
The Role of Self-Regulation in Programming Problem
Solving Process and Success

Dastyni Loksa and Amy J. Ko
The Information School • DUB

University of Washington
{dloksa, ajko}@uw.edu

ABSTRACT
While prior work has investigated many aspects of programming
problem solving, the role of self-regulation in problem solving
success has received little attention. In this paper we contribute a
framework for reasoning about self-regulation in programming
problem solving. We then use this framework to investigate how
37 novice programmers of varying experience used self-regulation
during a sequence of programming problems. We analyzed the
extent to which novices engaged in five kinds of self-regulation
during their problem solving, how this self-regulation varied
between students enrolled in CS1 and CS2, and how self-regulation
played a role in structuring problem solving. We then investigated
the relationship between self-regulation and programming errors.
Our results indicate that while most novices engage in self-
regulation to navigate and inform their problem solving efforts,
these self-regulation efforts are only effective when accompanied
by programming knowledge adequate to succeed at solving a given
problem, and only some types of self-regulation appeared related to
errors. We discuss the implications of these findings on problem
solving pedagogy in computing education.

CCS Concepts
• Social and professional topics~Computer science
education • Social and professional topics~CS1

Keywords
Programming, Problem Solving, Self-Regulation, Think-Aloud.

1. INTRODUCTION
Programming problem solving is a complex activity that poses
many diverse cognitive demands on learners. As Elliot Soloway
argued thirty years ago, expert programmers “have built up large
libraries of stereotypical solutions to problems as well as strategies
for coordinating and composing them. Students should be taught
explicitly about these libraries and strategies for using them.” [30].
Students are often left to develop these strategies on their own, and
when they fail to do so, they quit [2].
Prior work has investigated a wide range of materials, pedagogies,
and techniques for teaching programming problem solving
strategies. For example, recent studies have explored worked
examples and the effect of sub-goal labels, finding that examples

and sub-goal labels can promote greater problem solving success
[20,22,23]. Other efforts such as the Idea Garden have investigated
strategy hints, giving learners suggestions about how to approach a
problem (e.g., divide and conquer), finding that hints can promote
independence and self-efficacy [5]. Similarly, Linn & Clancy found
that case studies including code and expert explanations can lead to
a more integrated understanding of programming process and some
gains in problem solving success [18].

While these pedagogies and materials improve learner’s content
knowledge for programming, prior work in the learning sciences
literature suggests process skills, and in particular self-regulation,
are equally critical. Self-regulation is the ability to be aware of
one’s thoughts and actions and evaluate how well they are moving
one closer towards a goal [28]. Several studies have investigated
self-regulation in learning, finding, for example, that successful
learners generate self-explanations of material and use self-
explanations to monitor for misconceptions [21]; that self-
explanation prompts can improve problem-solving skill and self-
efficacy [8]; that high performing CS students use more
metacognitive and resource management strategies [3]; and that
general metacognitive training can promote improvements in
domain-specific skills such as listening and science inquiry [10].

Only a handful of studies have explicitly investigated self-
regulation in the context of programming. One of the earliest was
conducted by Clements & Gullo, investigating the effect of
teaching programming problem solving [7]. They found that
teaching programming via Logo, relative to teaching computer use,
subjectively promoted greater “reflectivity.” Pea and Kurland
reviewed this and other work on the effects of learning to code,
finding little evidence that learning to code promoted self-
regulation or metacognition. However, they they did draw upon
learning sciences literature to argue that programming itself
requires self-regulation for planning programming solutions [24].
This is consistent with more recent work, identifying self-regulated
learning strategies [11,12], and showing that programming
expertise demands a high degree of self-awareness and self-
monitoring [9,17].

Acknowledging that programming requires self-regulation, more
recent studies have investigated ways of teaching self-regulation
for programming. Bielaczyc et al. investigated the impact of
teaching self-explanation, finding that students who received
explicit training on self-explanation strategies used these strategies
more than those without the training, increasing problem solving
success [4]. More recently, Loksa et al. found that combining
similar self-regulation instruction with a framework for
programming problem solving activities promoted not only greater
problem solving success, but also gains in productivity, self-
efficacy and growth mindset [19].

While prior work provides compelling evidence that self-regulation
is key to successful programming, it leaves several open questions:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICER '16, September 08-12, 2016, Melbourne, VIC, Australia
© 2016 ACM. ISBN 978-1-4503-4449-4/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2960310.2960334

83 Most up-to-date version: 06/24/2021

• To what extent do novices self-regulate when programming?
• To what extent does programming experience in CS1 and

CS2 promote self-regulation in programming?
• To what extent is self-regulation related to successful

programming problem solving?
In this paper, we investigate these questions, first proposing a
theoretical framework for self-regulation in the context of
programming. We then present an empirical analysis of novice
programmers’ self-regulation activities and explore how variation
in self-regulation was associated with problem solving success. We
end with a discussion our findings on computing education, with
several ideas for how to promote self-regulation through teaching.

2. THEORETICAL FRAMEWORK
Lacking an existing theoretical framework of self-regulation in
computing, we derive our framework from key self-regulation
elements which are common across prior work. Prior work frames
self-regulation as the ability to monitor and control one’s behaviors,
thoughts, and emotions for the demands of the moment, and
monitoring progress toward goals [16]. In the context of learning,
self-regulation involves metacognition (thinking about one’s
thoughts) [10], planning (evaluating progress toward a learning
goal), and motivation (manipulating one’s intrinsic and extrinsic
goals to make progress toward learning) [31].

In the context of programming, we propose that self-regulation
helps plan and evaluate progress toward writing a program that
solves some computational problem. Our hypothesis is that the
more a participant self-regulates their programming activities, the
more successful they will be at solving the problem.

This hypothesis, however, demands a more granular view of what
“progress” means in programming, and how self-regulation is
related to progress. Loksa et al. recently defined progress in
programming problem solving as six distinct and nominally
sequential but iterative activities [19]; we propose these are related
to self-regulation as follows:

• Reinterpreting the problem prompt. Programming tasks
begin with some problem that programmers must interpret
and clarify. As with any problem solving, this understanding
is a cognitive representation of the problem used to organize
one’s “continuing work” [13]. The more explicitly one
engages in regulating this understanding (e.g., by reflecting
on whether their understanding is correct), the more likely
they will correct misconceptions of it.

• Searching for analogous problems. Programmers draw upon
problems they have encountered in the past, either in past
programming efforts or even in algorithmic activities from
everyday life [14,30]. By reusing knowledge of related
problems, programmers can better conceptualize a problem’s
computational nuances. Learners may self-regulate by being
aware of limitations in their knowledge of related problems.

• Searching for solutions. With some understanding of a
problem, programmers seek solutions that will solve the
problem by adapting solutions to related problems or by
finding solutions in textbooks, online, or from classmates or
teachers [15]. During solution search, learners may monitor
the extent to which they have searched and the degree to
which the search was satisfactory.

• Evaluating a potential solution. With a solution in mind,
programmers must evaluate how well it will address the
problem. This includes feasibility assessments, mental
simulations of algorithm behavior, or other techniques of
prototyping before implementation. Self-regulation may help

learners to decide whether their evaluation of a potential
solution is adequate, or whether they need to more certainty.

• Implementing a solution. With a solution in mind,
programmers must translate the solution into code using their
programming languages and tools. Learners may self-
regulate their awareness of working memory limitations and
manage prospective memory for future tasks.

• Evaluating an implemented solution. After implementing a
solution programmers iteratively converge toward
correctness, evaluating how well their implementation solves
the problem, usually by testing and debugging. Learners may
self-regulate their certainty in an implementation’s
correctness to prevent overconfidence.

Based on these six stages, and prior work on the elements of self-
regulation in learning, we identify five types of self-regulation that
support programming problem solving:

• Planning. Learners should reflect on what their next step in a
problem solving process should be (e.g., did new information
reveal a gap in understanding? What tasks remains for an
implementation?) [29]. The more a learner engages in
explicit planning, the more successful they should be.

• Process monitoring. Programmers who explicitly monitor
their progress toward solving a problem are more successful
(e.g., is a sub-goal complete? Is the code sufficiently tested?)
[4,15,17,19]. The more learners monitor when a task is
complete, the more successful they should be.

• Comprehension monitoring. Learners should monitor their
understanding of computational concepts in problems and
solutions [19,29] (e.g., am I confused? Is my understanding
of this failure accurate?). The more aware learners are of
their misconceptions, the more successful they should be at
correcting them.

• Reflection on cognition. Learners should make judgments
about the qualities and limitations of their memory and
reasoning [31] (e.g., am I forgetting something? Am I making
any assumptions?). The more aware learners are of their
cognitive biases, the more likely they are to correct for them.

• Self-explanation. Learners should explain to themselves why
they have come to a conclusion or decision, and then use that
rationale to monitor their progress [4,21,30] (e.g., this was
the right loop condition because it halts at the end of the list).
The more learners engage in self-explanation, the more they
will find flaws in their reasoning.

While all five of these self-regulation activities are likely critical to
any kind of problem solving, we suspect that they are particularly
useful in programming. This is for two reasons: 1) programming
problems are often about abstract computational processes,
requiring additional cognitive load to reason about abstract ideas in
working memory, and 2) programming languages require precision
and completeness, demanding repeated interpretation of the code
one has written. Self-regulation may play a key executive control
role, facilitating more logical, precise and systematic reasoning
about abstract computational ideas, helping a learner to manage
their cognition as they navigate a largely invisible solution space.

While self-regulation may be essential some prior work suggesting
that teaching it improves problem solving success [4,9,17,19], to
what extent do novice programmers engage in self-regulation
without explicit instruction? Do these self-regulation skills,
however undeveloped, contribute to problem solving success? In
the coming sections, we investigate this questions directly.

84

3. METHOD
Our target population was students who had enrolled in up to two
introductory programming courses (which we will call CS1 and
CS2). This ensured exposure to the syntax and semantics of at least
one programming language, but minimal experience with problem
solving. We recruited participants from lower-division CS and
information science classes via email and flyers, ultimately
recruiting 37 students. Because CS1 was required for many
degrees, but CS2 for only for CS and a few, we viewed these as two
separate populations, dividing participants into those who had
enrolled in or completed CS1 and those who and enrolled in or
completed CS2. Table 1 shows that the groups were balanced
across gender, age, and self-efficacy (-8 to 8 on our scale).
When participants arrived, we gathered age, gender, CS course
enrollment, and programming self-efficacy, which we adapted
from [1] to be language agnostic. Then, to help participants practice
thinking-aloud [6], we provided participants with a worked
example of a problem consisting of a problem and solution in
pseudo-code. We instructed participants to say everything that went
through their mind as they read the example and solved problems.
If at any point they remained silent for 1-minute they were
prompted “remember to think out loud.” After participants had time
to read and understand the example, they solved a problem that was
isomorphic in structure and context. After completing the 1st
problem, participants received a 2nd and 3rd problem for practice.

Finally, we gave participants three additional problems to solve one
at a time, each without examples. We adapted our problems from
prior work that focused on while loop usage [22]. The final three
problems consisted of one problem isomorphic to the practice
problems, and two context-shifted problems, where the structure of
the problem was consistent with prior problems, but the domain
was different. Our intent was to provide both familiar and novel
problems to investigate variation in self-regulation. Figure 1 shows
the final three problems. We instructed participants to write in
pseudo-code, focusing on logic over syntax.

We collected two forms of data. The first was audio recordings of
participants’ think aloud. We transcribed the recordings and then
coded them for 9 types of verbalizations: 4 of the 6 problem solving
activities from Section 2 and all 5 of the self-regulation types from
Section 2. We based this data collection on best practices of verbal
data [6], measures of self-regulation [4,26,28], and theories of
problem solving process [19,25]. Table 2 shows our coding scheme
for each verbalization type. We merged two problem solving
activities—searching for a solution and evaluating a solution—
into adapting a solution because they were not observable in our
think aloud data and adapting requires finding a solution, and
evaluating it. We excluded implementation because we did not
track participants’ editing which are difficult to identify through
audio. The 1st author developed the codebook and trained with
another researcher, iteratively refining the the coding scheme until
reaching consensus. To verify the validity of the scheme each
researcher independently coded 10% of the transcripts and then
compared each sentence in the transcripts, coming to an 83%
agreement across all sentences. The 1st author then completed the
remainder of the coding.
The second form of data was the participants’ programming
solutions. We analyzed solutions for errors by identifying lines of
code that would need to be added, removed, or changed in order for
the participants’ solutions to produce the correct output. We treated
lines of code that were unnecessary for a working solution as errors.
This analysis was performed only on problems 4-6 because
solutions to problems 1-3 were provided in the examples.

	 CS1	(21	students)	 CS2	(16	students)	
Gender	 F=11,	M=10	 F=8,	M=8	
Age	 [18,	18,	27]	 [18,	20,	24]	
Self-Efficacy	 [-3,	2,	8]	 [-2,	2,	6]	
Table 1. Sample size, gender, age and self-efficacy for each

experience group, showing [min, median, max].

ISOMORPHIC	PROBLEM	
Problem	4:		The	instructor	has	now	given	you	a	collection	of	test	grades	
and	asked	you	to	calculate	the	class	average	for	passing	grades	(those	
that	are	70	or	above).	Here	are	all	the	test	grades	for	the	class.

CONTEXT	SHIFTED	PROBLEMS	
Problem	5:	Your	best	friend	is	a	golfer,	but	is	not	very	good	at	math.	
They	continue	to	make	errors	when	adding	up	scores.	You	volunteer	to	
write	a	program	that	will	add	up	the	golf	scores	and	print	out	the	scores	
for	the	first	nine	holes,	the	second	nine	holes,	and	total	for	the	round.		
Problem	6:	Suppose	that	a	certain	group’s	population	grows	at	a	rate	
of	 10%	 every	 year.	Write	 a	 program	 that	will	 determine	 how	many	
years	it	will	take	for	the	population	to	double.	

Figure 1. Problem prompts 4-6.

Code	 Definition	 Examples	
Reinterpret	
problem	

Questioning	details	of	the	problem	prompt	or	
problem	requirements.	

“I	only	need	to	find	the	sum?”	
	“…it	says	those	that	are	70	or	above.	Does	that	mean	70%	or	the	number	of	points?”	

Analogous	
problem	search	

Identifying	similarities	between	the	current	
problem	and	other	problems	or	solutions.	

“It	seems	like	a	similar	structure	of	the	problem	example.”	
“So	this	is	like	the	first	question	I	had.”	

Adapt	solution	 Identifying	what	needs	to	change	about	a	
prior	solution	to	solve	the	current	problem.	

	“This	was	also	like	the	first	one	except	without	the	last	step	of	finding	the	average.”	
“This	one	is	a	bit	different	because	this	time,	we	have	to	only	calculate	the	average.”	

Evaluate	solution	 Judging	the	correctness	of	code.	 “All	right.	I'm	just	going	to	check	the	solution.”;	“So	let	me	just	check	the	for	loop.”	
Planning	 Expressing	intent	to	perform	some	task,	or	

description	of	a	task	participants	is	doing.	
“I’m	going	to	initialize	variables	first”	
	“I’m	just	copying	the	code	from	the	example.”	

Process	
monitoring	

Declaring	that	a	programming	sub-goal	is	
complete.	

“So	that's	the	end	of	the	for-loop.”	
“So	I	got	the	first	part.	Going	on	to	the	second.	“	

Comprehension	
monitoring	

Reflection	about	the	understanding	of	code	or	
problem	prompts.	

“I	don't	know,	end	while	means...”	
“And	so	actually,	I	don't	know	how	this	golf	scoring	works,”	

Reflection	on	
cognition	

Judgments	about	mental	processes,	mistakes,	
assumptions,	or	biases.	

	“I	was	refreshed	from	earlier	about	how	to	do	logical	operations	within	while	loop.”	
“I	read	the	question	wrong.”		

Self-explanation	 An	account	of	why	a	decision	was	correct.	 “So	I	don't	need	LCV	because,	probably	because	we	don't	have	a	list.”	
“The	average	will	be	zero	at	first	because	we	didn't	add	anything.”	

Table 2. The 4 problem solving activity codes and 5 self-regulation codes analyzed in participants’ think-aloud data, along with
definitions and representative quotes from transcripts.

85

4. RESULTS
In this section, we first discuss the extent to which participants
verbalized their problem solving and self-regulation, mirroring the
framework in Section 2. Then, we investigate the relationship
between self-regulation and errors in participants’ solutions.
Throughout, we compare the behaviors of participants in the CS1
and CS2 groups. All between group statistical hypothesis tests
reported were Kruskal-Wallis tests.

4.1 Problem Solving Process
Here we discuss the four problem solving activities observable in
the transcripts, discussing the extent to which participants engaged
in them and how they were influenced by self-regulation.

4.1.1 Reinterpreting the problem prompt
Reinterpretation is critical to understanding the nuances and
ambiguities in problems [13]. We expected participants to use
process and comprehension monitoring to identify knowledge gaps,
leading them to reinterpret the problem prompt. Our data showed,
however, that very few participants engaged in problem
reinterpretation. Of all 37 participants, only 15 verbalized about
reinterpreting the prompt. This lack of reinterpretation was
consistent across both experience groups: 8 (of 21) CS1 and 7 (of
16) CS2 participants verbalized reinterpreting.

As shown in Figure 2, CS1 participants primarily reinterpreted the
context shifted problems, 5 and 6, where they demonstrated
difficulty conceptualizing the problem they were attempting to
solve. In contrast, the CS2 participants that reinterpreted did so
across most of the problems. This suggested a pattern of self-
regulation related to experience, but the frequency of
reinterpretation verbalizations across all problems was not different
between groups (p=0.59, H=2.57).

Participants often began coding without fully understanding the
problem, leaving them with knowledge gaps in the problem
requirements and causing them to later stop implementation to
address the gaps. For example, while implementing a loop for
problem 6, P4 (CS1) stopped to question, “Should I do less than
200? …doubles? [Should it be] While 100 is less than or equal to
200?” Only after deciding what logic to use were they able to
continue coding. Similarly, P3 (CS1) questioned requirements
while coding the output for their solution, realizing that a small
detail may invalidate their work: “do you want me to give you this
decimal years, how many years it would take? Because this is a
whole different math, I think.” After resolving this concern, they
completed the output and started on the next problem. During this
process, comprehension monitoring helped participants identify
gaps (e.g., should they use less than, or less than and equal to?)
Process monitoring spurred participants into reinterpreting the
problem. Stronger self-regulation at the beginning of problem
solving may have prevented these disruptive task switches.

4.1.2 Searching for analogous problems
Programmers draw upon knowledge of previously encountered
problems to provide insight into new problems [14,30]. We
expected that participants would engage in process monitoring and
self-explanation to identify when they had found a past problem
that might help them build a solution.
Our results showed that participants frequently searched for
analogous problems and solutions. Of the 37 participants, 29
verbalized a search for analogous solutions at least once across all
problems. Figure 3 shows that this varied by problem and was more
prevalent for problems 1-4, where there were prior examples to
leverage. Of all search verbalizations, 83% (316 of 380) occurred
in this context. Participants may have perceived problems 5 and 6
as entirely new problems, unable to see the deeper structural
similarities due to their inexperience.

CS1 participants verbalized searches for analogous problems
across many problems, while CS2 participants did not. While the
frequency of search verbalizations across all problems was not
significantly different (p=0.89, H=0.29), the CS1 participants
searched in up to 5 of the 6 problems, relying on prior solutions to
solve the problem. In contrast, CS2 participants verbalized
searching for only 3 of the 6 problems, with many verbalizing none.
This indicates that those with less experience were self-regulating
more, perhaps due to the problems being more novel to them.

The content of participants’ search verbalizations differed by
experience. First, CS1 participants tended to explicitly reference
examples (e.g. “…which means I have to combine example one and
example two.” (P26)) while CS2 participants referenced problem
details (e.g. “So it's sort of like the last problem where you need to
be keeping track of certain scores.” (P10)). Another difference was
the scope of the analogy identified. CS1 participants often
identified similarities about surface features of the solution; for
example, P33 identified that their loop should be the same as the
one in the example, “So I think you would just do the same, except
you take out everything that's under 70 for this one.” Similarly, P44
said, “So the loop termination condition is very similar to the first
example.” CS2 participants indicated the entire solution as being
analogous: “Okay, so this is like the exact same [problem] pretty
much with different values.” (P37). This difference reveals that CS1
participants were self-regulating at a structural granularity, while
CS2 self-regulated at a computational level.

4.1.3 Adapting previous solutions
Just as programmers rely on prior knowledge to conceptualize
novel problems, they also rely on previous [15]. Self-regulation is
integral to this, requiring comprehension monitoring to understand
the previous solution and the current problem, while planning the
adaptations necessary, all while monitoring their adaptation
progress.

Figure 2. The number of participants who verbalized at least

one problem reinterpretation, by problem and experience
(CS1→light, CS2→dark).

Figure 3. The number of participants who verbalized at least

one search for analogous problems, by problem and
experience (CS1→light, CS2→dark).

86

Our data shows that although many searched for previous
problems, only half verbalized adapting a previous solution (10 of
21 CS1 and 9 of 16 CS2). However, as Figure 4 shows, frequency
varied by experience. CS1 participants tended to verbalize
adaptation for more of the six problems, but did not verbalize more
frequently (CS1 and CS2 groups had a median of 1 verbalization
across all problems, p=0.88, H=0.02).

CS2 participants also appeared to be more confident, suggesting
less need for comprehension monitoring. To illustrate, consider P18
(CS1), who said: “So this one is a bit different because this time,
we have to only calculate the average for those students who have
passed.” In contrast, the much shorter, and arguably more confident
comment made by P4 (CS2), “So it's the same problem as example
one, it's just the values are different.”

While the length and tone of the verbalizations for adapting
previous solutions varied slightly, the content varied little, with
most providing a single high level detail about how the previous
solution would need to be changed. Examples include P15 (CS1),
who said “So basically, it's the same thing but now, we're just
counting two instead of the sevens” and P6 (CS2), “So this time,
instead of sevens, we should count the twos.”

4.1.4 Evaluating solutions
Evaluation of a solution, including analysis and testing, are critical
to successfully solving programming problems [17]. We expected
participants to engage in comprehension monitoring and process
regulation to determine whether to engage in evaluation and
determine the quality and level of detail of the evaluation.

Figure 5 shows only about half of participants verbalized
evaluation. Overall, 42% (9 of 21) of CS1 participants did
compared to 62% (10 of 16) of CS2 participants. However, this
difference was not statistically significant (p=0.27, H=1.20).

There were two types of evaluations. Many were short statements
that occurred before or just after the mental simulation of code.
Those that occurred before announced the intent to evaluate. For
example, P10 (CS1) completed their solution and said, “All right.
I'm just going to check the solution.” Similarly, P22 (CS2) finished
initializing variables but wanted to verify that they listed the correct
values in their array stating, “Let me to double check” before
reading off each of the values in the problem prompt, verifying they
exist in the array. Statements that occurred after evaluation focused
on the result of evaluation. For example, P10 (CS1) said, “All right.
I am satisfied with this solution” after tracing their completed
solution. P5 (CS2) said, “I think that's fine” after briefly looking
over their code. These verbalizations likely represented their
decision that their evaluation was adequate.
Most evaluations were on entire solutions but some participants
evaluated smaller portions of code. For example, P26 (CS1)
evaluated the initialization of their grades array: “I'll just double
check to make sure I put them all in correctly” ensuring that the

data was correct. P3 (CS2) verbalized intent to evaluate their loop,
“So let me just check the for loop”, after which they returned to
implementing their output. Some participants verbalized their
tracing. For instance, P39 (CS1) traced their completed solution
while saying, “Awesome, that should be good. First nine holes zero,
second nine holes zero, total score, go through it each time. Print
it the first time, print the second time, add them up for a total…
Awesome.” While there were differences between participants,
there were no systematic differences between the groups.

Evaluation impacted problem solving by exposing misconceptions
and errors and by helping participants gain confidence. For
example, P22 (CS2) identified an error: “Double checking. Yep.
Oh, I think we need a print line. Yeah.” In these cases, participants
returned to either reinterpreting the problem to clarify ambiguities,
or they returned to code having located a defect. The second
outcome was an increase in confidence allowing the participant to
continue onto the next sub-problem or problem. For example, after
evaluating, P19 said: “All right. I am satisfied with this solution.”

4.2 The Role of Self-Regulation
Having discussed the problem solving behaviors that rely upon, and
thus indirectly indicate self-regulation, in this section we describe
our findings on the role of self-regulation.

4.2.1 Planning
Planning is pervasive throughout programming problem solving,
guiding the direction that programmers take and driving the choices
of both what to do and when to do it [30]. We expected that few
participants would exhibit planning given their inexperience.
In fact, as you can see in Figure 6 the majority of participants
verbalized planning. Only two did not, both of whom were CS1
participants. For context, one of these participants had slightly
fewer errors than the average participant while the other had the 3rd
most errors in their solutions among all participants. CS1
participants had a median of 5 planning verbalizations while the
CS2 group had a median of 6. However, this was not a significant
difference (p=0.17, H=1.88).

When participants verbalized planning, they focused on two topics.
First, they spoke about intent to evaluate such as when P10 stated,

Figure 4. The number of participants who verbalized at least

one solution adaption, by problem and experience
(CS1→light, CS2→dark).

Figure 5. The number of participants who verbalized at least

one solution evaluation, by problem and experience
(CS1→light, CS2→dark).

Figure 6. Frequency of participants’ planning verbalizations
across all problems, by experience (CS1→light, CS2→dark).

87

“I'm just going to check the solutions” or while already evaluating
P16 said, “Let's go through this one more time.” Second, they spoke
about plans for implementation, primarily for a specific line of
code. Examples include P6, who said, “I'm gonna print out the
result” or P30’s realization, “…and we can do a sum for sum1 right
here.” The more abstract and less granular plans for code included
larger sections of code as in P31’s comment, “So after reading this,
I think a good first step would be to initialize the variables” or when
P5 decided to write the structure of their if-statement block, “so first
I'm just going to write it.” There were no discernable differences in
the types of planning between the CS1 and CS2 participants.

4.2.2 Process monitoring
Our framework suggests that programmers engage in process
monitoring to track their progress through their problem solving
process, identifying when goals have been completed, then utilizing
planning to identify necessary next steps.

Our data showed that only half of participants verbalized process
monitoring and those that did, did it rarely. Figure 7 shows that only
10 of 21 CS1 participants verbalized process monitoring, averaging
just 1 verbalization per participant over all six problems. There was
one outlier in this group, a 22-year old female, who verbalized
about process a total of 10 times across all problems. There were
no indications as to why she verbalized process as much as she did
and her other self-regulation behaviors were unremarkable,
however, she made fewer errors than 63% of participants. CS2
participants had a median of 1 verbalization; not significantly
different from CS1 which had a median of 0 (p=0.61, H=0.26).

We observed two types of process monitoring. The most prevalent
was a declaration of having completed an implementation sub-goal.
This was often verification of completing the initialization of all
needed variables, or completion of a loop. For example, P29 said:
“Okay, so I've got the list. I've got the count. I've got LCV. I've got
sum.” or P6’s comment about completing the content of a loop: “So
I got the total and the count, so that's the end of the for-loop.” The
second type of process monitoring was when participants declared
a solution complete. Examples of this include, “And printed. I'm on
the next task.” (P1), and “Yay I'm done (maybe).” (P22). Both types
appeared to help participants segment their process, marking the
end of a task and the beginning of planning the next one.

4.2.3 Comprehension monitoring
Our framework suggests that programmers engage in
comprehension monitoring to identify knowledge gaps. The more
a programmer is aware of their misunderstandings about a problem
or a piece of code, or of their own confidence of some given code
being correct, the more likely they will make better decisions.

Surprisingly, we found that CS2 participants were much less likely
to verbalize comprehension monitoring than CS1 participants. Only
6 of 16 (37%) CS2 participants verbalized comprehension
monitoring, compared to the 14 of 21 (66%) CS1 participants.
Moreover, Figure 8 shows CS2 participants verbalized significantly

less (p=0.03, H=4.70) than CS1 participants with a median of 0
verbalizations per participant to CS1’s 2.

There were two types of comprehension monitoring. First, many
statements involved participants realizing they did not understand
something. For instance, CS1 participant P8 commented, “I don't
know what end while means...” while reading example pseudo-
code, and then proceeded to self-explain, finally coming to an
understanding. Similarly, P25 (CS1) acknowledged their confusion
after reading an example, “So I'm a little bit confused.” Rather than
just continuing, their process monitoring facilitated the realization
of something that was unclear and they decided to re-reading the
example. The other type of comprehension monitoring involved
participants absorbing information, often from examples or when
attempting to understand a problem. For instance, while reading
example code P11 (CS1) said, “So I think I will say, I 90%
understand this method.” While they acknowledged they did not
fully understand the example, they felt their comprehension was
sufficient to begin work on a similar programming problem. There
was no different in the type of comprehension monitoring made by
CS1 and CS2 participants; CS1 participants just verbalized more.

The role of comprehension monitoring was primarily to understand
examples or a problem. The majority of verbalizations occurred
while reading example solutions, including indicators of
understanding (e.g. “It's very simple and I think people can
understand it really well”, P10, CS2) and confusion (“I'm not sure
what the length means?” (P11, CS1). When participants monitored
problem comprehension, they indicated statements of confusion, as
in P18 (CS1)’s need for domain knowledge: “And so actually, I
don't know how this golf scoring works. How does the golf scoring
works?” We found no differences in the content of CS1 and CS2
participants’ comprehension monitoring.

4.2.4 Reflection on cognition
Our framework proposes that metacognitive reflection helps
programmers to be aware of their own thought processes and the
limits and biases in their memory and reasoning. Because prior
studies characterize metacognition among novices as being rare, we
expected few participants to verbalize it during problem solving
activities.
Reflection was more common than we expected. Figure 9 shows
that CS2 participants tended to reflect (9 of 16, or 56% vs. 9 of 21,
or 42% of CS1 participants). CS2 participants had a median of 1
verbalization compared to a median of 0 for the CS1 participants.
However, the frequency difference between groups, across all
problems, was not significant (p=0.18, H=1.80).

The content of participants’ reflections was similar across groups.
Some reflections were on process, such as “I could calculate it by
hand, but I don't want to do that”, when P25 (CS1) was
contemplating how find the number of 7s rolled on a pair of dice.
Another example was P10 (CS2)’s comment, “I'm thinking about

Figure 8. Frequency of participants’ comprehension

monitoring across all problems, by experience (CS1→light,
CS2→dark).

Figure 7. Frequency of participants’ process monitoring

across all problems, by experience (CS1→light, CS2→dark).

88

the best way to approach the problem”, pausing to consider how to
approach solving a problem after reading the prompt. Other
reflections concerned confidence. For example, “And I'm not so
sure if this is right” (P25, CS1), and “I feel like it's not correct but
I'm just going to roll with it” (P38, CS1). A third type of reflection
was when participants identified mistakes, as in “oh, I forgot to set
the rolls.” (P28, CS2), and “I feel like I'm wasting mental energy
trying to see what scenario is going on when I should be focusing
on the essentials” (P38, CS1). The final type of reflection consisted
of reminders, as when P10 (CS2) was trying to establish a process,
“Always need to remember to increment the loop control variable.”

4.2.5 Self-explanation
In our framework, we suggest that programmers use self-
explanation to rationalize decisions they have made and to develop
understanding that will influence future decisions. We expected to
see participants engage in self-explanation to resolve confusion.

Figure 10 shows that most participants did engage in self-
explanation. Overall, 75% (28 of 37) self-explained at some point,
with 81% (13 of 16) of CS2 participants self-explaining while only
71% (15 of 21) CS1 participants did. Despite the variation, the
frequency of self-explanations across all problems between groups
was not significant (p=0.108, H=2.57).

There were three types of self-explanations. Many aimed to
increase code comprehension, as in “Oh wait, no, then it can't be
length, because I get to count, all right, count equal zero.” (P19,
CS1), or tracing code for clarification as in, “And it will not go in
two again, which means it will run exactly five times.” (P28, CS2).
Other self-explanations identified participants deciding what code
to write. For example, P25 (CS1) was deciding which variables to
initialize: “So I don't need LCV because, probably because we don't
have a list.” P28 (CS2) rationalized about what to write for their
loop conditional and said, “...while loop can use the length, right?
Yeah. Because, you have to go through all the items and check it.”

4.3 Self-Regulation and Errors
In the prior sections we investigated the extent to which participants
engaged in self-regulation during problem solving, finding several
variations, particularly by experience. In this section, we
investigate the extent this variation explained participants’ errors.

As we described in Section 2, we measured errors as the smallest
number of lines that needed to be added, removed, or changed for
a solution to produce correct output. We expected participants with
less experience to have more errors in their solutions. Across
problems 4-6 (the problems analyzed for errors) CS1 participants’
median errors was 6 (with 2 perfect scores on all problems). CS2
participants had a median of 3 errors (with 3 participants receiving
perfect scores). For the easier questions, a lack of complexity in the
problems, as well as the provided examples, likely contributed to
the CS1 participants’ ability to craft suitable solutions. On these
questions they did not make many more errors than the CS2 group

(p=0.34, H=0.88). On the most difficult problem (problem 5 in
Table 1), however, the CS1 group made significantly more errors
than CS2 (p<.001, H=8.35). This was true despite the problem
being only slightly more complex than previous problems.
To investigate the relationship between self-regulation and errors,
we built a multiple linear regression model based on several
variables. We included gender, programming experience, and self-
efficacy, as each tend to effect programming success. We then
included frequencies of all five self-regulation types across all
problems. This model assumed that verbalizations of each type of
self-regulation are indicators of overall self-regulation skill, as
opposed to being specific to a problem.

Table 3 shows the resulting model for all participants. We found a
significant model (F(8,28) = 2.66, p=0.26), with an R2 of 0.43, with
gender a significant factor (p<0.05), with women having more
errors in their solutions. Because we found significant disparities in
the behavior of participants by experience groups, we also built two
separate regression models, one for participants in CS1 (n=21), and
one for CS2 (n=16). We included the same factors in these models,
excluding programming experience. Table 3 shows the two
resulting models for each group. The model was significant for CS1
(F(7,13)=3.11, p<0.05), with an R2 of 0.62, but none of the factors
had a individually significant relationship with errors. The CS2
model was not significant overall (F(7,8)=2.232, p>0.05)—likely
due to a small sample size of 16—but there were several large and
significant effect sizes in the coefficients that we hypothesized
would effect errors (a common rule for judging whether to interpret
significant coefficients of a non-significant model). These included
a ~3 error decrease for each verbalization of comprehension
monitoring (p<0.05), a ~1 error decrease for each verbalization of
planning (p<0.05) and ~1 error increase of for each verbalization
of self-explanation (p<0.05).

Figure 10. Frequency of participants’ self-explanations across

all problems, by experience (CS1→light, CS2→dark).

Figure 9. Frequency of participants’ metacognitive reflection
across all problems, by experience (CS1→light, CS2→dark).

Variable	 All	participants	 CS1	participants	 CS2	participants	
	 B	 SE	B	 β	 B	 SE	B	 β	 B	SE	B	 β	
Gender	(M=0,	F=1)	 3.62	 1.58	0.36*	 5.99	 2.88	 0.52	 0.55	1.50	 0.09	
#	CS	Courses	 -1.49	 0.90	 -0.30	 –	 –	 –	 –	 –	 –	
Self-Efficacy	 0.29	 0.37	 0.12	 0.93	 0.57	 0.31	-0.15	0.29	 -0.12	
Planning	 -0.06	 0.23	 -0.05	-0.44	 0.34	-0.29	-0.79	0.29	-0.91*	
Process	Monitoring	 -0.64	 0.37	 -0.26	-0.59	 0.45	-0.25	 0.26	0.60	 0.11	

Comp.	Monitoring	 0.61	 0.51	 0.23	 0.62	 0.63	 0.23	-2.90	0.99	-1.09*	
Reflection	 0.20	 0.32	 0.13	 1.10	 0.54	 0.41	 0.02	0.26	 0.03	
Self-explanation	 0.01	 0.42	 -0.01	 0.11	 1.07	 0.03	 0.98	0.34	 1.19*	
R2	 	 0.43	 	 	 0.62	 	 	0.66	 	
F	 	2.66*	 	 	3.11*	 	 	2.23	 	
*p	<	0.05		

Table 3. Three models predicting errors from demographic
and self-regulation variables. Unstandardized coefficients (B),

standard errors (SE B), and standardized coefficients (β).

89

5. DISCUSSION
Our results show a few trends. First, most self-regulation behaviors
were infrequent, inconsistently verbalized, shallow in their
application, and often ineffective at reducing programming errors.
Among those with more experience, the frequency of planning and
comprehension monitoring was related to fewer errors, while more
frequent self-explanation predicted more errors. In this section we
interpret these results and discuss implications.

The infrequency of self-regulation was quite visible among CS1
participants. They engaged in searching for analogous problems,
adapting previous solutions and planning, but showed little depth
in reasoning. The infrequency of reinterpreting the problem prompt
and evaluation by CS1 participants was consistent with prior work
[27] and their infrequent comprehension monitoring and planning:
they rarely reflected on their understanding of the problem or their
code. Table 3 shows the self-regulation they exhibited had little
relationship to the errors they made, suggesting that their efforts to
self-regulate were simply ineffective.

Similarly, the CS2 group exhibited infrequent and shallow self-
regulation. Even the most frequent self-regulation behavior,
planning, only occurred about once per problem (Section 4.2.1).
CS2 participants also reinterpreted the problem prompt throughout
the problem solving process rather than at the beginning,
suggesting shallow or absent comprehension monitoring. The lack
of process monitoring also plagued CS2 participants. Despite
increased experience, they were not very aware of what they are
doing or why. That said, the more that CS2 participants engaged in
planning and comprehension monitoring, the fewer errors they
created (Table 3). This suggests that as learners acquire the
necessary knowledge to write programs, self-regulation skills begin
to account for differences in success.

It was surprising that self-explanation was not related to success,
and in the case of CS2 participants, was associated with more
errors. This is in direct contrast to prior work, which has shown that
self-explanation is a key strategy in problem solving success
[4,21,30]. One interpretation is that verbalizations of self-
explanations are simply more prevalent when participants are
struggling: successful participants may have internally self-
explained, and done so in a more disciplined manner.

Although we did not study the progression from CS1 to CS2
directly, our results suggest that something is leading to more
effective self-regulation. This is in line with Falkner et al.’s work
[12] which found that, compared to novices, CS students in their
final year of college used more successful self-regulation strategies
such as design, testing and problem decomposition. One
explanation for this is that CS1 courses are somehow teaching self-
regulation and programming problem solving—this is not the case
at our institution, but it may arise indirectly through lab sections,
TAs, or classroom discussions. Another explanation might be that
students who decide to continue to CS2 have independently
developed more effective self-regulation strategies.

Interestingly, gender was associated with errors, but only for
students CS1 participants. Moreover, this was not explained by
differences in self-efficacy. One possibility is that there is some
other gender-related factor not in our model; another is that the
women who responded to our recruiting were systematically
different from the men (we noticed that many women expressed
wanting to help future students struggle less than they did).

One implication of these results is on the prior work on self-
regulation in computing education. Despite prior studies showing

that self-regulation is key in programming expertise [9, 17], and
that it can be productivity taught to novices [4,19], our study
demonstrates that novices do self-regulate, albeit infrequently and
poorly. This suggests that efforts to teach self-regulation in CS have
a foundation to build upon, but that they may also need to address
flaws in students’ existing self-regulation behaviors. Our results
suggest that these flaws are a lack of consistent, disciplined self-
regulation during problem solving and few reflections on cognition.

Another implication is that, because self-regulation is only
effective with adequate prior knowledge, it may be that the timing
of teaching self-regulation skills is important. Having disciplined
self-regulation skills but lacking adequate programming knowledge
may only serve to exhaust and frustrate learners. However,
disciplined self-regulation skills may facilitate learners using newly
acquired programming knowledge sooner, and more productively.

Our results have several implications for teaching. If self-regulation
behaviors are critical to programming success as prior work
suggests [9,17], it should be explicitly taught. Prior work has shown
that self-explanation [4], and problem solving frameworks [19] can
promote success. Our work suggests targeted instruction on
specific types of self-regulation—planning and comprehension
monitoring—may need further investigation. There are many
questions about how these might be taught (e.g., when, how to
interleave with syntax and semantics, what pedagogy to use). While
only planning and comprehension monitoring had a relationship
with errors in our study, other forms of self-regulation might also
be taught explicitly. For instance, is instruction on metacognitive
reflection [10] beneficial for programmers? How might teaching
problem decomposition and reinterpretation effect success? These
remain open areas for computing education research.

As with any empirical study, ours had many limitations. First, all
studies of this kind could benefit from more data. With a sample
size of 37 it was difficult to achieve the power needed to precisely
identify effects so many important relationships may have been
masked. Also, linear regressions show correlation and not
causation; thus, our interpretations may be missing important
unseen factors, meaning self-regulation may not cause
programmers to craft more successful solutions. Due to typically
high variation in programming knowledge, our results were also
noisy, further compounding the small sample. While think-aloud
protocol is well established for studying self-regulation [6,16], and
one of the only mechanisms allowing us to observe cognitive
processes, its robustness as a signal varies due to participants’
comfort thinking aloud to a stranger. Finally, because participants’
knowledge is difficult to measure, our choice of programming
problems from prior work led to a slight ceiling effect on errors,
hindering our ability to more precisely identify relationships to
errors.
Despite these and many other limitations to the validity and
generalizability of our results, we view our findings as an important
first step in understanding the relationship between self-regulation
and programming problem solving. With further research, better
instruments, and refined theories, we hope for a future in which
teachers not only understand the importance of self-regulation in
computing education, but can teach it too.

6. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation (NSF) under grants 1314399, 1240786, 1153625,
1240957, and 1314384. Any opinions, findings, conclusions or
recommendations are those of the authors and do not necessarily
reflect the views of the NSF.

90

7. REFERENCES
[1] Askar, P. and Davenport, D. 2009. An investigation of

factors related to self-efficacy for Java programming among
engineering students. TOJET: The Turkish Online Journal of
Educational Technology 8.1.
http://eric.ed.gov/?id=ED503900.

[2] Beaubouef, T., and Mason, J. 2005. Why the high attrition
rate for computer science students: some thoughts and
observations. ACM SIGCSE Bulletin, 37(2), 103-106.

[3] Bergin, S, Reilly, R and Traynor, D. 2005. Examining the
Role of Self-Regulated Learning on Introductory
Programming Performance. Proceedings of the First
International Workshop on Computing Education Research,
81–86.

[4] Bielaczyc, K., Pirolli, P. L., and Brown, A. L. 1995. Training
in self-explanation and self-regulation strategies:
Investigating the effects of knowledge acquisition activities
on problem solving. Cognition and instruction, 13(2), 221-
252.

[5] Cao, J., Fleming, S., Burnett, M. M., and Scaffidi, C. 2015.
Idea Garden: Situated support for problem solving by end-
user programmers. Interacting with Computers 27(6), 640-
660.

[6] Chi, M. T. 1997. Quantifying qualitative analyses of verbal
data: A practical guide. The journal of the learning
sciences, 6(3), 271-315.

[7] Clements, D. H., and Gullo, D. F. 1984. Effects of computer
programming on young children's cognition. Journal of
Educational Psychology, 76(6), 1051.

[8] Crippen, K. J., and Earl, B.L. 2007 The impact of web-based
worked examples and self-explanation on performance,
problem solving, and self-efficacy. Computers & Education
49, no. 3: 809–21.

[9] Eteläpelto, A. 1993. Metacognition and the expertise of
computer program comprehension. Scandinavian Journal of
Educational Research, 37(3), 243-254.

[10] Fahim, M, and Fakhri Alamdari, E. Maximizing Learners’
2014. Metacognitive awareness in listening through
metacognitive instruction: An empirical study. International
Journal of Research Studies in Education 3, no.3.

[11] Falkner, K, Vivian, R and Falkner, N.J.G. 2014 Identifying
Computer Science Self-Regulated Learning Strategies.
Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education, 291–96.

[12] Falkner, K, Szabo, C, Vivian, R and Falkner, N.J.G. 2015.
Evolution of Software Development Strategies. Proceedings
of the 37th International Conference on Software
Engineering - Volume 2, 243–52.

[13] Greeno, J.G. and Hall, R.P. 1997. Practicing representation.
Phi Delta Kappan 78(5), 361.

[14] Hoc, J, and Nguyen-Xuan, A. 1990. Language semantics,
mental models and analogy. Psychology of programming,
10, 139-156.

[15] Ko, A.J., Myers, B. and Aung, H.H. 2004. Six learning
barriers in end-user programming systems. Proceedings of
the IEEE Symposium on Visual Languages and Human
Centric Computing, 199-206.

[16] Koriat, A. 2016. Processes in Self-monitoring and Self-
regulation. The Wiley Blackwell Handbook of Judgment and
Decision Making, 2 Volume Set.

[17] Li, P. L., Ko, A. J., & Zhu, J. 2015. What makes a great
software engineer?. International Conference on Software
Engineering-Volume 1

[18] Linn, M. C., and Clancy, M. J. 1992. Can experts'
explanations help students develop program design skills?
International Journal of Man-Machine Studies, 36(4), 511-
551.

[19] Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J.,
and Burnett, M. M. Programming, Problem Solving, and
Self-Awareness: Effects of Explicit Guidance. ACM
Conference on Human Factors in Computing (CHI), to
appear.

[20] Margulieux, L.E., Guzdial, M., and Catrambone, R. 2012.
Subgoal-labeled instructional material improves performance
and transfer in learning to develop mobile applications. ACM
International Conference on Computing Education Research,
71–78.

[21] Michelene T. H. Chi, M. B. 1989. Self-Explanations: How
Students Study and Use Examples in Learning to Solve
Problems. Cognitive Science 13(2), 145–82.

[22] Morrison, B. B., Margulieux, L. E., and Guzdial, M. 2015.
Subgoals, context, and worked examples in learning
computing problem solving. ACM International Conference
on Computing Education Research, 21-29.

[23] Morrison, B.B., Margulieux, L.E., Ericson, B., Guzdial M.
2016. Subgoals help Students Solve Parsons Problems. ACM
Technical Symposium on Computing Science Education, 42-
47.

[24] Pea, R. D., and Kurland, D. M. 1984. On the cognitive
effects of learning computer programming. New ideas in
psychology, 2(2), 137-168.

[25] Pennington, N. and Grabowski, B., 1990. The tasks of
programming. Psychology of programming, 307, 45-62.

[26] Pintrich, P. R., Wolters, C. A., and Baxter, G. P. 2000.
Assessing metacognition and self-regulated learning. In G.
Schraw, & J. C. Impara (Eds.), Issues in the measurement of
metacognition. NE: University of Nebraska-Lincoln.

[27] Ido, R., Holmes, N. G., Day, J., and Bonn, D. 2012.
Evaluating Metacognitive Scaffolding in Guided Invention
Activities. Instructional Science 40(4). 691–710.

[28] Sawyer, K. R. 2006. Introduction: The new science of
learning. In R. K. Sawyer (Ed.) The Cambridge handbook of
learning sciences (1-18). New York: Cambridge University
Press.

[29] Soloway, E., and Spohrer, J. C. 2013. Studying the novice
programmer. Psychology Press.

[30] Soloway, E. 1986. Learning to program = learning to
construct mechanisms and explanations. Communications of
the ACM, 29(9), 850-858.

[31] Winne, P.H. and Perry, N.E. 2000. Measuring self-regulated
learning. In P. Pintrich, M. Boekaerts, & M. Seidner
(Eds.), Handbook of self-regulation. 531-566. Orlando, FL:
Academic Press.

91

