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ABSTRACT 
More people are learning to code than ever, but most learning 
opportunities do not explicitly teach the problem solving 
skills necessary to succeed at open-ended programming 
problems. In this paper, we present a new approach to impart 
these skills, consisting of: 1) explicit instruction on 
programming problem solving, which frames coding as a 
process of translating mental representations of problems 
and solutions into source code, 2) a method of visualizing 
and monitoring progression through six problem solving 
stages, 3) explicit, on-demand prompts for learners to reflect 
on their strategies when seeking help from instructors, and 4) 
context-sensitive help embedded in a code editor that 
reinforces the problem solving instruction. We 
experimentally evaluated the effects of our intervention 
across two 2-week web development summer camps with 48 
high school students, finding that the intervention increased 
productivity, independence, programming self-efficacy, 
metacognitive awareness, and growth mindset. We discuss 
the implications of these results on learning technologies and 
classroom instruction. 
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INTRODUCTION
Programming is rapidly becoming a 21st century literacy 
[45], with demand for software developers in the U.S. alone 
projected to grow at twice the rate of the average occupation 

through 2022 [8]. With this rise in demand for coding skills, 
there has also been a rise in the desire to learn to code [14], 
with millions using online sites such as code.org, 
codecademy.org, and khanacademy.org and tens of 
thousands enrolling in coding boot camps and CS programs. 
Countries around the world are even beginning to require 
coding classes in K-12 curricula, causing teachers to search 
for both learning technologies that teach coding and 
techniques for teaching with them effectively. The trend is 
clear: the ability to use programming languages—the most 
powerful of human-computer interfaces—is the skill to learn. 

Although the availability of opportunities to learn to code is 
now very high, evidence suggests that these opportunities 
leave much room for improvement. Students continue to 
drop out of introductory programming courses at rates of 30-
50% [5], often because they find the material too difficult 
[20]. Online tutorials such as codecademy.org and massively 
open online courses, while boasting millions of users, have 
attrition rates as high as 90% [27]. Even when learners 
complete these courses, they still score poorly on tests of 
basic coding knowledge [33]. Worse yet, recent work has 
found that introductory CS courses can convince learners’ 
that their abilities are fixed and cannot be improved with 
practice [21,49], deterring them from not only learning to 
code, but learning any new skill. 
There are many technologies designed to teach coding in 
more engaging ways, including the widely disseminated 
Scratch [41] and Alice [28]. However, studies of these 
learning technologies show that rather than use them to learn 
to code, most learners primarily use them to create content, 
possibly avoiding coding altogether [46]. Even with 
educational games such as Gidget [32], which are explicitly 
designed to engage learners in coding, the best that students 
who complete these games do on validated tests of 
programming knowledge is only 50% [33]. 
Some of these poor learning outcomes are due to social 
factors such as stereotype-reinforcing student behavior 
[20,36,51], teacher bias against students without “the geek 
gene” [35], and learners’ lack of intrinsic interest in 
computing [20]. However, research shows that how coding 
is taught is also important. For instance, there are several 
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evidence-based instructional techniques that can 
substantially improve learning and reduce attrition [40]. 
There is also evidence that without these techniques, many 
learners struggle through courses, feeling disoriented, lost, 
frustrated, and unsupported [30]. 
How can online tutorials like codecademy.org, creative 
technologies like Scratch [41], and traditional classroom 
environments improve these outcomes? In this paper, we 
investigate the idea that we should go beyond teaching just 
programming languages and tools, to also teaching the 
cognitive aspects of programming. After all, coding involves 
skills that go well beyond how to use a language. For 
instance, a recent study investigating software engineering 
expertise found that great engineers are systematic and self-
aware [34]. Similarly, the more complex a programming task 
is, the more that both novice and expert programmers exhibit 
metacognitive self-regulation behaviors, such as explicitly 
monitoring their progress and reflecting on the effectiveness 
of their problem solving strategies [24,19,42,49]. There is 
also evidence that the highest performing CS students are the 
ones who are most aware of their problem solving state and 
most capable of managing their cognitive resources [6]. This 
suggests that learning to code not only requires effective 
instruction on syntax, data structures, and abstraction, but 
also the development of metacognitive awareness [37]. 
Unfortunately, there is little insight in prior work about how 
to promote metacognitive awareness in programming. The 
closest and most recent effort is the Idea Garden [13], which 
helps learners who are stuck by providing deliberately 
imperfect hints in an IDE and suggests problem-solving 
strategies (e.g., dividing and conquering, making analogies, 
and generalizing a solution). There is some evidence that 
contextual hints help learners succeed more independently 
[26] and that scaffolding metacognitive work is beneficial in 
invention activities [44], but these are not designed to 
promote metacognitive awareness. Aside from these, most of 
the work concerning programming and metacognition claims 
that programming develops stronger general metacognitive 
awareness [15,39], but this work is both disputed [4] and says 
nothing about how to teach metacognitive awareness in 
programming.  
In this paper, we contribute an approach to promoting 
metacognitive awareness in introductory programming 
settings and investigate its effects on help requests, 
productivity, self-efficacy, and growth mindset. Our 
approach is grounded in the idea that programming is not 
merely about language syntax and semantics, but more 
fundamentally about the iterative process of refining mental 
representations of computational problems and solutions 
and expressing those representations as code. We use this 
framing of programming in an integrated set of four 
interventions: 1) an interactive lecture on problem solving in 
programming, 2) a physical model of problem solving stages 
that learners can use to track their problem solving state, 3) 
explicit prompts for learners to describe their problem 

solving state when they request help, and 4) context-sensitive 
problem solving hints in an IDE. 

To explore and evaluate the impact of these metacognitive 
interventions (our first contribution), we conducted a 
controlled experiment (our second contribution) across two 
2-week camps with 48 high school students who signed up 
to learn basic web development. We hypothesized that our 
interventions would improve learners’ ability to describe 
their problem solving progress, strengthen their self-efficacy 
(their degree of confidence in their ability to carry out a task 
[2,3]), foster growth mindsets (their theories about whether 
ability is learned or innate [18]), and ultimately produce a 
higher quantity of functional code. In the rest of this paper, 
we describe our intervention, our camp, data collection, and 
the results of our investigation into our predictions. We then 
discuss the implications of our findings for the broad 
landscape of efforts to teach coding in classrooms, tools, and 
online. 

THE APPROACH: PROBLEM SOLVING STAGES AND 
METACOGNITIVE PROMPTS  
Our approach to teaching problem solving in programming 
draws upon work on problem solving, metacognition, and the 
psychology of programming. We derive our approach from 
recommendations that effective metacognition instruction 
should 1) provide an abstract understanding of a domain’s 
problem solving knowledge, 2) teach a domain’s goal 
structure, and 3) provide incentives to learn from and avoid 
common metacognitive errors in the domain [43]. In 
programming, we believe this means: 1) providing 
knowledge of the range of activities that programmers 
engage in to solve problems, 2) imparting ways that 
programmers converge toward a solution, and 3) teaching to 
reflect on and regulate strategies. 

There are many techniques in prior literature for teaching 
such metacognitive skills. For example, in prior work on 
problem solving, studies have taught learners about general 
limitations and biases in human learning and memory 
[16,48] and provided planning, monitoring, and evaluation 
checklists in reading and math [47]. These can have positive 
benefits on learning outcomes, self-efficacy, and growth 
mindset [22,17,38,52]. 

In our work, we propose two interventions that teach learners 
how to converge toward programming solutions while 
incentivizing them to recognize, evaluate, and refine their 
problem solving strategies: 

• Provide explicit instruction on the goals and activities 
involved in programming problem solving. Frame problem 
solving in programming as a set of distinct stages (which 
we describe shortly). 

• Prompt learners to describe their problem solving state. 
When learners ask for help from a person, or from software 
such as an intelligent tutoring system or learning 
technology, prompt learners to describe the problem 
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solving stage in which they are engaged. This encourages 
additional reflection on their problem solving. 

• Provide a physical representation of problem solving 
stages to help learners monitor their state. Provide a 
physical handout that details the programming problem 
solving stages and encourages learners to track which stage 
they are in, peripherally prompting learners to be aware of 
what actions might be appropriate next. 

• Provide context-sensitive problem solving prompts. To 
reinforce metacognitive awareness during code editing, 
offer contextual hints that prompt learners to recognize the 
problem solving stage they are engaged in.  

The problem solving stages we propose to teach include six 
stages that prior literature on the psychology of programming 
suggests are essential to successful programming. While 
nominally sequential, the stages are re-visited frequently as 
programmers iteratively implement a solution and discover 
knowledge about the problem and solution that was not 
initially apparent. The stages are: 

• Reinterpret problem prompt. Programming tasks typically 
begin with some description of a problem, which 
programmers must understand, interpret, and clarify. As 
with other forms of problem solving, this understanding is 
a cognitive representation of the problem used to organize 
one’s “continuing work” [23]. The more explicit this 
interpretation process, the more likely a programmer will 
overcome ambiguities in the problem [42]. 

• Search for analogous problems. Programmers draw upon 
problems they have encountered in the past, either in past 
programming efforts or perhaps in algorithmic activities 
they have encountered in life (e.g., sorting a stack of books 
or searching for one’s name in a list) [25]. By reusing 
knowledge of related problems, programmers can better 
conceptualize a problem’s computational nuances. 

• Search for solutions. With some understanding of a 
problem, programmers seek solutions that will 
satisfactorily solve the problem by adapting solutions they 
have used in the past or by finding solutions in textbooks, 
online, or from classmates or teachers [9,29]. 

• Evaluate a potential solution. With a solution in mind, 
programmers must evaluate how well this solution will 
address the problem. This includes actions like feasibility 
assessments, mental algorithm simulations, or other 
techniques of sketching or prototyping a solution before 
implementing it [31]. 

• Implement a solution. With an acceptable solution in mind, 
programmers must translate the solution into source code 
using their knowledge of languages and tools. 

• Evaluate implemented solution. After implementing a 
solution, programmers iteratively converge toward a 
solution by evaluating how well their current 
implementation solves the problem. This typically involves 
software testing and debugging [29,42]. 

One can instantiate instruction on these six stages and the 
three proposed forms of metacognitive prompts (a handout 
modeling the problem solving stages, help request prompts 
and context-sensitive help) in many different ways. For 
example, in online learning technologies, these interventions 
might be built into automated tutorials or online IDEs. In 
classrooms, they might be interactive activities, lectures, TA 
prompts, or even grading policies. In the next section, we 
describe how we evaluated our particular instantiation of 
these interventions, providing one example of how they 
might work in practice. 
METHODS  
The goal of our experiment was to compare a traditional 
version of a web development camp (our control) with an 
experimental version of the same camp that included the four 
interventions we described in the previous section. In this 
section, we describe our two camps and the data we collected 
to measure the effects of our intervention. 
Participants 
Our participants were campers in a university-sponsored 
summer youth learning program. The program was based in 
a region with a large software industry, so many of the 
campers likely knew someone with coding skills. Campers 
in the youth program have historically been from upper-
middle class families with college-educated parents, and 
have typically been only 20-30% female. Campers and 
parents were not aware of any difference between the two 
camps other than their scheduled time. The youth program 
managed registrations, recruiting 25 campers in the 
experimental group and 23 in the control. From this point 
forward, we refer to campers with a letter indicating their 
group followed a unique number (e.g. E27 is an experimental 
camper and C75 a control). 

The experimental group included 8 females and 17 males. 
Two campers listed English as their non-primary language. 
The control group included 8 females and 15 males, and all 
listed English as their primary language. The two groups 
were largely indistinguishable: they did not miss class at 
different rates (Kruskal-Wallis, H=2.2, p=0.138), they 
contained similar numbers of females (X2=0, df=1, p=1.000), 
they had similar grade levels (X2=4.1829, df=3, p=0.242), 
and similar self-reported programming and web 
development experience (X2 = 2.669, df=1, p=0.102).  

The Camps 
Each camp consisted of ten 3-hour weekday sessions from 
9am to 12pm (experimental) and from 1pm to 4pm (control). 
We placed the experimental group in the morning to bias any 
instructional improvements toward the control group 
(though this may have introduced other confounds, as we 
discuss later). Both camps took place in the same university 
computer lab. Campers worked in the Chrome web browser 
and Cloud9, a web-based IDE (http://c9.io). 
The Instruction 
We aimed to teach concepts, syntax, and semantics of 
HTML, CSS, and JavaScript with a focus on the React 
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JavaScript framework (facebook.github.io/react). Our goal 
was for campers to feel capable of learning more about these 
technologies, but not necessarily capable of developing 
interactive web sites with them independently. We chose the 
React framework because it is based on a powerful but highly 
constrained view abstraction, which meant that there are only 
a small number of ways to implement any particular 
functionality. This made measuring task completion more 
straightforward, as we describe later in our results. 

As table 1 shows, the camp included 4 days of lectures and 
practice, followed by 5 days of self-directed programming 
time on a course project. The lead instructor (the first author), 
presented HTML, JavaScript, and React lectures to both 
groups. Another instructor (the third author) presented a CSS 
lecture and a growth mindset exercise to both groups. Three 
additional undergrads also acted as helpers. All members of 
the instructional team had at least novice experience with 
web development. The lead instructor had no experience 
running camps or teaching programming.  

The 1-hour problem solving lecture (the first part of our 
intervention, given only to the experimental group) taught 
campers the six programming problem solving stages we 
described earlier. The instructor began the lecture with a 
book sorting exercise. He asked the campers how to sort the 
books by size and followed their verbal instructions. Next, 
he asked the campers how they knew how to sort the books 
in that way and why they sorted the books that way. The 
campers discussed the how and why amongst themselves 
until they reported that they understood the problem. The 
instructor then prompted for more explanation until it 
became apparent to campers that the questions were not as 
simple as they initially seemed. The instructor used this 
realization to trigger a discussion of each of the six problem 
solving stages, starting with reinterpreting the problem 
prompt. Campers tried to identify the next stage of the 
process in groups at the instructor’s request. Once the 
campers identified the next stage (or the instructor identified 
it when campers ran out of ideas), he tied abstract concept of 
the stage to a concrete problem, such as the book sorting 
problem the lecture began with. 

After the lecture, we provided the experimental group with a 
physical handout of the problem solving stages (shown in 
Figure 1) and a physical token so they could track their 
current state on the handout (the second part of our 
intervention). We instructed campers to track their progress 
through the stages as they worked on their website and to 
reflect on and adjust their strategies.  

While the problem solving lecture detailed what 
programmers must achieve in the six stages, it did not 
prescribe how they achieve it. We did not mention any 
particular strategies or resources to use for each stage. The 
one exception to this is a mention of the development of sub-
problems, which the instructor mentioned in the lecture and 
noted in the handout. The instructor also told the campers 
they could use the Idea Garden, which mentions some 
strategies such as working backwards. 

The Project 
After the four days of lecture and practice, campers in both 
groups spent the remaining five work days on a class project. 
The project was to build an interactive, React-based single-
page web application that contained both static and 
interactive content about campers’ interests. Figure 2 shows 
an example of a camper’s final site. To scaffold the project, 
we provided a basic architecture for the application. We then 
provided a set of 20 progressively more difficult tasks for 
campers to complete at their own pace (see Table 2). 

During both the after-lecture activities and project work 
time, campers in both groups had access to several types of 

 
Figure 1: The paper handout and physical token we gave to 

campers to track their problem solving stage. 

Day 1 HTML lecture and activity 
Day 2 1-hour problem solving lecture (experimental only); 

Problem solving stages handout and prompts 
(experimental only); 
CSS lecture and activity; 
1-hour additional CSS activity (control only) 

Day 3 JavaScript lecture and activity; 
Growth mindset development exercise 

Day 4 React lecture and Interactive activity; 
Problem solving reminder (experimental only) 

Days 5-9 Free development time 
Day 10 Project presentations 

Table 1: The camp schedule, with experimental camp’s 
additions as noted. 

 
Figure 2: Camper E27’s final project, showing buttons that 

link to different interests (left) and content and images 
(center). Details have been anonymized. 

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1452



help. We gave campers PDFs of the lectures along with 
HTML, CSS, and JavaScript “cheat sheets.” We also 
encouraged campers to find online resources on their own. 
The two instructors and three helpers also offered help upon 
request. The helpers’ goals were twofold: 1) to get the 
camper on a more productive path without giving them a 
solution and 2) to gather data about the camper’s 
metacognitive awareness and problem solving strategies. To 
achieve these goals, helpers provided assistance only when 
asked to do so, and they never provided code.  

When responding to a camper’s help request, helpers first 
asked the camper two questions: 1) “Describe the problem in 
as much detail as you can” and 2) “What have you tried so 
far?” Additionally, helpers asked the experimental group, 
“What problem solving stage do you think you are in? (The 
third part of our intervention). After these questions, the 
helpers provided assistance. Next, the helpers recorded 
detailed observations about the problem(s) the camper had 
encountered and the assistance provided. At the end of each 
day, helpers transcribed their notes, elaborating on details 
they did not capture previously. To practice this process, the 
helpers trained in a 3-day pilot camp.  

To provide context-sensitive problem solving prompts to the 
experimental group (the fourth part of our intervention), we 
implemented the Idea Garden [10, 11, 12, 13, 26] in a panel 
of the Cloud9 IDE (see Figure 3, main). The Idea Garden, as 
a design concept, entices programmers to consider new ideas 
when they are stuck on a task. In this manifestation, we 

reinforced the problem solving stages by housing the Idea 
Garden’s 14 hints under headers corresponding to the six 
stages. When campers triggered a programming “anti-
pattern”, such as forgetting to use the iterator in a for loop, 
the Idea Garden placed an icon on the screen next to the 
problematic line of code (Figure 3, callout). If the camper 
then clicked on the icon, the titles of hints relevant to the 
problem became highlighted. 

Data Collection 
At the end of each camp day, campers completed an end-of-
day survey. To learn about the campers’ metacognitive 
awareness during the camps, we adapted the techniques of 
[55, 53], asking campers to reflect on a difficult task and 
respond to the survey question “How did you solve this 
problem? If you didn’t solve it, what did you try?” 

To measure campers’ programming self-efficacy, we 
adapted the scale by Askar et al. [1] to fit web development 
tasks. The eight survey prompts were on a 5-point Likert 
scale and featured statements such as “I can write 
syntactically correct JavaScript statements”, “I can complete 
a programming project even if I only have the documentation 
for help.”, and “When I get stuck I can find ways of 
overcoming the problem.” 

To measure campers’ growth mindset, we used previous 
programming aptitude mindset measures of Scott & Ghinea 
[49]. The three survey prompts were also on a 5-point Likert 
scale and included the statements “I do not think I can really 
change my aptitude for programming.”, “I have a fixed level 
of programming aptitude, and not much can be done to 
change it.”, and “I can learn new things about software 
development, but I cannot change my basic aptitude for 
programming. “ 

Task C
on

te
nt

 
H

T
M

L 
C

SS
 

JS
 

Add a window title to the web page  ✓   

Create objects to represent each of your interests ✓   ✓ 

Change the background color and add a border to your page   ✓  

Create a space for each of your interest’s names  ✓  ✓ 
Add a component that displays a photo of your interest    ✓ 
Display interest text paragraphs in their own <div> tags    ✓ 
Give your page a background image   ✓  
Give the content area a background color and rounded border   ✓  
Use a component to display a page title stored in a variable     ✓ 
Give each paragraph a unique style using .map()   ✓ ✓ 
Make a “Surprise Me” button that shows a random interest ✓   ✓ 
Style your buttons with a border and transitions   ✓  
Create a menu component with two buttons   ✓ ✓ 
Make the menu navigate between the interests and “about me” 
pages 

   ✓ 

Fill your “about me” page with content about you ✓ ✓  ✓ 
Make the title match the currently selected page    ✓ 
Add an image to “about me” page that changes when clicked    ✓ 
Embed a video in your interest’s content area  ✓   
Link your images to an external page ✓   ✓ 
Create a photo gallery that displays six images ✓ ✓ ✓ ✓ 

Table 2: Condensed versions of the prescribed tasks given to 
the campers and the skills that each task required. 

 
Figure 3: (Main) The Idea Garden panel in the Cloud9 IDE as 
campers see it when they opened the panel for the first time. 
(Callout) An example of the Idea Garden decorating the code 

with an icon. Here, the icon links to the Iteration with For hint. 
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To measure productivity, helpers saved the campers’ source 
code at the end of each camp session. We also captured the 
experimental group’s use of the Idea Garden, modifying a 
Cloud9 event logging mechanism to report Idea Garden 
interactions like opening a hint. The experimental group’s 
end-of-day surveys included three questions about how 
campers used the Idea Garden as a resource. 
RESULTS 
Because the camp was an experiment, everything we 
described in the previous section was identical for both 
groups, with the exception of the four things added to the 
experimental group: 1) the problem solving lecture, 2) the 
handout in Figure 1, 3) the help request prompts, and 4) the 
Idea Garden help shown in Figure 3. In this section, we 
describe the changes these additions caused, beginning with 
a qualitative description of the campers’ experiences and 
outcomes to give context to our results. We then discuss the 
effects of our intervention on metacognitive awareness, help 
requests, productivity, self-efficacy, and growth mindset. All 
statistical hypothesis tests we report were non-parametric 
Kruskal-Wallis or Chi-squared tests. 

Camper Experiences 
As with any learning environment, the campers had a 
diversity of skill, engagement, and performance. Some 
campers relied heavily on the physical handout, while others 
only referenced it when prompted by camp helpers. Some of 
the most productive campers created their own tasks and 
used all the tools at their disposal to accomplish those tasks.  

For example, camper E40 (a 12th grade male) asked for the 
most help and earned the second highest productivity score. 
He discussed his problem solving activities and interacted 
frequently with the Idea Garden. On day 3, he read the 
iteration hints about for, for-in, and map and later asked for 
help iterating over his list of photos. On day 5 he said that 
the Idea Garden gave him new tactics: “yeah, it told me to try 
using a map function or a for-in loop and im [sic] trying to 
get them to work.” On day 6, helpers observed him 
successfully using iteration without help. 

The control group also contained highly productive campers, 
but they appeared to be less independent. Campers C91 (10th 
grade male) and C92 (11th grade male) earned the two highest 
productivity scores in the control group, working together. 
C91 said, “Tell me what's wrong here because I'm not going 
to bother figuring out what's going on,” showing how 
quickly he gave up on solving problems independently. 
When C91 and C92 struggled they compensated by working 
together and repeatedly asking for help.  

Other campers were less productive. For example, camper 
E50 (a 9th grade male) focused primarily on content changes 
and the most challenging task (the photo gallery) in Table 2, 
but did little work on any other task. He worked 
independently and tried to use the Idea Garden, but reported: 
“I tried looking at [the map hint] and it wasn't really useful”. 
He encountered many early stage learning barriers 

(described later) as well, saying things like “I don't know 
where to start. I did display a photo, but I don't know how to 
create a component.” C87 (an 11th grade male) also earned 
low productivity scores due to avoiding tasks requiring 
JavaScript and only requested help with CSS and HTML. 
Impact on Metacognitive Awareness 
The stories in the previous section suggest several 
differences between the groups. One difference we predicted 
was that our problem solving instruction would help campers 
be more aware of the strategies they used, enabling them to 
better identify and describe them. 

To investigate this hypothesis, we evaluated metacognitive 
awareness by analyzing each of the responses to the end-of-
day survey question “How did you solve this problem? If you 
didn’t solve it, what did you try?” The most salient difference 
in the responses was the presence or absence of specific 
problem solving strategies or tactics. For example, many 
campers wrote in detail about their efforts to solve a problem, 
such as “I did not solve the question. I googled it, and tried 
several bits of code, but I must have used them incorrectly, 
because they did not work.” (C76) and “I looked at the slides 
and copied similar code just in the context of my code. But 
there was a small error between 'item' and 'items' which took 
a long time to figure out.” (C84). Others were quite terse and 
simply mentioned asking for help, as in “teacher help” (C82) 
or “I asked an instructor.” (C83). Some additional strategies 
mentioned included asking peers for help, searching google, 
copying and modifying previous code, and mental simulation 
of the code looking for errors. 

Two researchers counted the number of end-of-day 
responses per camper that described a specific strategy or 
tactic other than asking an instructor for help (reaching 90% 
agreement on 20% of the data). After comparing these 
counts, we found that campers in the experimental group 
were significantly more likely to write an explicit description 
of a problem solving strategy (H=4.554, p=0.032) (see 

 
Figure 4 (above): The total number of strategies mentioned in 
end-of-day survey responses by campers in each group, sorted 

by frequency. The experimental group mentioned more 
strategies than the control group. 

  
Figure 5 (above): The total word count of all end-of-day 

survey responses by campers in each group, sorted by count. 
The experimental group wrote more than the control group. 
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Figure 4). As shown in Figure 5, the experimental group 
campers also wrote significantly more words in their 
responses (H=6.326, p=0.011).  
Impact on Types of Help Requested 
Our instruction aimed to help campers be more aware of their 
current problem solving state, and therefore more capable of 
evaluating their strategies. Therefore, we predicted that the 
experimental group would be more independent and make 
more progress before requiring help than the control group. 
For example, if a camper in the implementing a solution stage 
struggled with getting some JavaScript to work, exposure to 
the paper handout, the help request prompts, and the Idea 
Garden might remind them to search for an alternative 
solution, think of other similar problems they had solved 
before, or re-evaluate their understanding of the problem. 

To detect this possible change in help requests, we classified 
the notes on each help request using a previously reported 
coding scheme on programming learning barriers [29]. We 
list the six barriers in Table 3, showing examples from 
campers. Each barrier is a general type of impasse that 
learners typically encounter in programming tasks. Table 4 
lists some of the barriers that might occur in particular 
problem solving stages.  

Two researchers coded the helper observations from camper 
help requests. They reached 88.75% agreement on 20% of 
the data and then coded the rest separately. The helper to 
camper ratio (1:5) in each camp constrained the amount of 
requests (289 requests in the control, and 309 in the 
experimental), so we focused on analyzing the relative 
proportion of different types of requests. 

As shown in the two rightmost columns of Table 3, the 
proportion of help request types varied significantly by 
condition (X2=11.087, df=5, p=0.049). Campers in the 
control group requested assistance with design and selection 
barriers more often (devising a solution to a problem and 
identifying programming language and API constructs to 
implement it). In contrast, the experimental group requested 
more help with understanding and information barriers (how 

to debug their implementations). Though the difference in 
proportions of help request types was not large, it appears 
that campers in the experimental group were more likely to 
select a solution and implement it independently, allowing 
them to progress to evaluation before requiring help. 
Impact on Productivity 
If our problem solving instruction was effective, we would 
also expect to see the experimental group finish more work 
than the control group. To test this hypothesis, we considered 
the degree to which campers completed prescribed tasks and 
self-initiated tasks for their project. 

To measure these two kinds of productivity we counted the 
number of tasks completed, weighted by the category of 
tasks identified in Table 2 to determine a productivity score. 
Two researchers inspected each camper’s final project 
source code and web site, checking which tasks they had 
completed. We only counted a camper’s code as completing 
a task if it resulted in visible features on their website. React 
restricted the number of ways a camper could accomplish a 
task, making this assessment straightforward. For the self-
initiated tasks, the same two researchers checked each 
camper’s website for additional functionality, recording a 
description of its behavior and the code required to 
implement it. Campers in both conditions completed several 
impressive additions to their project, such as additional menu 
items in their profile page, widgets that displayed the current 
time, embedded videos, and a two-player “tic tac toe” game.  

Barrier Definition from [29] Representative Quote from Camper Control Experimental 

Design Did not know how to approach solving a 
problem. 

“I’m incredibly lost. I think I’m on task 4?” ‒ camper C92 9% 6.7% 

Selection Had an approach, but did not know what 
language or API features to use. 

“How can I get the title a different color?” ‒ camper C95 27.8% 21.3% 

Use Had a language or API feature, but did 
not know how to use it. 

“I’m kind of confused on how to write an if statement to 
display the pictures...if the tab is PhotoGallery” ‒ camper 
E42 

34.4% 37.3% 

Coordination Did not know how to use two or more 
language or API features together. 

“This is no longer working. They were separately, but I tried 
combining them and it doesn’t” ‒ camper C89 

4.2% 3.2% 

Understanding Observed a failure and did not have 
guesses about why it was failing. 

“I added this photo code to my webpage and now my buttons 
don’t work” ‒ camper E37 

23.8% 28.8% 

Information Had a guess about why a failure 
occurred, but could not get information 
to confirm it. 

“I’m using getElementByID here in the HTML, but it keeps 
evaluating to this ‘else’ so I know it’s not working” ‒ 
camper E50 

0.8% 2.7% 

Table 3: Each row defines the barrier and gives an example from a help request, along with the percent of each type of barrier 
reported by each condition in their help requests. Highlighted cells are the higher of the two proportions. 

 

Problem Solving Stage Potential Barrier(s) Encountered 

Reinterpret problem prompt Design 
Search for analogous problems Selection 
Search for solutions Selection 
Evaluate solution supposition Selection 
Implementing a solution Use, Coordination 
Evaluate implemented solution Understanding, Information 

Table 4: The barriers from [29] that might be encountered in 
a particular problem solving stage. 
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Tasks (prescribed or otherwise) required different amounts 
of work and thus had different levels of difficulty. Some 
tasks were simple content changes, while others required 
substantial JavaScript implementations. To account for this 
varying work in each completed task, we categorized tasks 
according to which skills they required (as indicated in Table 
2). Content tasks that only involved writing natural language, 
but not modifying markup or code, received 1 point. HTML 
tasks that involved adding or editing tags or HTML attributes 
received 2 points, as we considered these changes more 
difficult than modifying content because of the knowledge of 
markup syntax required. CSS tasks involved creating new 
CSS rules that interacted with HTML received 4 points, since 
they involved complex interactions with the DOM. Finally, 
JavaScript tasks that involved interactions with content, 
HTML, and CSS, received 8 points, as they required the most 
effort to complete and did the most to further campers toward 
the goal of developing a highly interactive website. 

Comparing each group’s weighted task completion scores 
revealed several interesting trends. First, as shown in Figure 
6, the two groups completed similar amounts of prescribed 
task work in the same amount of time (H=0.0009, p=0.975). 
However, the experimental group completed substantially 
more self-initiated tasks: only 4 control group campers 
(17%) added additional functionality, compared to 11 
experimental group campers (44%). This additional work led 
to the experimental group achieving significantly higher 
work scores (H=4.509, p=0.033), completing over twice as 
much self-initiated work on average (as shown in Figure 7). 
Figure 8 shows that the experimental group’s productivity on 
both prescribed and self-initiated tasks outpaced that of the 
control over time.  

When we counted the lines of code that campers changed on 
each day of project work, there was no significant difference 
between groups (with the exception of day 8) (see Figure 9). 

This may suggest that the experimental group got more work 
done with a comparable amount of code editing.    

One potential confound in these results is the extent to which 
campers sought help: if the experimental group relied more 
heavily on the instructor and helpers, it may have explained 
their higher productivity. To investigate this, we checked the 
correlations between campers’ help requests and total 
productivity scores, and found the opposite: the experimental 
group showed no significant association between help 
requests and productivity (Pearson: r(23)=0.278, p=0.179), 
whereas the control group did have a significant association 
(Pearson: r(21)=0.467, p=0.025). This suggests that the 
control group not only accomplished less work, but relied 
more on the helpers to complete this work.   

Impact on Self-Efficacy 
With the experimental group’s greater productivity, we also 
expected to see a relative increase in self-efficacy between 
the two groups. To test this prediction, we calculated the 
mean of each camper’s eight self-efficacy survey responses 
at the beginning and end of the camp, resulting in a score 
from [-2, 2]. Figure 10 shows the distributions of these scores 
before and after the camp by condition, and Figure 11 shows 
the scores each day.  

At the beginning of the camp, most of the campers’ self-
efficacy scores were low: the control mean was -0.54 and the 

  
Figure 6 (above): Campers’ prescribed task productivity scores 

by condition, sorted in increasing order. The experimental 
campers’ productivities were typically about equivalent to or 

higher than the control campers’. 

   
Figure 7 (above): Campers’ self-initiated task productivity 

scores by condition, sorted in increasing order. Experimental 
campers’ productivities were significantly higher than control 

campers’. Values of zero are not visible. 
 

   
Figure 8 (above): Cumulative average productivities per 

project day on both prescribed (light hues) and self-initiated 
(dark hues) tasks. The experimental group was increasingly 

more productive than the control group. 

  
Figure 9: The campers’ median lines of code changes per 

project day by condition. Experimental campers’ amount of 
code changed was not significantly different from control 

campers’ except on day 8. 
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experimental mean was -0.74. These distributions of pre-
camp self-efficacy scores were not significantly different 
(H=0.87, p=0.351). After the camp the combined 
programming self-efficacy scores were higher for both 
groups, but the experimental group’s self-efficacy was 
significantly higher than the control’s (H=12.2, p=0.0005), 
with a control mean score of 0.29 and an experimental mean 
score of 0.88. With a mean difference effect size of 0.59, the 
control group ended the camp with a neutral belief in their 
ability to create web applications, whereas the experimental 
group was unambiguously positive (shown in Figure 11).  

When we considered the change in self-efficacy—computed 
as the difference between the last and first days’ combined 
scores—the differences were even more substantial. The 
control group’s change in self-efficacy score was a mean of 
0.90, whereas the experimental group’s change in self-
efficacy score was a mean of 1.61, leading to significant 
effect size of 0.71 increase in self-efficacy (H=14.1, 
p=0.0002). These results show that the problem solving 
intervention in the experimental group likely had a strong 
positive effect on campers’ beliefs in their abilities to 
successfully code interactive web sites.  

Another notable difference was the self-efficacy changes by 
gender: after the camp, many male campers still had negative 
programming self-efficacy, as did many female campers in 
the control group, but all female campers in the experimental 
group reported positive self-efficacy. 
Impact on Growth Mindset 
As shown in recent prior work, introductory computer 
science courses can erode growth mindsets, making students 
believe that general aptitude is inborn and cannot change 

[21]. We hypothesized that by increasing campers’ success 
at problem solving and programming, we could prevent this 
erosion of growth mindset. To test this hypothesis, we 
mapped campers’ pre-camp and end-of-day growth mindset 
survey responses to a [-2, 2] scale, then took the mean of the 
responses. Because the survey measured fixed mindsets, we 
negated the value, so that positive values indicated growth 
mindset and negative indicated fixed mindset. 
As shown in Figure 12, at the beginning of the camp, the 
campers in both groups began with a comparable but weak 
growth mindset, with the control group having a mean of 
0.60 on our scale (slightly below “agree” on our scale), and 
the experimental group having a mean of 0.87 (slightly 
below “agree” on our scale), (H=1.89, p=0.169). After the 
camp, however, the campers in the groups were significantly 
different (H=21.9, p=0.000003): the control group campers’ 
mean score was -0.20 (meaning their growth mindset had 
eroded to a slight fixed mindset, replicating prior work [21]), 
and the experimental group’s mean score was 0.93 (a 
moderate growth mindset). Figure 13 illustrates this trend 
over time, showing that the campers in the experimental 
group maintained their belief that aptitude can improve while 
the control group campers’ growth mindset eroded.  

The change in growth mindset scores for each camper from 
before and after the camp (the difference between last and 
first day’s combined growth mindset score) was also 
significant (H=6.20, p=0.012). The control group had a mean 
decrease of 0.80 in their growth mindset, whereas the 
experimental group only had a 0.07 mean decrease.  
DISCUSSION AND FUTURE WORK 
Our results provide some of the first evidence that teaching 
problem solving for programming is not only possible, but 

   
Figure 12: Aggregate growth mindset scores for all campers in 

both groups, with experimental and control sorted from 
lowest to highest. Some before values are not visible due to 

high after values. Growth mindset stayed positive in the 
experimental group but turned more negative in the control. 

 
Figure 13: Mean growth mindset score across the ten days, by 

condition. While the control campers’ growth mindsets 
deteriorated sharply when JavaScript was introduced (day 3) 

and continued to degrade, the experimental campers 
maintained their existing growth mindset throughout the 

camp and showed a slight upward trend. 
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Figure 10: Aggregate self-efficacy scores for all campers in 

both groups, with experimental and control sorted from lowest 
to highest. Some before values are not visible due to high after 
values. Self-efficacy increased for most campers, but increased 

significantly more in the experimental group. 

  
Figure 11: Mean self-efficacy in each group for each day of the 
camp. The experimental campers’ self-efficacy increased after 
the introduction of the intervention (day 2) and ended mildly 
positive, while the control campers’ ended at a neutral level. 
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can improve productivity, promote independence, increase 
self-efficacy gains, and reinforce growth mindset in a 
learning setting where it typically erodes greatly. Moreover, 
the trends we observed are consistent with the intended 
mechanisms of our intervention: campers in the experimental 
group were significantly more likely to recall and describe 
the strategies they employed and more likely to request help 
with a problem after they had already attempted to solve it. 
Although our experiment did not allow us to separate the 
relative contributions of our four interventions, our results 
suggest that they worked together to teach and reinforce the 
idea that awareness of one’s strategies and their effectiveness 
is critical to successful programming. 

In one sense, these results are what general theories of 
problem solving, self-regulation, and metacognition would 
predict. Prior investigations into metacognition instruction 
generally provide students with a domain-specific problem 
solving knowledge and goal structure, plus incentives to 
learn from and avoid common metacognitive errors, such as 
poor or failing strategies [43]—and this is what our 
intervention did. The increased independence with which the 
campers in the experimental group worked would also 
explain why their self-efficacy increased, and possibly why 
their productivity increased: if they were more effective at 
recognizing effective and ineffective strategies through 
increased awareness, they would have made more progress 
on problems without having to wait for help from the camp 
helpers. In contrast, the campers in the control group, like 
students in most introductory settings, were usually stuck at 
the beginning of problems and required help to proceed. This 
may have reinforced that they did not “get” coding, 
weakening self-efficacy and eroding growth mindset. 

If our interpretations are correct, our study has important, 
far-reaching implications for how we teach people to code. 
First, given the strong positive impact of growth mindset on 
lifelong learning [7] and the tendency of introductory 
programming settings to weaken it [21,49], if our findings 
are replicated and further substantiated it would arguably be 
unethical for learning technologies and teachers to not adopt 
some form of instruction on problem solving. Designers of 
introductory programing learning technologies such as 
Scratch, codecademy.org, and code.org could embed explicit 
instruction about the problem solving stages we propose, 
perhaps even finding ways to detect what stage a learner is 
in and offer constructive feedback about strategies and 
tactics to proceed. By incorporating such instruction, we 
might also increase participation in computing by women 
and ethnic minorities, who often start with lower self-
efficacy or fixed mindsets in computing settings [20]. 

There are still several open research questions about our 
intervention. Future work should explore which aspects of 
the intervention were most responsible for the effects. There 
are also wide-open design questions about how to adapt the 
spirit of our intervention to other settings, including online 
learning technologies, and classrooms of various sizes and 

structures. Future work is likely to find that how problem 
solving is taught is just as important as teaching it at all. 

Part of this future work is also overcoming the limitations of 
our initial investigation. Studies should explore the effects of 
similar interventions on other age groups, levels of academic 
achievement, and other socioeconomic statuses. In 
particular, the campers we recruited mostly came from high 
socioeconomic status families in a mostly white city, and had 
a high likelihood of knowing someone who worked in the 
software industry in some capacity. Viewing technology 
from an amplification lens [54], our results could have been 
quite different in rural or low socioeconomic settings, where 
prior work has shown self-efficacy and exposure to 
computing to be substantially lower. Future work should also 
replicate the effects of our study with other instructors, other 
programming languages, other problems, and other cultures. 
For example, we achieved these effects with a team of 
energetic but novice teachers; achieving them with more 
experienced teachers may require different approaches. Our 
work also did not explore the extent to which the changes in 
self-efficacy and reinforcement of growth mindset are robust 
to time: it may be that the campers’ self-attitudes were 
shaped contextually and not generalizable to other settings. 

In addition to generalizability concerns, the time of day 
difference in our camps may have caused internal validity 
issues. Because the experimental group was in the morning, 
it might have attracted higher achieving campers not deterred 
by a 9 am start time and may have received higher energy 
instruction from teachers and helpers, unlike the afternoon, 
which occurred after lunch and a long morning of instruction. 
We tried to overcome this confound by placing the 
experimental group first, ensuring that the control group also 
received many benefits from the second delivery of the camp 
(fewer technical problems, improved answers to requests for 
help, clearer delivery of direct instruction), but it is possible 
these advantages did not outweigh possible bias. 

Limitations aside, if we can repeat these findings broadly and 
deepen our understanding of how to teach problem solving 
in programming in a wide range of contexts, there is broad 
potential for impact on the world’s current efforts to teach 
programming. Dozens of countries have begun initiatives to 
teach programming in K-12, and hundreds of companies 
have started coding boot camps. Our results suggest that 
problem solving instruction can and should be an 
instrumental part of them. If we can train the teachers, 
develop the materials, and adapt the learning technologies to 
empower learners to understand and solve programming 
problems, we might just meet the ever-growing demand for 
a diverse and computationally literate global society. 
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