self-regulates their programming activities, the 
more successful they will be at solving the problem. 

This hypothesis, however, demands a more granular view of what 
“progress” means in programming, and how self-regulation is 
related to progress. Loksa et al. recently defined progress in 
programming problem solving as six distinct and nominally 
sequential but iterative activities [19]; we propose these are related 
to self-regulation as follows:  

• Reinterpreting the problem prompt. Programming tasks 
begin with some problem that programmers must interpret 
and clarify. As with any problem solving, this understanding 
is a cognitive representation of the problem used to organize 
one’s “continuing work” [13]. The more explicitly one 
engages in regulating this understanding (e.g., by reflecting 
on whether their understanding is correct), the more likely 
they will correct misconceptions of it. 

• Searching for analogous problems. Programmers draw upon 
problems they have encountered in the past, either in past 
programming efforts or even in algorithmic activities from 
everyday life [14,30]. By reusing knowledge of related 
problems, programmers can better conceptualize a problem’s 
computational nuances. Learners may self-regulate by being 
aware of limitations in their knowledge of related problems. 

• Searching for solutions. With some understanding of a 
problem, programmers seek solutions that will solve the 
problem by adapting solutions to related problems or by 
finding solutions in textbooks, online, or from classmates or 
teachers [15]. During solution search, learners may monitor 
the extent to which they have searched and the degree to 
which the search was satisfactory. 

• Evaluating a potential solution. With a solution in mind, 
programmers must evaluate how well it will address the 
problem. This includes feasibility assessments, mental 
simulations of algorithm behavior, or other techniques of 
prototyping before implementation. Self-regulation may help 

learners to decide whether their evaluation of a potential 
solution is adequate, or whether they need to more certainty. 

• Implementing a solution. With a solution in mind, 
programmers must translate the solution into code using their 
programming languages and tools. Learners may self-
regulate their awareness of working memory limitations and 
manage prospective memory for future tasks.  

• Evaluating an implemented solution. After implementing a 
solution programmers iteratively converge toward 
correctness, evaluating how well their implementation solves 
the problem, usually by testing and debugging. Learners may 
self-regulate their certainty in an implementation’s 
correctness to prevent overconfidence. 

Based on these six stages, and prior work on the elements of self-
regulation in learning, we identify five types of self-regulation that 
support programming problem solving: 

• Planning. Learners should reflect on what their next step in a 
problem solving process should be (e.g., did new information 
reveal a gap in understanding? What tasks remains for an 
implementation?) [29]. The more a learner engages in 
explicit planning, the more successful they should be. 

• Process monitoring. Programmers who explicitly monitor 
their progress toward solving a problem are more successful 
(e.g., is a sub-goal complete? Is the code sufficiently tested?) 
[4,15,17,19]. The more learners monitor when a task is 
complete, the more successful they should be. 

• Comprehension monitoring. Learners should monitor their 
understanding of computational concepts in problems and 
solutions [19,29] (e.g., am I confused? Is my understanding 
of this failure accurate?). The more aware learners are of 
their misconceptions, the more successful they should be at 
correcting them. 

• Reflection on cognition. Learners should make judgments 
about the qualities and limitations of their memory and 
reasoning [31] (e.g., am I forgetting something? Am I making 
any assumptions?). The more aware learners are of their 
cognitive biases, the more likely they are to correct for them. 

• Self-explanation. Learners should explain to themselves why 
they have come to a conclusion or decision, and then use that 
rationale to monitor their progress [4,21,30] (e.g., this was 
the right loop condition because it halts at the end of the list). 
The more learners engage in self-explanation, the more they 
will find flaws in their reasoning. 

While all five of these self-regulation activities are likely critical to 
any kind of problem solving, we suspect that they are particularly 
useful in programming. This is for two reasons: 1) programming 
problems are often about abstract computational processes, 
requiring additional cognitive load to reason about abstract ideas in 
working memory, and 2) programming languages require precision 
and completeness, demanding repeated interpretation of the code 
one has written. Self-regulation may play a key executive control 
role, facilitating more logical, precise and systematic reasoning 
about abstract computational ideas, helping a learner to manage 
their cognition as they navigate a largely invisible solution space. 

While self-regulation may be essential some prior work suggesting 
that teaching it improves problem solving success [4,9,17,19], to 
what extent do novice programmers engage in self-regulation 
without explicit instruction? Do these self-regulation skills, 
however undeveloped, contribute to problem solving success? In 
the coming sections, we investigate this questions directly. 
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3. METHOD 
Our target population was students who had enrolled in up to two 
introductory programming courses (which we will call CS1 and 
CS2). This ensured exposure to the syntax and semantics of at least 
one programming language, but minimal experience with problem 
solving. We recruited participants from lower-division CS and 
information science classes via email and flyers, ultimately 
recruiting 37 students. Because CS1 was required for many 
degrees, but CS2 for only for CS and a few, we viewed these as two 
separate populations, dividing participants into those who had 
enrolled in or completed CS1 and those who and enrolled in or 
completed CS2. Table 1 shows that the groups were balanced 
across gender, age, and self-efficacy (-8 to 8 on our scale).  
When participants arrived, we gathered age, gender, CS course 
enrollment, and programming self-efficacy, which we adapted 
from [1] to be language agnostic. Then, to help participants practice 
thinking-aloud [6], we provided participants with a worked 
example of a problem consisting of a problem and solution in 
pseudo-code. We instructed participants to say everything that went 
through their mind as they read the example and solved problems. 
If at any point they remained silent for 1-minute they were 
prompted “remember to think out loud.” After participants had time 
to read and understand the example, they solved a problem that was 
isomorphic in structure and context. After completing the 1st 
problem, participants received a 2nd and 3rd problem for practice.  

Finally, we gave participants three additional problems to solve one 
at a time, each without examples. We adapted our problems from 
prior work that focused on while loop usage [22]. The final three 
problems consisted of one problem isomorphic to the practice 
problems, and two context-shifted problems, where the structure of 
the problem was consistent with prior problems, but the domain 
was different. Our intent was to provide both familiar and novel 
problems to investigate variation in self-regulation. Figure 1 shows 
the final three problems. We instructed participants to write in 
pseudo-code, focusing on logic over syntax. 

We collected two forms of data. The first was audio recordings of 
participants’ think aloud. We transcribed the recordings and then 
coded them for 9 types of verbalizations: 4 of the 6 problem solving 
activities from Section 2 and all 5 of the self-regulation types from 
Section 2. We based this data collection on best practices of verbal 
data [6], measures of self-regulation [4,26,28], and theories of 
problem solving process [19,25]. Table 2 shows our coding scheme 
for each verbalization type. We merged two problem solving 
activities—searching for a solution and evaluating a solution— 
into adapting a solution because they were not observable in our 
think aloud data and adapting requires finding a solution, and 
evaluating it. We excluded implementation because we did not 
track participants’ editing which are difficult to identify through 
audio. The 1st author developed the codebook and trained with 
another researcher, iteratively refining the the coding scheme until 
reaching consensus. To verify the validity of the scheme each 
researcher independently coded 10% of the transcripts and then 
compared each sentence in the transcripts, coming to an 83% 
agreement across all sentences. The 1st author then completed the 
remainder of the coding. 
The second form of data was the participants’ programming 
solutions. We analyzed solutions for errors by identifying lines of 
code that would need to be added, removed, or changed in order for 
the participants’ solutions to produce the correct output. We treated 
lines of code that were unnecessary for a working solution as errors. 
This analysis was performed only on problems 4-6 because 
solutions to problems 1-3 were provided in the examples. 

	 CS1	(21	students)	 CS2	(16	students)	
Gender	 F=11,	M=10	 F=8,	M=8	
Age	 [18,	18,	27]	 [18,	20,	24]	
Self-Efficacy	 [-3,	2,	8]	 [-2,	2,	6]	
Table 1. Sample size, gender, age and self-efficacy for each 

experience group, showing [min, median, max]. 

ISOMORPHIC	PROBLEM	
Problem	4:		The	instructor	has	now	given	you	a	collection	of	test	grades	
and	asked	you	to	calculate	the	class	average	for	passing	grades	(those	
that	are	70	or	above).	Here	are	all	the	test	grades	for	the	class. 

CONTEXT	SHIFTED	PROBLEMS	
Problem	5:	Your	best	friend	is	a	golfer,	but	is	not	very	good	at	math.	
They	continue	to	make	errors	when	adding	up	scores.	You	volunteer	to	
write	a	program	that	will	add	up	the	golf	scores	and	print	out	the	scores	
for	the	first	nine	holes,	the	second	nine	holes,	and	total	for	the	round.		
Problem	6:	Suppose	that	a	certain	group’s	population	grows	at	a	rate	
of	 10%	 every	 year.	Write	 a	 program	 that	will	 determine	 how	many	
years	it	will	take	for	the	population	to	double.	

Figure 1. Problem prompts 4-6. 

Code	 Definition	 Examples	
Reinterpret	
problem	

Questioning	details	of	the	problem	prompt	or	
problem	requirements.	

“I	only	need	to	find	the	sum?”	
	“…it	says	those	that	are	70	or	above.	Does	that	mean	70%	or	the	number	of	points?”	

Analogous	
problem	search	

Identifying	similarities	between	the	current	
problem	and	other	problems	or	solutions.	

“It	seems	like	a	similar	structure	of	the	problem	example.”	
“So	this	is	like	the	first	question	I	had.”	

Adapt	solution	 Identifying	what	needs	to	change	about	a	
prior	solution	to	solve	the	current	problem.	

	“This	was	also	like	the	first	one	except	without	the	last	step	of	finding	the	average.”	
“This	one	is	a	bit	different	because	this	time,	we	have	to	only	calculate	the	average.”	

Evaluate	solution	 Judging	the	correctness	of	code.	 “All	right.	I'm	just	going	to	check	the	solution.”;	“So	let	me	just	check	the	for	loop.”	
Planning	 Expressing	intent	to	perform	some	task,	or	

description	of	a	task	participants	is	doing.	
“I’m	going	to	initialize	variables	first”	
	“I’m	just	copying	the	code	from	the	example.”	

Process	
monitoring	

Declaring	that	a	programming	sub-goal	is	
complete.	

“So	that's	the	end	of	the	for-loop.”	
“So	I	got	the	first	part.	Going	on	to	the	second.	“	

Comprehension	
monitoring	

Reflection	about	the	understanding	of	code	or	
problem	prompts.	

“I	don't	know,	end	while	means...”	
“And	so	actually,	I	don't	know	how	this	golf	scoring	works,”	

Reflection	on	
cognition	

Judgments	about	mental	processes,	mistakes,	
assumptions,	or	biases.	

	“I	was	refreshed	from	earlier	about	how	to	do	logical	operations	within	while	loop.”	
“I	read	the	question	wrong.”		

Self-explanation	 An	account	of	why	a	decision	was	correct.	 “So	I	don't	need	LCV	because,	probably	because	we	don't	have	a	list.”	
“The	average	will	be	zero	at	first	because	we	didn't	add	anything.”	

Table 2. The 4 problem solving activity codes and 5 self-regulation codes analyzed in participants’ think-aloud data, along with 
definitions and representative quotes from transcripts. 
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4. RESULTS 
In this section, we first discuss the extent to which participants 
verbalized their problem solving and self-regulation, mirroring the 
framework in Section 2. Then, we investigate the relationship 
between self-regulation and errors in participants’ solutions. 
Throughout, we compare the behaviors of participants in the CS1 
and CS2 groups. All between group statistical hypothesis tests 
reported were Kruskal-Wallis tests.  

4.1 Problem Solving Process  
Here we discuss the four problem solving activities observable in 
the transcripts, discussing the extent to which participants engaged 
in them and how they were influenced by self-regulation. 

4.1.1 Reinterpreting the problem prompt 
Reinterpretation is critical to understanding the nuances and 
ambiguities in problems [13]. We expected participants to use 
process and comprehension monitoring to identify knowledge gaps, 
leading them to reinterpret the problem prompt. Our data showed, 
however, that very few participants engaged in problem 
reinterpretation. Of all 37 participants, only 15 verbalized about 
reinterpreting the prompt. This lack of reinterpretation was 
consistent across both experience groups: 8 (of 21) CS1 and 7 (of 
16) CS2 participants verbalized reinterpreting.  

As shown in Figure 2, CS1 participants primarily reinterpreted the 
context shifted problems, 5 and 6, where they demonstrated 
difficulty conceptualizing the problem they were attempting to 
solve. In contrast, the CS2 participants that reinterpreted did so 
across most of the problems. This suggested a pattern of self-
regulation related to experience, but the frequency of 
reinterpretation verbalizations across all problems was not different 
between groups (p=0.59, H=2.57). 

Participants often began coding without fully understanding the 
problem, leaving them with knowledge gaps in the problem 
requirements and causing them to later stop implementation to 
address the gaps. For example, while implementing a loop for 
problem 6, P4 (CS1) stopped to question, “Should I do less than 
200? …doubles? [Should it be] While 100 is less than or equal to 
200?” Only after deciding what logic to use were they able to 
continue coding. Similarly, P3 (CS1) questioned requirements 
while coding the output for their solution, realizing that a small 
detail may invalidate their work: “do you want me to give you this 
decimal years, how many years it would take? Because this is a 
whole different math, I think.” After resolving this concern, they 
completed the output and started on the next problem. During this 
process, comprehension monitoring helped participants identify 
gaps (e.g., should they use less than, or less than and equal to?) 
Process monitoring spurred participants into reinterpreting the 
problem. Stronger self-regulation at the beginning of problem 
solving may have prevented these disruptive task switches. 

4.1.2 Searching for analogous problems 
Programmers draw upon knowledge of previously encountered 
problems to provide insight into new problems [14,30]. We 
expected that participants would engage in process monitoring and 
self-explanation to identify when they had found a past problem 
that might help them build a solution. 
Our results showed that participants frequently searched for 
analogous problems and solutions. Of the 37 participants, 29 
verbalized a search for analogous solutions at least once across all 
problems. Figure 3 shows that this varied by problem and was more 
prevalent for problems 1-4, where there were prior examples to 
leverage. Of all search verbalizations, 83% (316 of 380) occurred 
in this context. Participants may have perceived problems 5 and 6 
as entirely new problems, unable to see the deeper structural 
similarities due to their inexperience.   

CS1 participants verbalized searches for analogous problems 
across many problems, while CS2 participants did not. While the 
frequency of search verbalizations across all problems was not 
significantly different (p=0.89, H=0.29), the CS1 participants 
searched in up to 5 of the 6 problems, relying on prior solutions to 
solve the problem. In contrast, CS2 participants verbalized 
searching for only 3 of the 6 problems, with many verbalizing none. 
This indicates that those with less experience were self-regulating 
more, perhaps due to the problems being more novel to them.  

The content of participants’ search verbalizations differed by 
experience. First, CS1 participants tended to explicitly reference 
examples (e.g. “…which means I have to combine example one and 
example two.” (P26)) while CS2 participants referenced problem 
details (e.g. “So it's sort of like the last problem where you need to 
be keeping track of certain scores.” (P10)). Another difference was 
the scope of the analogy identified. CS1 participants often 
identified similarities about surface features of the solution; for 
example, P33 identified that their loop should be the same as the 
one in the example, “So I think you would just do the same, except 
you take out everything that's under 70 for this one.” Similarly, P44 
said, “So the loop termination condition is very similar to the first 
example.” CS2 participants indicated the entire solution as being 
analogous: “Okay, so this is like the exact same [problem] pretty 
much with different values.” (P37). This difference reveals that CS1 
participants were self-regulating at a structural granularity, while 
CS2 self-regulated at a computational level. 

4.1.3 Adapting previous solutions 
Just as programmers rely on prior knowledge to conceptualize 
novel problems, they also rely on previous [15]. Self-regulation is 
integral to this, requiring comprehension monitoring to understand 
the previous solution and the current problem, while planning the 
adaptations necessary, all while monitoring their adaptation 
progress. 

 
Figure 2. The number of participants who verbalized at least 

one problem reinterpretation, by problem and experience 
(CS1→light, CS2→dark). 

 
Figure 3. The number of participants who verbalized at least 

one search for analogous problems, by problem and 
experience (CS1→light, CS2→dark). 
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Our data shows that although many searched for previous 
problems, only half verbalized adapting a previous solution (10 of 
21 CS1 and 9 of 16 CS2). However, as Figure 4 shows, frequency 
varied by experience. CS1 participants tended to verbalize 
adaptation for more of the six problems, but did not verbalize more 
frequently (CS1 and CS2 groups had a median of 1 verbalization 
across all problems, p=0.88, H=0.02). 

CS2 participants also appeared to be more confident, suggesting 
less need for comprehension monitoring. To illustrate, consider P18 
(CS1), who said: “So this one is a bit different because this time, 
we have to only calculate the average for those students who have 
passed.” In contrast, the much shorter, and arguably more confident 
comment made by P4 (CS2), “So it's the same problem as example 
one, it's just the values are different.” 

While the length and tone of the verbalizations for adapting 
previous solutions varied slightly, the content varied little, with 
most providing a single high level detail about how the previous 
solution would need to be changed. Examples include P15 (CS1), 
who said “So basically, it's the same thing but now, we're just 
counting two instead of the sevens” and P6 (CS2), “So this time, 
instead of sevens, we should count the twos.” 

4.1.4 Evaluating solutions 
Evaluation of a solution, including analysis and testing, are critical 
to successfully solving programming problems [17]. We expected 
participants to engage in comprehension monitoring and process 
regulation to determine whether to engage in evaluation and 
determine the quality and level of detail of the evaluation. 

Figure 5 shows only about half of participants verbalized 
evaluation. Overall, 42% (9 of 21) of CS1 participants did 
compared to 62% (10 of 16) of CS2 participants. However, this 
difference was not statistically significant (p=0.27, H=1.20).  

There were two types of evaluations. Many were short statements 
that occurred before or just after the mental simulation of code. 
Those that occurred before announced the intent to evaluate. For 
example, P10 (CS1) completed their solution and said, “All right. 
I'm just going to check the solution.” Similarly, P22 (CS2) finished 
initializing variables but wanted to verify that they listed the correct 
values in their array stating, “Let me to double check” before 
reading off each of the values in the problem prompt, verifying they 
exist in the array. Statements that occurred after evaluation focused 
on the result of evaluation. For example, P10 (CS1) said, “All right. 
I am satisfied with this solution” after tracing their completed 
solution. P5 (CS2) said, “I think that's fine” after briefly looking 
over their code. These verbalizations likely represented their 
decision that their evaluation was adequate. 
Most evaluations were on entire solutions but some participants 
evaluated smaller portions of code. For example, P26 (CS1) 
evaluated the initialization of their grades array: “I'll just double 
check to make sure I put them all in correctly” ensuring that the 

data was correct. P3 (CS2) verbalized intent to evaluate their loop, 
“So let me just check the for loop”, after which they returned to 
implementing their output. Some participants verbalized their 
tracing. For instance, P39 (CS1) traced their completed solution 
while saying, “Awesome, that should be good. First nine holes zero, 
second nine holes zero, total score, go through it each time. Print 
it the first time, print the second time, add them up for a total… 
Awesome.” While there were differences between participants, 
there were no systematic differences between the groups.   

Evaluation impacted problem solving by exposing misconceptions 
and errors and by helping participants gain confidence. For 
example, P22 (CS2) identified an error: “Double checking. Yep. 
Oh, I think we need a print line. Yeah.” In these cases, participants 
returned to either reinterpreting the problem to clarify ambiguities, 
or they returned to code having located a defect. The second 
outcome was an increase in confidence allowing the participant to 
continue onto the next sub-problem or problem. For example, after 
evaluating, P19 said: “All right. I am satisfied with this solution.” 

4.2 The Role of Self-Regulation 
Having discussed the problem solving behaviors that rely upon, and 
thus indirectly indicate self-regulation, in this section we describe 
our findings on the role of self-regulation.  

4.2.1 Planning  
Planning is pervasive throughout programming problem solving, 
guiding the direction that programmers take and driving the choices 
of both what to do and when to do it [30]. We expected that few 
participants would exhibit planning given their inexperience. 
In fact, as you can see in Figure 6 the majority of participants 
verbalized planning. Only two did not, both of whom were CS1 
participants.  For context, one of these participants had slightly 
fewer errors than the average participant while the other had the 3rd 
most errors in their solutions among all participants. CS1 
participants had a median of 5 planning verbalizations while the 
CS2 group had a median of 6. However, this was not a significant 
difference (p=0.17, H=1.88).  

When participants verbalized planning, they focused on two topics. 
First, they spoke about intent to evaluate such as when P10 stated, 

 
Figure 4. The number of participants who verbalized at least 

one solution adaption, by problem and experience 
(CS1→light, CS2→dark). 

 
Figure 5. The number of participants who verbalized at least 

one solution evaluation, by problem and experience 
(CS1→light, CS2→dark). 

 
Figure 6. Frequency of participants’ planning verbalizations 
across all problems, by experience (CS1→light, CS2→dark). 
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“I'm just going to check the solutions” or while already evaluating 
P16 said, “Let's go through this one more time.” Second, they spoke 
about plans for implementation, primarily for a specific line of 
code. Examples include P6, who said, “I'm gonna print out the 
result” or P30’s realization, “…and we can do a sum for sum1 right 
here.” The more abstract and less granular plans for code included 
larger sections of code as in P31’s comment, “So after reading this, 
I think a good first step would be to initialize the variables” or when 
P5 decided to write the structure of their if-statement block, “so first 
I'm just going to write it.” There were no discernable differences in 
the types of planning between the CS1 and CS2 participants.  

4.2.2 Process monitoring 
Our framework suggests that programmers engage in process 
monitoring to track their progress through their problem solving 
process, identifying when goals have been completed, then utilizing 
planning to identify necessary next steps. 

Our data showed that only half of participants verbalized process 
monitoring and those that did, did it rarely. Figure 7 shows that only 
10 of 21 CS1 participants verbalized process monitoring, averaging 
just 1 verbalization per participant over all six problems. There was 
one outlier in this group, a 22-year old female, who verbalized 
about process a total of 10 times across all problems. There were 
no indications as to why she verbalized process as much as she did 
and her other self-regulation behaviors were unremarkable, 
however, she made fewer errors than 63% of participants. CS2 
participants had a median of 1 verbalization; not significantly 
different from CS1 which had a median of 0 (p=0.61, H=0.26).  

We observed two types of process monitoring. The most prevalent 
was a declaration of having completed an implementation sub-goal. 
This was often verification of completing the initialization of all 
needed variables, or completion of a loop. For example, P29 said: 
“Okay, so I've got the list. I've got the count. I've got LCV. I've got 
sum.” or P6’s comment about completing the content of a loop: “So 
I got the total and the count, so that's the end of the for-loop.” The 
second type of process monitoring was when participants declared 
a solution complete. Examples of this include, “And printed. I'm on 
the next task.” (P1), and “Yay I'm done (maybe).” (P22). Both types 
appeared to help participants segment their process, marking the 
end of a task and the beginning of planning the next one.  

4.2.3 Comprehension monitoring 
Our framework suggests that programmers engage in 
comprehension monitoring to identify knowledge gaps. The more 
a programmer is aware of their misunderstandings about a problem 
or a piece of code, or of their own confidence of some given code 
being correct, the more likely they will make better decisions.  

Surprisingly, we found that CS2 participants were much less likely 
to verbalize comprehension monitoring than CS1 participants. Only 
6 of 16 (37%) CS2 participants verbalized comprehension 
monitoring, compared to the 14 of 21 (66%) CS1 participants. 
Moreover, Figure 8 shows CS2 participants verbalized significantly 

less (p=0.03, H=4.70) than CS1 participants with a median of 0 
verbalizations per participant to CS1’s 2.  

There were two types of comprehension monitoring. First, many 
statements involved participants realizing they did not understand 
something. For instance, CS1 participant P8 commented, “I don't 
know what end while means...” while reading example pseudo-
code, and then proceeded to self-explain, finally coming to an 
understanding. Similarly, P25 (CS1) acknowledged their confusion 
after reading an example, “So I'm a little bit confused.” Rather than 
just continuing, their process monitoring facilitated the realization 
of something that was unclear and they decided to re-reading the 
example. The other type of comprehension monitoring involved 
participants absorbing information, often from examples or when 
attempting to understand a problem. For instance, while reading 
example code P11 (CS1) said, “So I think I will say, I 90% 
understand this method.” While they acknowledged they did not 
fully understand the example, they felt their comprehension was 
sufficient to begin work on a similar programming problem. There 
was no different in the type of comprehension monitoring made by 
CS1 and CS2 participants; CS1 participants just verbalized more. 

The role of comprehension monitoring was primarily to understand 
examples or a problem. The majority of verbalizations occurred 
while reading example solutions, including indicators of 
understanding (e.g. “It's very simple and I think people can 
understand it really well”, P10, CS2) and confusion (“I'm not sure 
what the length means?” (P11, CS1). When participants monitored 
problem comprehension, they indicated statements of confusion, as 
in P18 (CS1)’s need for domain knowledge: “And so actually, I 
don't know how this golf scoring works. How does the golf scoring 
works?” We found no differences in the content of CS1 and CS2 
participants’ comprehension monitoring.   

4.2.4 Reflection on cognition 
Our framework proposes that metacognitive reflection helps 
programmers to be aware of their own thought processes and the 
limits and biases in their memory and reasoning. Because prior 
studies characterize metacognition among novices as being rare, we 
expected few participants to verbalize it during problem solving 
activities. 
Reflection was more common than we expected. Figure 9 shows 
that CS2 participants tended to reflect (9 of 16, or 56% vs. 9 of 21, 
or 42% of CS1 participants). CS2 participants had a median of 1 
verbalization compared to a median of 0 for the CS1 participants. 
However, the frequency difference between groups, across all 
problems, was not significant (p=0.18, H=1.80).  

The content of participants’ reflections was similar across groups. 
Some reflections were on process, such as “I could calculate it by 
hand, but I don't want to do that”, when P25 (CS1) was 
contemplating how find the number of 7s rolled on a pair of dice. 
Another example was P10 (CS2)’s comment, “I'm thinking about 

 
Figure 8. Frequency of participants’ comprehension 

monitoring across all problems, by experience (CS1→light, 
CS2→dark). 

 
Figure 7. Frequency of participants’ process monitoring 

across all problems, by experience (CS1→light, CS2→dark). 
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the best way to approach the problem”, pausing to consider how to 
approach solving a problem after reading the prompt. Other 
reflections concerned confidence. For example, “And I'm not so 
sure if this is right” (P25, CS1), and “I feel like it's not correct but 
I'm just going to roll with it” (P38, CS1). A third type of reflection 
was when participants identified mistakes, as in “oh, I forgot to set 
the rolls.” (P28, CS2), and “I feel like I'm wasting mental energy 
trying to see what scenario is going on when I should be focusing 
on the essentials” (P38, CS1). The final type of reflection consisted 
of reminders, as when P10 (CS2) was trying to establish a process, 
“Always need to remember to increment the loop control variable.”  

4.2.5 Self-explanation 
In our framework, we suggest that programmers use self-
explanation to rationalize decisions they have made and to develop 
understanding that will influence future decisions. We expected to 
see participants engage in self-explanation to resolve confusion. 

Figure 10 shows that most participants did engage in self-
explanation. Overall, 75% (28 of 37) self-explained at some point, 
with 81% (13 of 16) of CS2 participants self-explaining while only 
71% (15 of 21) CS1 participants did. Despite the variation, the 
frequency of self-explanations across all problems between groups 
was not significant (p=0.108, H=2.57).  

There were three types of self-explanations. Many aimed to 
increase code comprehension, as in “Oh wait, no, then it can't be 
length, because I get to count, all right, count equal zero.” (P19, 
CS1), or tracing code for clarification as in, “And it will not go in 
two again, which means it will run exactly five times.” (P28, CS2). 
Other self-explanations identified participants deciding what code 
to write. For example, P25 (CS1) was deciding which variables to 
initialize: “So I don't need LCV because, probably because we don't 
have a list.” P28 (CS2) rationalized about what to write for their 
loop conditional and said, “...while loop can use the length, right? 
Yeah. Because, you have to go through all the items and check it.” 

4.3 Self-Regulation and Errors 
In the prior sections we investigated the extent to which participants 
engaged in self-regulation during problem solving, finding several 
variations, particularly by experience. In this section, we 
investigate the extent this variation explained participants’ errors. 

As we described in Section 2, we measured errors as the smallest 
number of lines that needed to be added, removed, or changed for 
a solution to produce correct output. We expected participants with 
less experience to have more errors in their solutions. Across 
problems 4-6 (the problems analyzed for errors) CS1 participants’ 
median errors was 6 (with 2 perfect scores on all problems). CS2 
participants had a median of 3 errors (with 3 participants receiving 
perfect scores). For the easier questions, a lack of complexity in the 
problems, as well as the provided examples, likely contributed to 
the CS1 participants’ ability to craft suitable solutions. On these 
questions they did not make many more errors than the CS2 group 

(p=0.34, H=0.88). On the most difficult problem (problem 5 in 
Table 1), however, the CS1 group made significantly more errors 
than CS2 (p<.001, H=8.35). This was true despite the problem 
being only slightly more complex than previous problems. 
To investigate the relationship between self-regulation and errors, 
we built a multiple linear regression model based on several 
variables. We included gender, programming experience, and self-
efficacy, as each tend to effect programming success. We then 
included frequencies of all five self-regulation types across all 
problems. This model assumed that verbalizations of each type of 
self-regulation are indicators of overall self-regulation skill, as 
opposed to being specific to a problem. 

Table 3 shows the resulting model for all participants. We found a 
significant model (F(8,28) = 2.66, p=0.26), with an R2 of 0.43, with 
gender a significant factor (p<0.05), with women having more 
errors in their solutions. Because we found significant disparities in 
the behavior of participants by experience groups, we also built two 
separate regression models, one for participants in CS1 (n=21), and 
one for CS2 (n=16). We included the same factors in these models, 
excluding programming experience. Table 3 shows the two 
resulting models for each group. The model was significant for CS1 
(F(7,13)=3.11, p<0.05), with an R2 of 0.62, but none of the factors 
had a individually significant relationship with errors. The CS2 
model was not significant overall (F(7,8)=2.232, p>0.05)—likely 
due to a small sample size of 16—but there were several large and 
significant effect sizes in the coefficients that we hypothesized 
would effect errors (a common rule for judging whether to interpret 
significant coefficients of a non-significant model). These included 
a ~3 error decrease for each verbalization of comprehension 
monitoring (p<0.05), a ~1 error decrease for each verbalization of 
planning (p<0.05) and ~1 error increase of for each verbalization 
of self-explanation (p<0.05).  

 
Figure 10. Frequency of participants’ self-explanations across 

all problems, by experience (CS1→light, CS2→dark). 

 
Figure 9. Frequency of participants’ metacognitive reflection 
across all problems, by experience (CS1→light, CS2→dark). 

Variable	 All	participants	 CS1	participants	 CS2	participants	
	 B	 SE	B	 β	 B	 SE	B	 β	 B	SE	B	 β	
Gender	(M=0,	F=1)	 3.62	 1.58	0.36*	 5.99	 2.88	 0.52	 0.55	1.50	 0.09	
#	CS	Courses	 -1.49	 0.90	 -0.30	 –	 –	 –	 –	 –	 –	
Self-Efficacy	 0.29	 0.37	 0.12	 0.93	 0.57	 0.31	-0.15	0.29	 -0.12	
Planning	 -0.06	 0.23	 -0.05	-0.44	 0.34	-0.29	-0.79	0.29	-0.91*	
Process	Monitoring	 -0.64	 0.37	 -0.26	-0.59	 0.45	-0.25	 0.26	0.60	 0.11	

Comp.	Monitoring	 0.61	 0.51	 0.23	 0.62	 0.63	 0.23	-2.90	0.99	-1.09*	
Reflection	 0.20	 0.32	 0.13	 1.10	 0.54	 0.41	 0.02	0.26	 0.03	
Self-explanation	 0.01	 0.42	 -0.01	 0.11	 1.07	 0.03	 0.98	0.34	 1.19*	
R2	 	 0.43	 	 	 0.62	 	 	0.66	 	
F	 	2.66*	 	 	3.11*	 	 	2.23	 	
*p	<	0.05		

Table 3. Three models predicting errors from demographic 
and self-regulation variables. Unstandardized coefficients (B), 

standard errors (SE B), and standardized coefficients (β). 
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5. DISCUSSION 
Our results show a few trends. First, most self-regulation behaviors 
were infrequent, inconsistently verbalized, shallow in their 
application, and often ineffective at reducing programming errors. 
Among those with more experience, the frequency of planning and 
comprehension monitoring was related to fewer errors, while more 
frequent self-explanation predicted more errors. In this section we 
interpret these results and discuss implications. 

The infrequency of self-regulation was quite visible among CS1 
participants. They engaged in searching for analogous problems, 
adapting previous solutions and planning, but showed little depth 
in reasoning. The infrequency of reinterpreting the problem prompt 
and evaluation by CS1 participants was consistent with prior work 
[27] and their infrequent comprehension monitoring and planning: 
they rarely reflected on their understanding of the problem or their 
code. Table 3 shows the self-regulation they exhibited had little 
relationship to the errors they made, suggesting that their efforts to 
self-regulate were simply ineffective.  

Similarly, the CS2 group exhibited infrequent and shallow self-
regulation.  Even the most frequent self-regulation behavior, 
planning, only occurred about once per problem (Section 4.2.1). 
CS2 participants also reinterpreted the problem prompt throughout 
the problem solving process rather than at the beginning, 
suggesting shallow or absent comprehension monitoring. The lack 
of process monitoring also plagued CS2 participants. Despite 
increased experience, they were not very aware of what they are 
doing or why. That said, the more that CS2 participants engaged in 
planning and comprehension monitoring, the fewer errors they 
created (Table 3). This suggests that as learners acquire the 
necessary knowledge to write programs, self-regulation skills begin 
to account for differences in success.  

It was surprising that self-explanation was not related to success, 
and in the case of CS2 participants, was associated with more 
errors. This is in direct contrast to prior work, which has shown that 
self-explanation is a key strategy in problem solving success 
[4,21,30]. One interpretation is that verbalizations of self-
explanations are simply more prevalent when participants are 
struggling: successful participants may have internally self-
explained, and done so in a more disciplined manner.  

Although we did not study the progression from CS1 to CS2 
directly, our results suggest that something is leading to more 
effective self-regulation. This is in line with Falkner et al.’s work 
[12] which found that, compared to novices, CS students in their 
final year of college used more successful self-regulation strategies 
such as design, testing and problem decomposition. One 
explanation for this is that CS1 courses are somehow teaching self-
regulation and programming problem solving—this is not the case 
at our institution, but it may arise indirectly through lab sections, 
TAs, or classroom discussions. Another explanation might be that 
students who decide to continue to CS2 have independently 
developed more effective self-regulation strategies. 

Interestingly, gender was associated with errors, but only for 
students CS1 participants. Moreover, this was not explained by 
differences in self-efficacy. One possibility is that there is some 
other gender-related factor not in our model; another is that the 
women who responded to our recruiting were systematically 
different from the men (we noticed that many women expressed 
wanting to help future students struggle less than they did).  

One implication of these results is on the prior work on self-
regulation in computing education. Despite prior studies showing 

that self-regulation is key in programming expertise [9, 17], and 
that it can be productivity taught to novices [4,19], our study 
demonstrates that novices do self-regulate, albeit infrequently and 
poorly. This suggests that efforts to teach self-regulation in CS have 
a foundation to build upon, but that they may also need to address 
flaws in students’ existing self-regulation behaviors. Our results 
suggest that these flaws are a lack of consistent, disciplined self-
regulation during problem solving and few reflections on cognition. 

Another implication is that, because self-regulation is only 
effective with adequate prior knowledge, it may be that the timing 
of teaching self-regulation skills is important. Having disciplined 
self-regulation skills but lacking adequate programming knowledge 
may only serve to exhaust and frustrate learners. However, 
disciplined self-regulation skills may facilitate learners using newly 
acquired programming knowledge sooner, and more productively. 

Our results have several implications for teaching. If self-regulation 
behaviors are critical to programming success as prior work 
suggests [9,17], it should be explicitly taught. Prior work has shown 
that self-explanation [4], and problem solving frameworks [19] can 
promote success. Our work suggests targeted instruction on 
specific types of self-regulation—planning and comprehension 
monitoring—may need further investigation. There are many 
questions about how these might be taught (e.g., when, how to 
interleave with syntax and semantics, what pedagogy to use). While 
only planning and comprehension monitoring had a relationship 
with errors in our study, other forms of self-regulation might also 
be taught explicitly. For instance, is instruction on metacognitive 
reflection [10] beneficial for programmers? How might teaching 
problem decomposition and reinterpretation effect success? These 
remain open areas for computing education research. 

As with any empirical study, ours had many limitations. First, all 
studies of this kind could benefit from more data. With a sample 
size of 37 it was difficult to achieve the power needed to precisely 
identify effects so many important relationships may have been 
masked. Also, linear regressions show correlation and not 
causation; thus, our interpretations may be missing important 
unseen factors, meaning self-regulation may not cause 
programmers to craft more successful solutions.  Due to typically 
high variation in programming knowledge, our results were also 
noisy, further compounding the small sample. While think-aloud 
protocol is well established for studying self-regulation [6,16], and 
one of the only mechanisms allowing us to observe cognitive 
processes, its robustness as a signal varies due to participants’ 
comfort thinking aloud to a stranger. Finally, because participants’ 
knowledge is difficult to measure, our choice of programming 
problems from prior work led to a slight ceiling effect on errors, 
hindering our ability to more precisely identify relationships to 
errors. 
Despite these and many other limitations to the validity and 
generalizability of our results, we view our findings as an important 
first step in understanding the relationship between self-regulation 
and programming problem solving. With further research, better 
instruments, and refined theories, we hope for a future in which 
teachers not only understand the importance of self-regulation in 
computing education, but can teach it too. 
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