
Programming, Problem Solving, and Self-Awareness:
Effects of Explicit Guidance

Dastyni Loksa1, Amy J Ko1, Will Jernigan2, Alannah Oleson2, Christopher J Mendez2,
and Margaret M Burnett2

The Information School,
University of Washington

DUB Group
Seattle, Washington

{dloksa, ajko}@uw.edu

School of EECS,
Oregon State University

Corvallis, Oregon
{jernigaw, olesona, mendezc,

burnett}@oregonstate.edu

ABSTRACT
More people are learning to code than ever, but most learning
opportunities do not explicitly teach the problem solving
skills necessary to succeed at open-ended programming
problems. In this paper, we present a new approach to impart
these skills, consisting of: 1) explicit instruction on
programming problem solving, which frames coding as a
process of translating mental representations of problems
and solutions into source code, 2) a method of visualizing
and monitoring progression through six problem solving
stages, 3) explicit, on-demand prompts for learners to reflect
on their strategies when seeking help from instructors, and 4)
context-sensitive help embedded in a code editor that
reinforces the problem solving instruction. We
experimentally evaluated the effects of our intervention
across two 2-week web development summer camps with 48
high school students, finding that the intervention increased
productivity, independence, programming self-efficacy,
metacognitive awareness, and growth mindset. We discuss
the implications of these results on learning technologies and
classroom instruction.
Author Keywords
Problem-solving; Programming; Metacognition; Computer
Science Education
ACM Classification Keywords
K.3.2 Computer Science Education; H.5.m Information
interfaces and presentation (e.g., HCI): Miscellaneous

INTRODUCTION
Programming is rapidly becoming a 21st century literacy
[45], with demand for software developers in the U.S. alone
projected to grow at twice the rate of the average occupation

through 2022 [8]. With this rise in demand for coding skills,
there has also been a rise in the desire to learn to code [14],
with millions using online sites such as code.org,
codecademy.org, and khanacademy.org and tens of
thousands enrolling in coding boot camps and CS programs.
Countries around the world are even beginning to require
coding classes in K-12 curricula, causing teachers to search
for both learning technologies that teach coding and
techniques for teaching with them effectively. The trend is
clear: the ability to use programming languages—the most
powerful of human-computer interfaces—is the skill to learn.

Although the availability of opportunities to learn to code is
now very high, evidence suggests that these opportunities
leave much room for improvement. Students continue to
drop out of introductory programming courses at rates of 30-
50% [5], often because they find the material too difficult
[20]. Online tutorials such as codecademy.org and massively
open online courses, while boasting millions of users, have
attrition rates as high as 90% [27]. Even when learners
complete these courses, they still score poorly on tests of
basic coding knowledge [33]. Worse yet, recent work has
found that introductory CS courses can convince learners’
that their abilities are fixed and cannot be improved with
practice [21,49], deterring them from not only learning to
code, but learning any new skill.
There are many technologies designed to teach coding in
more engaging ways, including the widely disseminated
Scratch [41] and Alice [28]. However, studies of these
learning technologies show that rather than use them to learn
to code, most learners primarily use them to create content,
possibly avoiding coding altogether [46]. Even with
educational games such as Gidget [32], which are explicitly
designed to engage learners in coding, the best that students
who complete these games do on validated tests of
programming knowledge is only 50% [33].
Some of these poor learning outcomes are due to social
factors such as stereotype-reinforcing student behavior
[20,36,51], teacher bias against students without “the geek
gene” [35], and learners’ lack of intrinsic interest in
computing [20]. However, research shows that how coding
is taught is also important. For instance, there are several

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
CHI'16, May 07 - 12, 2016, San Jose, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3362-7/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2858036.2858252

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1449 Most up-to-date version: 06/26/2021

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2858036.2858252

evidence-based instructional techniques that can
substantially improve learning and reduce attrition [40].
There is also evidence that without these techniques, many
learners struggle through courses, feeling disoriented, lost,
frustrated, and unsupported [30].
How can online tutorials like codecademy.org, creative
technologies like Scratch [41], and traditional classroom
environments improve these outcomes? In this paper, we
investigate the idea that we should go beyond teaching just
programming languages and tools, to also teaching the
cognitive aspects of programming. After all, coding involves
skills that go well beyond how to use a language. For
instance, a recent study investigating software engineering
expertise found that great engineers are systematic and self-
aware [34]. Similarly, the more complex a programming task
is, the more that both novice and expert programmers exhibit
metacognitive self-regulation behaviors, such as explicitly
monitoring their progress and reflecting on the effectiveness
of their problem solving strategies [24,19,42,49]. There is
also evidence that the highest performing CS students are the
ones who are most aware of their problem solving state and
most capable of managing their cognitive resources [6]. This
suggests that learning to code not only requires effective
instruction on syntax, data structures, and abstraction, but
also the development of metacognitive awareness [37].
Unfortunately, there is little insight in prior work about how
to promote metacognitive awareness in programming. The
closest and most recent effort is the Idea Garden [13], which
helps learners who are stuck by providing deliberately
imperfect hints in an IDE and suggests problem-solving
strategies (e.g., dividing and conquering, making analogies,
and generalizing a solution). There is some evidence that
contextual hints help learners succeed more independently
[26] and that scaffolding metacognitive work is beneficial in
invention activities [44], but these are not designed to
promote metacognitive awareness. Aside from these, most of
the work concerning programming and metacognition claims
that programming develops stronger general metacognitive
awareness [15,39], but this work is both disputed [4] and says
nothing about how to teach metacognitive awareness in
programming.
In this paper, we contribute an approach to promoting
metacognitive awareness in introductory programming
settings and investigate its effects on help requests,
productivity, self-efficacy, and growth mindset. Our
approach is grounded in the idea that programming is not
merely about language syntax and semantics, but more
fundamentally about the iterative process of refining mental
representations of computational problems and solutions
and expressing those representations as code. We use this
framing of programming in an integrated set of four
interventions: 1) an interactive lecture on problem solving in
programming, 2) a physical model of problem solving stages
that learners can use to track their problem solving state, 3)
explicit prompts for learners to describe their problem

solving state when they request help, and 4) context-sensitive
problem solving hints in an IDE.

To explore and evaluate the impact of these metacognitive
interventions (our first contribution), we conducted a
controlled experiment (our second contribution) across two
2-week camps with 48 high school students who signed up
to learn basic web development. We hypothesized that our
interventions would improve learners’ ability to describe
their problem solving progress, strengthen their self-efficacy
(their degree of confidence in their ability to carry out a task
[2,3]), foster growth mindsets (their theories about whether
ability is learned or innate [18]), and ultimately produce a
higher quantity of functional code. In the rest of this paper,
we describe our intervention, our camp, data collection, and
the results of our investigation into our predictions. We then
discuss the implications of our findings for the broad
landscape of efforts to teach coding in classrooms, tools, and
online.

THE APPROACH: PROBLEM SOLVING STAGES AND
METACOGNITIVE PROMPTS
Our approach to teaching problem solving in programming
draws upon work on problem solving, metacognition, and the
psychology of programming. We derive our approach from
recommendations that effective metacognition instruction
should 1) provide an abstract understanding of a domain’s
problem solving knowledge, 2) teach a domain’s goal
structure, and 3) provide incentives to learn from and avoid
common metacognitive errors in the domain [43]. In
programming, we believe this means: 1) providing
knowledge of the range of activities that programmers
engage in to solve problems, 2) imparting ways that
programmers converge toward a solution, and 3) teaching to
reflect on and regulate strategies.

There are many techniques in prior literature for teaching
such metacognitive skills. For example, in prior work on
problem solving, studies have taught learners about general
limitations and biases in human learning and memory
[16,48] and provided planning, monitoring, and evaluation
checklists in reading and math [47]. These can have positive
benefits on learning outcomes, self-efficacy, and growth
mindset [22,17,38,52].

In our work, we propose two interventions that teach learners
how to converge toward programming solutions while
incentivizing them to recognize, evaluate, and refine their
problem solving strategies:

• Provide explicit instruction on the goals and activities
involved in programming problem solving. Frame problem
solving in programming as a set of distinct stages (which
we describe shortly).

• Prompt learners to describe their problem solving state.
When learners ask for help from a person, or from software
such as an intelligent tutoring system or learning
technology, prompt learners to describe the problem

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1450

solving stage in which they are engaged. This encourages
additional reflection on their problem solving.

• Provide a physical representation of problem solving
stages to help learners monitor their state. Provide a
physical handout that details the programming problem
solving stages and encourages learners to track which stage
they are in, peripherally prompting learners to be aware of
what actions might be appropriate next.

• Provide context-sensitive problem solving prompts. To
reinforce metacognitive awareness during code editing,
offer contextual hints that prompt learners to recognize the
problem solving stage they are engaged in.

The problem solving stages we propose to teach include six
stages that prior literature on the psychology of programming
suggests are essential to successful programming. While
nominally sequential, the stages are re-visited frequently as
programmers iteratively implement a solution and discover
knowledge about the problem and solution that was not
initially apparent. The stages are:

• Reinterpret problem prompt. Programming tasks typically
begin with some description of a problem, which
programmers must understand, interpret, and clarify. As
with other forms of problem solving, this understanding is
a cognitive representation of the problem used to organize
one’s “continuing work” [23]. The more explicit this
interpretation process, the more likely a programmer will
overcome ambiguities in the problem [42].

• Search for analogous problems. Programmers draw upon
problems they have encountered in the past, either in past
programming efforts or perhaps in algorithmic activities
they have encountered in life (e.g., sorting a stack of books
or searching for one’s name in a list) [25]. By reusing
knowledge of related problems, programmers can better
conceptualize a problem’s computational nuances.

• Search for solutions. With some understanding of a
problem, programmers seek solutions that will
satisfactorily solve the problem by adapting solutions they
have used in the past or by finding solutions in textbooks,
online, or from classmates or teachers [9,29].

• Evaluate a potential solution. With a solution in mind,
programmers must evaluate how well this solution will
address the problem. This includes actions like feasibility
assessments, mental algorithm simulations, or other
techniques of sketching or prototyping a solution before
implementing it [31].

• Implement a solution. With an acceptable solution in mind,
programmers must translate the solution into source code
using their knowledge of languages and tools.

• Evaluate implemented solution. After implementing a
solution, programmers iteratively converge toward a
solution by evaluating how well their current
implementation solves the problem. This typically involves
software testing and debugging [29,42].

One can instantiate instruction on these six stages and the
three proposed forms of metacognitive prompts (a handout
modeling the problem solving stages, help request prompts
and context-sensitive help) in many different ways. For
example, in online learning technologies, these interventions
might be built into automated tutorials or online IDEs. In
classrooms, they might be interactive activities, lectures, TA
prompts, or even grading policies. In the next section, we
describe how we evaluated our particular instantiation of
these interventions, providing one example of how they
might work in practice.
METHODS
The goal of our experiment was to compare a traditional
version of a web development camp (our control) with an
experimental version of the same camp that included the four
interventions we described in the previous section. In this
section, we describe our two camps and the data we collected
to measure the effects of our intervention.
Participants
Our participants were campers in a university-sponsored
summer youth learning program. The program was based in
a region with a large software industry, so many of the
campers likely knew someone with coding skills. Campers
in the youth program have historically been from upper-
middle class families with college-educated parents, and
have typically been only 20-30% female. Campers and
parents were not aware of any difference between the two
camps other than their scheduled time. The youth program
managed registrations, recruiting 25 campers in the
experimental group and 23 in the control. From this point
forward, we refer to campers with a letter indicating their
group followed a unique number (e.g. E27 is an experimental
camper and C75 a control).

The experimental group included 8 females and 17 males.
Two campers listed English as their non-primary language.
The control group included 8 females and 15 males, and all
listed English as their primary language. The two groups
were largely indistinguishable: they did not miss class at
different rates (Kruskal-Wallis, H=2.2, p=0.138), they
contained similar numbers of females (X2=0, df=1, p=1.000),
they had similar grade levels (X2=4.1829, df=3, p=0.242),
and similar self-reported programming and web
development experience (X2 = 2.669, df=1, p=0.102).

The Camps
Each camp consisted of ten 3-hour weekday sessions from
9am to 12pm (experimental) and from 1pm to 4pm (control).
We placed the experimental group in the morning to bias any
instructional improvements toward the control group
(though this may have introduced other confounds, as we
discuss later). Both camps took place in the same university
computer lab. Campers worked in the Chrome web browser
and Cloud9, a web-based IDE (http://c9.io).
The Instruction
We aimed to teach concepts, syntax, and semantics of
HTML, CSS, and JavaScript with a focus on the React

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1451

JavaScript framework (facebook.github.io/react). Our goal
was for campers to feel capable of learning more about these
technologies, but not necessarily capable of developing
interactive web sites with them independently. We chose the
React framework because it is based on a powerful but highly
constrained view abstraction, which meant that there are only
a small number of ways to implement any particular
functionality. This made measuring task completion more
straightforward, as we describe later in our results.

As table 1 shows, the camp included 4 days of lectures and
practice, followed by 5 days of self-directed programming
time on a course project. The lead instructor (the first author),
presented HTML, JavaScript, and React lectures to both
groups. Another instructor (the third author) presented a CSS
lecture and a growth mindset exercise to both groups. Three
additional undergrads also acted as helpers. All members of
the instructional team had at least novice experience with
web development. The lead instructor had no experience
running camps or teaching programming.

The 1-hour problem solving lecture (the first part of our
intervention, given only to the experimental group) taught
campers the six programming problem solving stages we
described earlier. The instructor began the lecture with a
book sorting exercise. He asked the campers how to sort the
books by size and followed their verbal instructions. Next,
he asked the campers how they knew how to sort the books
in that way and why they sorted the books that way. The
campers discussed the how and why amongst themselves
until they reported that they understood the problem. The
instructor then prompted for more explanation until it
became apparent to campers that the questions were not as
simple as they initially seemed. The instructor used this
realization to trigger a discussion of each of the six problem
solving stages, starting with reinterpreting the problem
prompt. Campers tried to identify the next stage of the
process in groups at the instructor’s request. Once the
campers identified the next stage (or the instructor identified
it when campers ran out of ideas), he tied abstract concept of
the stage to a concrete problem, such as the book sorting
problem the lecture began with.

After the lecture, we provided the experimental group with a
physical handout of the problem solving stages (shown in
Figure 1) and a physical token so they could track their
current state on the handout (the second part of our
intervention). We instructed campers to track their progress
through the stages as they worked on their website and to
reflect on and adjust their strategies.

While the problem solving lecture detailed what
programmers must achieve in the six stages, it did not
prescribe how they achieve it. We did not mention any
particular strategies or resources to use for each stage. The
one exception to this is a mention of the development of sub-
problems, which the instructor mentioned in the lecture and
noted in the handout. The instructor also told the campers
they could use the Idea Garden, which mentions some
strategies such as working backwards.

The Project
After the four days of lecture and practice, campers in both
groups spent the remaining five work days on a class project.
The project was to build an interactive, React-based single-
page web application that contained both static and
interactive content about campers’ interests. Figure 2 shows
an example of a camper’s final site. To scaffold the project,
we provided a basic architecture for the application. We then
provided a set of 20 progressively more difficult tasks for
campers to complete at their own pace (see Table 2).

During both the after-lecture activities and project work
time, campers in both groups had access to several types of

Figure 1: The paper handout and physical token we gave to

campers to track their problem solving stage.

Day 1 HTML lecture and activity
Day 2 1-hour problem solving lecture (experimental only);

Problem solving stages handout and prompts
(experimental only);
CSS lecture and activity;
1-hour additional CSS activity (control only)

Day 3 JavaScript lecture and activity;
Growth mindset development exercise

Day 4 React lecture and Interactive activity;
Problem solving reminder (experimental only)

Days 5-9 Free development time
Day 10 Project presentations

Table 1: The camp schedule, with experimental camp’s
additions as noted.

Figure 2: Camper E27’s final project, showing buttons that

link to different interests (left) and content and images
(center). Details have been anonymized.

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1452

help. We gave campers PDFs of the lectures along with
HTML, CSS, and JavaScript “cheat sheets.” We also
encouraged campers to find online resources on their own.
The two instructors and three helpers also offered help upon
request. The helpers’ goals were twofold: 1) to get the
camper on a more productive path without giving them a
solution and 2) to gather data about the camper’s
metacognitive awareness and problem solving strategies. To
achieve these goals, helpers provided assistance only when
asked to do so, and they never provided code.

When responding to a camper’s help request, helpers first
asked the camper two questions: 1) “Describe the problem in
as much detail as you can” and 2) “What have you tried so
far?” Additionally, helpers asked the experimental group,
“What problem solving stage do you think you are in? (The
third part of our intervention). After these questions, the
helpers provided assistance. Next, the helpers recorded
detailed observations about the problem(s) the camper had
encountered and the assistance provided. At the end of each
day, helpers transcribed their notes, elaborating on details
they did not capture previously. To practice this process, the
helpers trained in a 3-day pilot camp.

To provide context-sensitive problem solving prompts to the
experimental group (the fourth part of our intervention), we
implemented the Idea Garden [10, 11, 12, 13, 26] in a panel
of the Cloud9 IDE (see Figure 3, main). The Idea Garden, as
a design concept, entices programmers to consider new ideas
when they are stuck on a task. In this manifestation, we

reinforced the problem solving stages by housing the Idea
Garden’s 14 hints under headers corresponding to the six
stages. When campers triggered a programming “anti-
pattern”, such as forgetting to use the iterator in a for loop,
the Idea Garden placed an icon on the screen next to the
problematic line of code (Figure 3, callout). If the camper
then clicked on the icon, the titles of hints relevant to the
problem became highlighted.

Data Collection
At the end of each camp day, campers completed an end-of-
day survey. To learn about the campers’ metacognitive
awareness during the camps, we adapted the techniques of
[55, 53], asking campers to reflect on a difficult task and
respond to the survey question “How did you solve this
problem? If you didn’t solve it, what did you try?”

To measure campers’ programming self-efficacy, we
adapted the scale by Askar et al. [1] to fit web development
tasks. The eight survey prompts were on a 5-point Likert
scale and featured statements such as “I can write
syntactically correct JavaScript statements”, “I can complete
a programming project even if I only have the documentation
for help.”, and “When I get stuck I can find ways of
overcoming the problem.”

To measure campers’ growth mindset, we used previous
programming aptitude mindset measures of Scott & Ghinea
[49]. The three survey prompts were also on a 5-point Likert
scale and included the statements “I do not think I can really
change my aptitude for programming.”, “I have a fixed level
of programming aptitude, and not much can be done to
change it.”, and “I can learn new things about software
development, but I cannot change my basic aptitude for
programming. “

Task C
on

te
nt

H

T
M

L
C

SS

JS

Add a window title to the web page ✓

Create objects to represent each of your interests ✓ ✓

Change the background color and add a border to your page ✓

Create a space for each of your interest’s names ✓ ✓
Add a component that displays a photo of your interest ✓
Display interest text paragraphs in their own <div> tags ✓
Give your page a background image ✓
Give the content area a background color and rounded border ✓
Use a component to display a page title stored in a variable ✓
Give each paragraph a unique style using .map() ✓ ✓
Make a “Surprise Me” button that shows a random interest ✓ ✓
Style your buttons with a border and transitions ✓
Create a menu component with two buttons ✓ ✓
Make the menu navigate between the interests and “about me”
pages

 ✓

Fill your “about me” page with content about you ✓ ✓ ✓
Make the title match the currently selected page ✓
Add an image to “about me” page that changes when clicked ✓
Embed a video in your interest’s content area ✓
Link your images to an external page ✓ ✓
Create a photo gallery that displays six images ✓ ✓ ✓ ✓

Table 2: Condensed versions of the prescribed tasks given to
the campers and the skills that each task required.

Figure 3: (Main) The Idea Garden panel in the Cloud9 IDE as
campers see it when they opened the panel for the first time.
(Callout) An example of the Idea Garden decorating the code

with an icon. Here, the icon links to the Iteration with For hint.

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1453

To measure productivity, helpers saved the campers’ source
code at the end of each camp session. We also captured the
experimental group’s use of the Idea Garden, modifying a
Cloud9 event logging mechanism to report Idea Garden
interactions like opening a hint. The experimental group’s
end-of-day surveys included three questions about how
campers used the Idea Garden as a resource.
RESULTS
Because the camp was an experiment, everything we
described in the previous section was identical for both
groups, with the exception of the four things added to the
experimental group: 1) the problem solving lecture, 2) the
handout in Figure 1, 3) the help request prompts, and 4) the
Idea Garden help shown in Figure 3. In this section, we
describe the changes these additions caused, beginning with
a qualitative description of the campers’ experiences and
outcomes to give context to our results. We then discuss the
effects of our intervention on metacognitive awareness, help
requests, productivity, self-efficacy, and growth mindset. All
statistical hypothesis tests we report were non-parametric
Kruskal-Wallis or Chi-squared tests.

Camper Experiences
As with any learning environment, the campers had a
diversity of skill, engagement, and performance. Some
campers relied heavily on the physical handout, while others
only referenced it when prompted by camp helpers. Some of
the most productive campers created their own tasks and
used all the tools at their disposal to accomplish those tasks.

For example, camper E40 (a 12th grade male) asked for the
most help and earned the second highest productivity score.
He discussed his problem solving activities and interacted
frequently with the Idea Garden. On day 3, he read the
iteration hints about for, for-in, and map and later asked for
help iterating over his list of photos. On day 5 he said that
the Idea Garden gave him new tactics: “yeah, it told me to try
using a map function or a for-in loop and im [sic] trying to
get them to work.” On day 6, helpers observed him
successfully using iteration without help.

The control group also contained highly productive campers,
but they appeared to be less independent. Campers C91 (10th
grade male) and C92 (11th grade male) earned the two highest
productivity scores in the control group, working together.
C91 said, “Tell me what's wrong here because I'm not going
to bother figuring out what's going on,” showing how
quickly he gave up on solving problems independently.
When C91 and C92 struggled they compensated by working
together and repeatedly asking for help.

Other campers were less productive. For example, camper
E50 (a 9th grade male) focused primarily on content changes
and the most challenging task (the photo gallery) in Table 2,
but did little work on any other task. He worked
independently and tried to use the Idea Garden, but reported:
“I tried looking at [the map hint] and it wasn't really useful”.
He encountered many early stage learning barriers

(described later) as well, saying things like “I don't know
where to start. I did display a photo, but I don't know how to
create a component.” C87 (an 11th grade male) also earned
low productivity scores due to avoiding tasks requiring
JavaScript and only requested help with CSS and HTML.
Impact on Metacognitive Awareness
The stories in the previous section suggest several
differences between the groups. One difference we predicted
was that our problem solving instruction would help campers
be more aware of the strategies they used, enabling them to
better identify and describe them.

To investigate this hypothesis, we evaluated metacognitive
awareness by analyzing each of the responses to the end-of-
day survey question “How did you solve this problem? If you
didn’t solve it, what did you try?” The most salient difference
in the responses was the presence or absence of specific
problem solving strategies or tactics. For example, many
campers wrote in detail about their efforts to solve a problem,
such as “I did not solve the question. I googled it, and tried
several bits of code, but I must have used them incorrectly,
because they did not work.” (C76) and “I looked at the slides
and copied similar code just in the context of my code. But
there was a small error between 'item' and 'items' which took
a long time to figure out.” (C84). Others were quite terse and
simply mentioned asking for help, as in “teacher help” (C82)
or “I asked an instructor.” (C83). Some additional strategies
mentioned included asking peers for help, searching google,
copying and modifying previous code, and mental simulation
of the code looking for errors.

Two researchers counted the number of end-of-day
responses per camper that described a specific strategy or
tactic other than asking an instructor for help (reaching 90%
agreement on 20% of the data). After comparing these
counts, we found that campers in the experimental group
were significantly more likely to write an explicit description
of a problem solving strategy (H=4.554, p=0.032) (see

Figure 4 (above): The total number of strategies mentioned in
end-of-day survey responses by campers in each group, sorted

by frequency. The experimental group mentioned more
strategies than the control group.

Figure 5 (above): The total word count of all end-of-day

survey responses by campers in each group, sorted by count.
The experimental group wrote more than the control group.

0

2

4

6
Expr Ctrl

0

500

1000
Expr Ctrl

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1454

Figure 4). As shown in Figure 5, the experimental group
campers also wrote significantly more words in their
responses (H=6.326, p=0.011).
Impact on Types of Help Requested
Our instruction aimed to help campers be more aware of their
current problem solving state, and therefore more capable of
evaluating their strategies. Therefore, we predicted that the
experimental group would be more independent and make
more progress before requiring help than the control group.
For example, if a camper in the implementing a solution stage
struggled with getting some JavaScript to work, exposure to
the paper handout, the help request prompts, and the Idea
Garden might remind them to search for an alternative
solution, think of other similar problems they had solved
before, or re-evaluate their understanding of the problem.

To detect this possible change in help requests, we classified
the notes on each help request using a previously reported
coding scheme on programming learning barriers [29]. We
list the six barriers in Table 3, showing examples from
campers. Each barrier is a general type of impasse that
learners typically encounter in programming tasks. Table 4
lists some of the barriers that might occur in particular
problem solving stages.

Two researchers coded the helper observations from camper
help requests. They reached 88.75% agreement on 20% of
the data and then coded the rest separately. The helper to
camper ratio (1:5) in each camp constrained the amount of
requests (289 requests in the control, and 309 in the
experimental), so we focused on analyzing the relative
proportion of different types of requests.

As shown in the two rightmost columns of Table 3, the
proportion of help request types varied significantly by
condition (X2=11.087, df=5, p=0.049). Campers in the
control group requested assistance with design and selection
barriers more often (devising a solution to a problem and
identifying programming language and API constructs to
implement it). In contrast, the experimental group requested
more help with understanding and information barriers (how

to debug their implementations). Though the difference in
proportions of help request types was not large, it appears
that campers in the experimental group were more likely to
select a solution and implement it independently, allowing
them to progress to evaluation before requiring help.
Impact on Productivity
If our problem solving instruction was effective, we would
also expect to see the experimental group finish more work
than the control group. To test this hypothesis, we considered
the degree to which campers completed prescribed tasks and
self-initiated tasks for their project.

To measure these two kinds of productivity we counted the
number of tasks completed, weighted by the category of
tasks identified in Table 2 to determine a productivity score.
Two researchers inspected each camper’s final project
source code and web site, checking which tasks they had
completed. We only counted a camper’s code as completing
a task if it resulted in visible features on their website. React
restricted the number of ways a camper could accomplish a
task, making this assessment straightforward. For the self-
initiated tasks, the same two researchers checked each
camper’s website for additional functionality, recording a
description of its behavior and the code required to
implement it. Campers in both conditions completed several
impressive additions to their project, such as additional menu
items in their profile page, widgets that displayed the current
time, embedded videos, and a two-player “tic tac toe” game.

Barrier Definition from [29] Representative Quote from Camper Control Experimental

Design Did not know how to approach solving a
problem.

“I’m incredibly lost. I think I’m on task 4?” ‒ camper C92 9% 6.7%

Selection Had an approach, but did not know what
language or API features to use.

“How can I get the title a different color?” ‒ camper C95 27.8% 21.3%

Use Had a language or API feature, but did
not know how to use it.

“I’m kind of confused on how to write an if statement to
display the pictures...if the tab is PhotoGallery” ‒ camper
E42

34.4% 37.3%

Coordination Did not know how to use two or more
language or API features together.

“This is no longer working. They were separately, but I tried
combining them and it doesn’t” ‒ camper C89

4.2% 3.2%

Understanding Observed a failure and did not have
guesses about why it was failing.

“I added this photo code to my webpage and now my buttons
don’t work” ‒ camper E37

23.8% 28.8%

Information Had a guess about why a failure
occurred, but could not get information
to confirm it.

“I’m using getElementByID here in the HTML, but it keeps
evaluating to this ‘else’ so I know it’s not working” ‒
camper E50

0.8% 2.7%

Table 3: Each row defines the barrier and gives an example from a help request, along with the percent of each type of barrier
reported by each condition in their help requests. Highlighted cells are the higher of the two proportions.

Problem Solving Stage Potential Barrier(s) Encountered

Reinterpret problem prompt Design
Search for analogous problems Selection
Search for solutions Selection
Evaluate solution supposition Selection
Implementing a solution Use, Coordination
Evaluate implemented solution Understanding, Information

Table 4: The barriers from [29] that might be encountered in
a particular problem solving stage.

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1455

Tasks (prescribed or otherwise) required different amounts
of work and thus had different levels of difficulty. Some
tasks were simple content changes, while others required
substantial JavaScript implementations. To account for this
varying work in each completed task, we categorized tasks
according to which skills they required (as indicated in Table
2). Content tasks that only involved writing natural language,
but not modifying markup or code, received 1 point. HTML
tasks that involved adding or editing tags or HTML attributes
received 2 points, as we considered these changes more
difficult than modifying content because of the knowledge of
markup syntax required. CSS tasks involved creating new
CSS rules that interacted with HTML received 4 points, since
they involved complex interactions with the DOM. Finally,
JavaScript tasks that involved interactions with content,
HTML, and CSS, received 8 points, as they required the most
effort to complete and did the most to further campers toward
the goal of developing a highly interactive website.

Comparing each group’s weighted task completion scores
revealed several interesting trends. First, as shown in Figure
6, the two groups completed similar amounts of prescribed
task work in the same amount of time (H=0.0009, p=0.975).
However, the experimental group completed substantially
more self-initiated tasks: only 4 control group campers
(17%) added additional functionality, compared to 11
experimental group campers (44%). This additional work led
to the experimental group achieving significantly higher
work scores (H=4.509, p=0.033), completing over twice as
much self-initiated work on average (as shown in Figure 7).
Figure 8 shows that the experimental group’s productivity on
both prescribed and self-initiated tasks outpaced that of the
control over time.

When we counted the lines of code that campers changed on
each day of project work, there was no significant difference
between groups (with the exception of day 8) (see Figure 9).

This may suggest that the experimental group got more work
done with a comparable amount of code editing.

One potential confound in these results is the extent to which
campers sought help: if the experimental group relied more
heavily on the instructor and helpers, it may have explained
their higher productivity. To investigate this, we checked the
correlations between campers’ help requests and total
productivity scores, and found the opposite: the experimental
group showed no significant association between help
requests and productivity (Pearson: r(23)=0.278, p=0.179),
whereas the control group did have a significant association
(Pearson: r(21)=0.467, p=0.025). This suggests that the
control group not only accomplished less work, but relied
more on the helpers to complete this work.

Impact on Self-Efficacy
With the experimental group’s greater productivity, we also
expected to see a relative increase in self-efficacy between
the two groups. To test this prediction, we calculated the
mean of each camper’s eight self-efficacy survey responses
at the beginning and end of the camp, resulting in a score
from [-2, 2]. Figure 10 shows the distributions of these scores
before and after the camp by condition, and Figure 11 shows
the scores each day.

At the beginning of the camp, most of the campers’ self-
efficacy scores were low: the control mean was -0.54 and the

Figure 6 (above): Campers’ prescribed task productivity scores

by condition, sorted in increasing order. The experimental
campers’ productivities were typically about equivalent to or

higher than the control campers’.

Figure 7 (above): Campers’ self-initiated task productivity

scores by condition, sorted in increasing order. Experimental
campers’ productivities were significantly higher than control

campers’. Values of zero are not visible.

Figure 8 (above): Cumulative average productivities per

project day on both prescribed (light hues) and self-initiated
(dark hues) tasks. The experimental group was increasingly

more productive than the control group.

Figure 9: The campers’ median lines of code changes per

project day by condition. Experimental campers’ amount of
code changed was not significantly different from control

campers’ except on day 8.

0

200

400
Expr Ctrl

0

25

50
Expr Ctrl

0

20

40

60

80

100

120

140

Day 5 Day 6 Day 7 Day 8 Day 9

Expr Init. Ctrl Init.

Expr Pres. Ctrl Pres.

0

50

100

150

200

Day 5 Day 6 Day 7 Day 8 Day 9

Expr Ctrl

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1456

experimental mean was -0.74. These distributions of pre-
camp self-efficacy scores were not significantly different
(H=0.87, p=0.351). After the camp the combined
programming self-efficacy scores were higher for both
groups, but the experimental group’s self-efficacy was
significantly higher than the control’s (H=12.2, p=0.0005),
with a control mean score of 0.29 and an experimental mean
score of 0.88. With a mean difference effect size of 0.59, the
control group ended the camp with a neutral belief in their
ability to create web applications, whereas the experimental
group was unambiguously positive (shown in Figure 11).

When we considered the change in self-efficacy—computed
as the difference between the last and first days’ combined
scores—the differences were even more substantial. The
control group’s change in self-efficacy score was a mean of
0.90, whereas the experimental group’s change in self-
efficacy score was a mean of 1.61, leading to significant
effect size of 0.71 increase in self-efficacy (H=14.1,
p=0.0002). These results show that the problem solving
intervention in the experimental group likely had a strong
positive effect on campers’ beliefs in their abilities to
successfully code interactive web sites.

Another notable difference was the self-efficacy changes by
gender: after the camp, many male campers still had negative
programming self-efficacy, as did many female campers in
the control group, but all female campers in the experimental
group reported positive self-efficacy.
Impact on Growth Mindset
As shown in recent prior work, introductory computer
science courses can erode growth mindsets, making students
believe that general aptitude is inborn and cannot change

[21]. We hypothesized that by increasing campers’ success
at problem solving and programming, we could prevent this
erosion of growth mindset. To test this hypothesis, we
mapped campers’ pre-camp and end-of-day growth mindset
survey responses to a [-2, 2] scale, then took the mean of the
responses. Because the survey measured fixed mindsets, we
negated the value, so that positive values indicated growth
mindset and negative indicated fixed mindset.
As shown in Figure 12, at the beginning of the camp, the
campers in both groups began with a comparable but weak
growth mindset, with the control group having a mean of
0.60 on our scale (slightly below “agree” on our scale), and
the experimental group having a mean of 0.87 (slightly
below “agree” on our scale), (H=1.89, p=0.169). After the
camp, however, the campers in the groups were significantly
different (H=21.9, p=0.000003): the control group campers’
mean score was -0.20 (meaning their growth mindset had
eroded to a slight fixed mindset, replicating prior work [21]),
and the experimental group’s mean score was 0.93 (a
moderate growth mindset). Figure 13 illustrates this trend
over time, showing that the campers in the experimental
group maintained their belief that aptitude can improve while
the control group campers’ growth mindset eroded.

The change in growth mindset scores for each camper from
before and after the camp (the difference between last and
first day’s combined growth mindset score) was also
significant (H=6.20, p=0.012). The control group had a mean
decrease of 0.80 in their growth mindset, whereas the
experimental group only had a 0.07 mean decrease.
DISCUSSION AND FUTURE WORK
Our results provide some of the first evidence that teaching
problem solving for programming is not only possible, but

Figure 12: Aggregate growth mindset scores for all campers in

both groups, with experimental and control sorted from
lowest to highest. Some before values are not visible due to

high after values. Growth mindset stayed positive in the
experimental group but turned more negative in the control.

Figure 13: Mean growth mindset score across the ten days, by

condition. While the control campers’ growth mindsets
deteriorated sharply when JavaScript was introduced (day 3)

and continued to degrade, the experimental campers
maintained their existing growth mindset throughout the

camp and showed a slight upward trend.

-2
-1
0
1
2

-2
-1
0
1
2

Before (Expr) Before (Ctrl)
After (Expr) After (Ctrl)

-2
-1
0
1
2

0 1 2 3 4 5 6 7 8 9
Ctrl Expr

Figure 10: Aggregate self-efficacy scores for all campers in

both groups, with experimental and control sorted from lowest
to highest. Some before values are not visible due to high after
values. Self-efficacy increased for most campers, but increased

significantly more in the experimental group.

Figure 11: Mean self-efficacy in each group for each day of the
camp. The experimental campers’ self-efficacy increased after
the introduction of the intervention (day 2) and ended mildly
positive, while the control campers’ ended at a neutral level.

-2
-1
0
1
2

-2
-1
0
1
2 Before (Expr) Before (Ctrl)

After (Expr) After (Ctrl)

-2

-1

0

1

2

0 1 2 3 4 5 6 7 8 9

Ctrl Expr

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1457

can improve productivity, promote independence, increase
self-efficacy gains, and reinforce growth mindset in a
learning setting where it typically erodes greatly. Moreover,
the trends we observed are consistent with the intended
mechanisms of our intervention: campers in the experimental
group were significantly more likely to recall and describe
the strategies they employed and more likely to request help
with a problem after they had already attempted to solve it.
Although our experiment did not allow us to separate the
relative contributions of our four interventions, our results
suggest that they worked together to teach and reinforce the
idea that awareness of one’s strategies and their effectiveness
is critical to successful programming.

In one sense, these results are what general theories of
problem solving, self-regulation, and metacognition would
predict. Prior investigations into metacognition instruction
generally provide students with a domain-specific problem
solving knowledge and goal structure, plus incentives to
learn from and avoid common metacognitive errors, such as
poor or failing strategies [43]—and this is what our
intervention did. The increased independence with which the
campers in the experimental group worked would also
explain why their self-efficacy increased, and possibly why
their productivity increased: if they were more effective at
recognizing effective and ineffective strategies through
increased awareness, they would have made more progress
on problems without having to wait for help from the camp
helpers. In contrast, the campers in the control group, like
students in most introductory settings, were usually stuck at
the beginning of problems and required help to proceed. This
may have reinforced that they did not “get” coding,
weakening self-efficacy and eroding growth mindset.

If our interpretations are correct, our study has important,
far-reaching implications for how we teach people to code.
First, given the strong positive impact of growth mindset on
lifelong learning [7] and the tendency of introductory
programming settings to weaken it [21,49], if our findings
are replicated and further substantiated it would arguably be
unethical for learning technologies and teachers to not adopt
some form of instruction on problem solving. Designers of
introductory programing learning technologies such as
Scratch, codecademy.org, and code.org could embed explicit
instruction about the problem solving stages we propose,
perhaps even finding ways to detect what stage a learner is
in and offer constructive feedback about strategies and
tactics to proceed. By incorporating such instruction, we
might also increase participation in computing by women
and ethnic minorities, who often start with lower self-
efficacy or fixed mindsets in computing settings [20].

There are still several open research questions about our
intervention. Future work should explore which aspects of
the intervention were most responsible for the effects. There
are also wide-open design questions about how to adapt the
spirit of our intervention to other settings, including online
learning technologies, and classrooms of various sizes and

structures. Future work is likely to find that how problem
solving is taught is just as important as teaching it at all.

Part of this future work is also overcoming the limitations of
our initial investigation. Studies should explore the effects of
similar interventions on other age groups, levels of academic
achievement, and other socioeconomic statuses. In
particular, the campers we recruited mostly came from high
socioeconomic status families in a mostly white city, and had
a high likelihood of knowing someone who worked in the
software industry in some capacity. Viewing technology
from an amplification lens [54], our results could have been
quite different in rural or low socioeconomic settings, where
prior work has shown self-efficacy and exposure to
computing to be substantially lower. Future work should also
replicate the effects of our study with other instructors, other
programming languages, other problems, and other cultures.
For example, we achieved these effects with a team of
energetic but novice teachers; achieving them with more
experienced teachers may require different approaches. Our
work also did not explore the extent to which the changes in
self-efficacy and reinforcement of growth mindset are robust
to time: it may be that the campers’ self-attitudes were
shaped contextually and not generalizable to other settings.

In addition to generalizability concerns, the time of day
difference in our camps may have caused internal validity
issues. Because the experimental group was in the morning,
it might have attracted higher achieving campers not deterred
by a 9 am start time and may have received higher energy
instruction from teachers and helpers, unlike the afternoon,
which occurred after lunch and a long morning of instruction.
We tried to overcome this confound by placing the
experimental group first, ensuring that the control group also
received many benefits from the second delivery of the camp
(fewer technical problems, improved answers to requests for
help, clearer delivery of direct instruction), but it is possible
these advantages did not outweigh possible bias.

Limitations aside, if we can repeat these findings broadly and
deepen our understanding of how to teach problem solving
in programming in a wide range of contexts, there is broad
potential for impact on the world’s current efforts to teach
programming. Dozens of countries have begun initiatives to
teach programming in K-12, and hundreds of companies
have started coding boot camps. Our results suggest that
problem solving instruction can and should be an
instrumental part of them. If we can train the teachers,
develop the materials, and adapt the learning technologies to
empower learners to understand and solve programming
problems, we might just meet the ever-growing demand for
a diverse and computationally literate global society.
ACKNOWLOGEMENTS
This work was supported in part by the National Science
Foundation (NSF) under grants 1314399, 1240786,
1153625, 1240957, and 1314384. Any opinions, findings,
conclusions or recommendations are those of the authors and
do not necessarily reflect the views of the NSF.

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1458

REFERENCES
1. Petek Askar and David Davenport. 2009. An

investigation of factors related to self-efficacy for Java
programming among engineering students. Online
Submission 8, 1. http://eric.ed.gov/?id=ED503900.

2. Albert Bandura. 1977. Self-efficacy: Toward a unifying
theory of behavioral change. Psychological Review 8, 2:
191-215.

3. Albert Bandura. 1986. Social Foundations of Thought
and Action. Prentice Hall, Englewood Cliffs, NJ.

4. Henry Jay Becker. 1987. The importance of a
methodology that maximizes falsifiability: Its
applicability to research about Logo. Educational
Researcher, 16, 5: 11-16.

5. Jens Bennedsen and Michael E. Caspersen. 2007. Failure
rates in introductory programming. ACM SIGCSE
Bulletin 39, 2: 32-36.

6. Susan Bergin, Ronan Reilly, and Desmond Traynor.
2005. Examining the role of self-regulated learning on
introductory programming performance. In Proceedings
of the International Workshop on Computing Education
Research (ICER ’05), 81-86.

7. Lisa S. Blackwell, Kali H. Trzesniewski, and Carol
Sorich Dweck. 2007. Implicit theories of intelligence
predict achievement across an adolescent transition: A
longitudinal study and an intervention. Child
development, 78, 1: 246-263.

8. Bureau of Labor Statistics. U.S. Department of Labor,
Occupational Outlook Handbook, 2014-15 Edition,
Software Developers. Retrieved August 11, 2015 from
http://www.bls.gov/ooh/computer-and-information-
technology/software-developers.htm.

9. Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. 2009. Two studies of
opportunistic programming: interleaving web foraging,
learning, and writing code. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ‘09), 1589-1598.

10. Jill Cao, Scott D. Fleming, and Margaret Burnett. 2011.
An exploration of design opportunities for “gardening”
end-user programmers' ideas. In Proceedings of the
IEEE symposium on Visual Languages and Human-
Centric Computing (VL/HCC ’11), 35-42.

11. Jill Cao. 2012. An idea garden for end-user
programmers. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
Extended Abstracts on Human Factors in Computing
Systems (CHI EA '12), 915-918.

12. Jill Cao, Irwin Kwan, Faezeh Bahmani, Margaret
Burnett, Scott D. Fleming, Josh Jordahl, Amber
Horvath, and Sherry Yang. 2013. End-user programmers
in trouble: Can the Idea Garden help them to help
themselves? In Proceedings of the IEEE Symposium on

Visual Languages and Human-Centric Computing
(VL/HCC ’13), 151-158.

 13. Jill Cao, Scott D. Fleming, Margaret Burnett, and
Christopher Scaffidi. 2014. Idea Garden: situated
support for problem solving by end-user programmers.
Interacting with Computers.

14. Parmit K. Chilana, Celena Alcock, Shruti Dembla,
Anson Ho, Ada Hurst, Brett Armstrong, and Philip J.
Guo. 2015. Perceptions of Non-CS Majors in Intro
Programming: The Rise of the Conversational
Programmer. In Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC), to appear.

15. Douglas H. Clements and Dominic F. Gullo. 1984.
Effects of computer programming on young children's
cognition. Journal of Educational Psychology 76, 6:
1051.

16. David R. Cross and Scott G. Paris. 1988.
Developmental and instructional analyses of children's
metacognition and reading comprehension. Journal of
Educational Psychology 80, 2: 131.

17. Savia Coutinho. 2008. Self-efficacy, metacognition, and
performance. North American Journal of Psychology
10, 1: 165.

18. Carol Dweck. 2006. Mindset: The new psychology of
success. Random House.

19. Anneli Eteläpelto. 1993. Metacognition and the
expertise of computer program
comprehension. Scandinavian Journal of Educational
Research 37, 3: 243-254.

20. Allan Fisher and Jane Margolis. 2002. Unlocking the
clubhouse: the Carnegie Mellon experience. ACM
SIGCSE Bulletin 34, 2: 79-83.

21. Abraham E. Flanigan, Markeya S. Peteranetz, Duane F.
Shell, and Leen-Kiat Soh. 2015. Exploring changes in
computer science students' implicit theories of
intelligence across the semester. In Proceedings of the
International Conference on Computing Education
Research (ICER ’15), 161-168.

22. Forrest-Pressley, Donna-Lynn, and G. E.
MacKinnon. 1985. Metacognition, Cognition, and
Human Performance: Theoretical perspectives. Vol. 1.
Academic Press.

23. James G. Greeno and Rogers P. Hall. 1997. Practicing
representation. Phi Delta Kappan 78, 5: 361.

24. M. Havenga, 2011. Problem-solving processes in
computer programming: a case study." In Southern
African Computer Lecturers’ Association (SACLA)
Conference Proceedings, 91-99.

25. Jean-Michel Hoc and Anh Nguyen-Xuan. 1990.
Language semantics, mental models and
analogy. Psychology of programming, 10: 139-156.

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1459

26. William Jernigan, Amber Horvath, Michael J. Lee,
Margaret M. Burnett, Taylor Cuilty, Sandeep Kuttal,
Anicia Peters, Irwin Kwan, Faezeh Bahmani, Amy J.
Ko. 2015. A principled evaluation for a principled Idea
Garden. In Proceedings IEEE Visual Languages and
Human-Centric Computing (VL/HCC ’15), to appear.

27. Katy Jordan. 2014. Initial trends in enrollment and
completion of massive open online courses. The
International Review Of Research In Open And
Distributed Learning 15, 1.

28. Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007.
Storytelling Alice motivates middle school girls to learn
computer programming. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
1455-1464.

29. Amy J. Ko, Brad Myers, and Htet Htet Aung. 2004. Six
learning barriers in end-user programming systems." In
the Proceedings of the IEEE Symposium on Visual
Languages and Human Centric Computing, 199-206.

30. Amy J. Ko. 2009. Attitudes and self-efficacy in
young adults' computing autobiographies. In IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC ’09), 67-74.

31. Amy J. Ko and Yann Riche. 2011. The role of
conceptual knowledge in API usability. In the
Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC),
173-176.

32. Michael J. Lee, Faezeh Bahmani, Irwin Kwan, Jilian
LaFerte, Polina Charters, Amber Horvath, Fanny Luor,
Jill Cao, Catherine Law, Michael Beswetherick, Sheridan
Long, Margaret M. Burnett, and Amy J. Ko. 2014.
Principles of a debugging-first puzzle game for
computing education. In the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC
‘14), 57-64.

33. Michael J. Lee and Amy J. Ko. 2015. Comparing the
effectiveness of online learning approaches on CS1
learning outcomes. In Proceedings of the International
Conference on Computing Education Research (ICER
'15), 237-246.

34. Paul Luo Li, Amy J. Ko, and Jiamin Zhu. 2015. What
makes a great software engineer? In Proceedings of the
International Conference on Software Engineering
(ICSE ’15), 700-710.

35. Raymond Lister. 2011. Geek genes and bimodal grades.
ACM Inroads 1, 3: 16-17.

36. Charlie McDowell, Linda Werner, Heather Bullock,
Julian Fernald. 2002. The effects of pair-programming
on performance in an introductory programming
course. ACM SIGCSE Bulletin, 34, 1: 38-42.

37. Janet Ed Metcalfe and Arthur P. Shimamura. 1994.
Metacognition: Knowing about knowing. The MIT
Press.

38. John L. Nietfeld and Gregory Schraw. 2002. The effect
of knowledge and strategy training on monitoring
accuracy. The Journal of Educational Research 95, 3:
131-142.

39. David B. Palumbo and W. Michael Reed. 1991. The
effect of BASIC programming language instruction on
high school students’ problem solving ability and
computer anxiety. Journal of Research on computing in
Education 23, 3: 343-372.

40. Leo Porter and Beth Simon. 2013. Retaining nearly one-
third more majors with a trio of instructional best
practices in CS1. In Proceedings of the ACM Technical
Symposium on Computer Science Education (SIGCSE
’13), 165-170.

41. Mitchel Resnick, John Maloney, Andrés Monroy-
Hernández, Natalie Rusk, Evelyn Eastmond, Karen
Bren.nan, Amon Millner, Eric Rosenbaum, Jay Silver,
Brian Silverman, and Yasmin Kafai. 2009. Scratch:
programming for all. Communications of the ACM 52,
11: 60-67.

42. Martin P. Robillard, Wesley Coelho, and Gail C.
Murphy. 2004. How effective developers investigate
source code: An exploratory study. IEEE Transactions
on Software Engineering, 30, 12: 889-903.

43. Ido Roll, Vincent Aleven, Bruce M. McLaren, and
Kenneth R. Koedinger. 2007. Designing for
metacognition—applying cognitive tutor principles to
the tutoring of help seeking. Metacognition and
Learning 2, 2-3: 125-140.

44. Ido Roll, Natasha G. Holmes, James Day, and Doug
Bonn. Evaluating Metacognitive Scaffolding in Guided
Invention Activities. Instructional Science 40, no. 4
(2012): 691–710.

45. Christopher Scaffidi, Mary Shaw, and Brad Myers.
2005. Estimating the numbers of end users and end user
programmers. In Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC ’05), 207-214.

46. Chris Scaffidi and Chris Chambers. 2012. Skill
progression demonstrated by users in the Scratch
animation environment. International Journal of
Human-Computer Interaction, 28, 6: 383-398.

47. Gregory Schraw. Promoting general metacognitive
awareness. Instructional science 26, 1-2: 113-125.

48. Gregory Schraw, Kent J. Crippen, and Kendall Hartley.
2006. Promoting self-regulation in science education:
Metacognition as part of a broader perspective on
learning. Research in Science Education 36, 1-2: 111-
139.

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1460

49. Michael James Scott and Gheorghita Ghinea. 2014. On
the domain-specificity of mindsets: The relationship
between aptitude beliefs and programming practice.
IEEE Transactions on Education, 57, 3: 169-174.

50. Teresa M. Shaft. 1995. Helping programmers
understand computer programs: the use of
metacognition. ACM SIGMIS Database 26, 4: 25-46.

51. Robert H. Sloan and Patrick Troy. 2008. CS 0.5: a
better approach to introductory computer science for
majors. ACM SIGCSE Bulletin, 40, 1: 271-275.

52. Abdrabo Moghazy Soliman and Elsayed Khaled
Mathna. 2009. Metacognitive strategy training improves
driving situation awareness. Social Behavior and
Personality: An International Journal 37, 9: 1161-1170.

53. Rayne A. Sperling, Bruce C. Howard, Lee Ann Miller,
and Cheryl Murphy. 2002. Measures of children's
knowledge and regulation of cognition. Contemporary
educational psychology 27, 1: 51-79.

54. Kentaro Toyama. 2011. Technology as amplifier in
international development. In Proceedings of the
iConference, 75-82.

55. David Whitebread, Penny Coltman, Deborah Pino
Pasternak, Claire Sangster, Valeska Grau, Sue Bingham,
Qais Almeqdad, and Demetra Demetriou. 2009. The
development of two observational tools for assessing
metacognition and self-regulated learning in young
children. Metacognition and Learning 4, 1: 63-85.

Learning Programming #chi4good, CHI 2016, San Jose, CA, USA

1461

	Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	THE APPROACH: PROBLEM SOLVING STAGES AND METACOGNITIVE PROMPTS
	METHODS
	Participants
	The Camps
	The Instruction
	The Project

	Data Collection

	RESULTS
	Camper Experiences
	Impact on Metacognitive Awareness
	Impact on Types of Help Requested
	Impact on Productivity
	Impact on Self-Efficacy
	Impact on Growth Mindset

	DISCUSSION AND FUTURE WORK
	Acknowlogements
	REFERENCES

