
Comparing the Effectiveness of Online Learning
Approaches on CS1 Learning Outcomes 

ABSTRACT
People are increasingly turning to online resources to learn to
code. However, despite their prevalence, it is still unclear how
successful these resources are at teaching CS1 programming
concepts. Using a pretest-posttest study design, we measured the
performance of 60 novices before and after they used one of the
following, randomly assigned learning activities: 1) complete a
Python course on a website called Codecademy, 2) play through
and finish a debugging game called Gidget, or 3) use Gidget’s
puzzle designer to write programs from scratch. The pre- and post-
test exams consisted of 24 multiple choice questions that were
selected and validated based on data from 1,494 crowdsourced
respondents. All 60 of our novices across the three conditions did
poorly on the exams overall in both the pre-tests and post-tests
(e.g., the best median post-test score was 50% correct). However,
those completing the Codecademy course and those playing
through the Gidget game showed over a 100% increase in correct
answers when comparing their post-test exam scores to their pre-
test exam scores. Those playing Gidget, however, achieved these
same learning gains in half the time. This was in contrast to
novices that used the puzzle designer, who did not show any
measurable learning gains. All participants performed similarly
within their own conditions, regardless of gender, age, or
education. These findings suggest that discretionary online
educational technologies can successfully teach novices
introductory programming concepts (to a degree) within a few
hours when explicitly guided by a curriculum.

Categories and Subject Descriptors
K.3.2 Computer Science Education: Introductory Programming, 
D.2.5 Testing and Debugging.

General Terms
Design; Human Factors; Measurement.

Keywords
Programming; debugging; educational game; computing education;
learning outcomes; Gidget; Codecademy.

1. INTRODUCTION
In recent years, major efforts such as the Hour of Code and CS
Education Week events have attracted millions of people, including
celebrities and even the U.S. president, to try programming using
many of the discretionary learning resources available for free
online [4]. These resource include tutorial websites such as

Codecademy [14] and CodeSchool [17], open-ended creative
environments such as Scratch [49] and Alice [19,21], and
educational games such as Gidget [30] and LightBot [46]. Users of
these systems report that they enjoy these informal resources more
than traditional coursework because they allow for flexibility in how
they learn, they provide a better sense of retention of the material
[7], and they are more motivating, engaging, and interesting than
traditional classroom courses [20]. Some of these attitudes can be
attributed to these resources’ use of game mechanics such as
scaffolded materials, structured mastery learning, concrete goals,
and extrinsic incentives such as badges [77]. Furthermore, these
online resources allow users to learn about programming in a safe
environment at their own pace, which gives them the opportunity to
clear up any of their negative misconceptions about programming or
their ability to learn it, to something more positive [12].
Although all these resources are undoubtably useful at attracting,
exposing, and engaging new people in computer programming, few
(if any) of these online resources report anything beyond the
number of users that have signed up for their services and how
many activities their users have completed. We do not know how
long it takes learners to complete (or quit) the activities, if they ever
come back, or, most importantly, what they are learning, if anything.
This lack of evaluation makes it unclear how useful these tools are
beyond merely engaging learners for a brief period of time, which
resources are actually successful at teaching coding, or what parts of
these resources contribute to success or failure. Without this
knowledge, we risk designing instructional tools that do not actually
instruct learners [28].
To investigate the learning outcomes of these online resources, we
conducted a pretest-posttest experiment using three types of online
educational technologies (see Figure 1), comparing the learning
gains of each. We specifically compared the Python course on
Codecademy [14], a debugging puzzle game called Gidget [30], and
the open-ended creative environment found in Gidget called the
Puzzle Designer [41], which is analogous to other creative
development environments such as Scratch [49] and Alice [19,21].
We recruited learners aged 18 and above through Mechanical Turk.

Michael J. Lee and Amy J. Ko
Information School | DUB Group

University of Washington
{mjslee, ajko}@uw.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICER '15, August 9–13, 2015, Omaha, Nebraska, USA.
© 2015 ACM. ISBN 978-1-4503-3630-7/15/08…$15.00.
http://dx.doi.org/10.1145/2787622.2787709

Figure 1. We examined if novice programmers produced
measurable learning outcomes after using the three different

types of discretionary, online learning tools shown here.

237 Most up-to-date version: 06/25/2021

In the rest of this paper, we discuss prior work on educational
technologies, detail our test and study design, and discuss our results
and their implications for online computing education.

2. RELATED WORK
This paper explores three major areas of work in educational
technologies designed to teach beginners programming online: 1)
open-ended, creative environments, 2) massively open online
courses (MOOCs), and 3) educational games. Although these
resources may differ in the way they deliver content and engage
their users, there is little doubt that online learning will continue to
be a major medium in 21st century computing education. This
requires us not only to know about how these different instructional
approaches perform in isolation, but also how they compare.
Open-ended, creative environments are largely unstructured and
allow users to explore, tinker, and create content that is meaningful
for themselves. These attributes align with constructivist theories of
learning through hands-on experience [66] and constructionist ideas
of learning through construction of meaningful projects [52].
Exemplars of these kinds of environments include Scratch [49] and
Alice [19,21]. Prior work has shown that summer camps using these
resources are great at engaging their users [10,73], but all of these
reports required instructional scaffolding by teachers for learners to
succeed.
MOOCs and self-paced learning resources such as CodeSchool
[17], Codecademy [14], edX [25], and Khan Academy [35] attract
millions of users and are an increasingly popular way for people to
learn new skills such as programming. Many people view these
approaches as connectivist learning, which is related to social
learning theory (learning through social interactions and
experiences). However, as Connolly and Stansfield [18] have
suggested, many of these resources simply replicate the traditional
classroom experience and may be too focused trying to deliver
materials over the web rather than on teaching and learning, or
motivating and engaging students [64].
Educators have considered games to be a beneficial platform in
supporting student learning [55] and have pushed for more
educational games to teach STEM (science, technology,
engineering, and mathematics) subjects [32,56]. Games have been
designed using a range of learning approaches, some constructivist
(allowing learners to participate and experiment in non-threatening
scenarios), some experiential (learning by doing), and some situated
(providing relevant context or setting; for multiplayer, learning takes
place alongside social interaction and collaboration). Video games
are able to engage learners over extensive periods of time and can
also motivate learners to replay the game repeatedly until they have
mastered it [36]. This includes educational games such as CodeHunt
[16], LightBot [46], CodeCombat [15], and Gidget [30].
Researchers have taken advantage of this interest to improve
educational games to be more fun, informative, and educational,
prompting more people to use games for both education and
entertainment [29,54,76]. Some research focuses on creating games
that directly try to teach a skill or subject such as computer
programming [24,42,43,44], others focus on adding game-like
features to existing teaching systems such as intelligent tutors
[34,51], and some focus more generally on creating frameworks for
effective evaluation [1,61]. Several works have also attempted to
identify the specific parts of games that motivate [48] and attract
people to pursue computing education [28,29,48].
Researchers and educators have evaluated the efficacy of many of
these systems in isolation (e.g., Scratch [3,27], Alice [68], and edX
[9]), and in comparison with other similar systems (e.g. Scratch vs.
Karel [59]). However, only a few have examined how to effectively
measure the outcomes of educational games [31,61], and very little

is known about how online educational games actually compare to
other technologies such as MOOCs and open-ended creative
environments in teaching their users introductory programming
concepts [13]. We aim to address this gap by comparing the learning
outcomes of an open-ended creative environment, a self-paced
MOOC, and an educational game.

3. METHOD
The goal of our study was to examine the extent to which adult
novices of any age showed measurable learning gains after using
one of three online learning technologies. To do this, we first
selected three learning activities that are representative of the types
of discretionary, online resources that people currently use to learn
programming: 1) an online tutorial system using a web-based IDE,
where learners go through a didactic, structured curriculum, 2) an
educational game using an IDE, where learners go through a
problem-based, structured curriculum, and 3) an open-ended
creation IDE, where there is no planned curriculum and learners
acquire skills by creating with code. Next, we developed a test
designed to measure one’s knowledge of different introductory
programming concepts before and after completing one of the
learning activities.
Our null hypothesis was:
H0:	 There	 is	 no	 difference	 in	 learners’	 post-‐test	 performance	 among	
the	 condi7ons	 a8er	 comple7ng	 their	 assigned	 learning	 ac7vity.	

In the rest of this section, we describe our three learning activities in
more detail, explain the design of our pre-post test, and discuss the
experiment designed to test our hypothesis.

3.1 Learning Activities
3.1.1. Activity 1: Codecademy Course
Codecademy [14] is a popular online interactive tutorial website
that offers free courses in multiple programming languages (see
Figure 2). It has had over 24 million users who have completed
over 100 million exercises [67]. For our study, learners participated
in the introductory “Python Language Skills” course. According to
the Codecademy website, over 2.5 million users are enrolled in this
course designed for beginners. The website also states that the
Python course takes an estimated 13 hours to complete.
Codecademy’s course interface consists of a two-pane window split
vertically on the screen (see Figure 2). The left pane consists of
instructions, examples, and hints for the user to follow. For each
activity, it contains a numbered list of explicit instructions for the
user to follow (e.g., “01. Set the variable my_varaiable equal to the

Figure 2. A Codecademy lesson, where users follow step-by-
step instructions entering code into a virtual terminal.

!

238

value 10” and “02. Click the Save & Submit button to run your
code.”). The right pane is an IDE for users to type in and execute
their code, with an overlay on the upper-right corner that shows
console output on code execution. In case learners need assistance,
there is a “Stuck? Get a hint!” button below the list of instructions
on the left pane that users can click to view more help text. The
hints are typically explicit instructions (e.g., “All you need to do is
type 3 after the equals sign on line 8.”) or closely related examples
(e.g., “Make sure you're setting your variable like this:
the_machine_goes = ‘Ping!’ ”.). Finally, the bottom-most area of
the left pane includes two buttons that opens up a new browser tab:
one labeled “Q&A forum” where fellow Codecademy users can
post and answer questions, and another one labeled “glossary,” that
goes to a dictionary of Python commands and concepts.
The introductory Python course has a total of 12 modules covering
the following topics: syntax, variables, mathematical and logical
operator, strings, conditionals, control flow, functions, lists and
dictionaries, and advanced concepts (e.g., classes and file input/
output). Each module is split into two parts. The first part is
designed to teach a specific concept or set of concepts and consists
of several activities that subsequently build on the previous activity.
The second part of the section is an exercise to practice combining
the first part to build something interesting. For example, in the
case of the syntax module (where learners are introduced to
variable assignment and the use of mathematical operators), the
second part of the module tasks users to fill in variables with values
to calculate gratuity for a meal.
To ensure that the concepts covered by Codecademy and the
Gidget game (described below) were as close as possible, we asked
learners to complete only the first 8 of 12 modules before taking
our post-test. Although learners would not be tested on these extra
advanced concepts on the post-test exam, finishing them would
have given them additional practice with many of the previously
learned concepts. We asked learners to keep track of the time they
spent using Codecademy so that they could report their total time
after taking the post-test exam. Since the Codecademy website
states it takes around 13 hours to complete the 12 modules in the
Python course, we informed our tutorial condition participants it
would take approximately 10 hours to complete their assigned 8
modules before they started their activity.

3.1.2. Activity 2: Gidget Game
Gidget is a web application (see Figure 3) that has been played by
thousands of people worldwide, with nearly half of its users being
female [30,40]. The game was specifically designed to teach and
appeal to both youth [41] and adult [12] novices, presenting

debugging tasks as puzzles and using an imperative Python-like
programming language. For this study, we asked learners to play
through the entire game, which takes approximately 5 hours [41].
In each level of the game, the player must identify the level goals
(written as test cases), inspect the given code, then modify and
execute it until it satisfies all the level’s test cases. Following the
mastery learning paradigm [53], each of the game’s levels is
designed to be passable only if the learner has grasped a particular
concept in the game’s programming language.
Gidget’s interface consists of three vertically-split sections (see
Figure 3). The left section consists of the IDE to type in code, the
list of goals (written as test cases that are checked after code
execution), and the execution buttons. The execution buttons allow
the player to control the level of execution (e.g., one compiled
instruction, all instructions on one line of code like a breakpoint
debugger, or the entire program), or halt the program. The central
section shows the graphical representation of all the characters and
objects in the game world, and also includes a large speech bubble
where the game’s protagonist provides detailed explanation of the
execution of each statement in the program, highlighting changes
in the runtime environment. This serves as the game’s primary
instructional content, explicitly teaching the language syntax and
semantics. Finally, the right section updates after each instruction,
showing the current runtime state of all the game’s current objects
and their respective variables.
The game had a total of 7 modules totaling 37 levels, with each
module containing a set of levels focusing on a related set of
programming keywords or concepts. The game covered exactly the
same topics as the Codecademy modules listed earlier, excluding
Python dictionaries and the “advanced topics,” which we asked
Codecademy participants to skip so the two learning activities
would be as similar as possible. Each module was split into two
parts, where each level in the first part (between 3-5 levels) had a
specific learning objective to familiarize the player with a specific
programming concept. The second part of each module included
two assessment levels where learners did not have to edit code, but
had to answer a question that cumulatively tested the concepts for
that module. This was found in prior work to improve adult players’
engagement and subsequent level completion speed [44].
Gidget included several ways for players to receive help. After
signing up, the game presents the player with a tutorial highlighting
and explaining the different parts of the interface and the sequence
of steps players should take to proceed through each level. The
game also features an in-game reference guide, providing
explanations and examples of each command in the language. The

Figure 3. The Gidget game. Where players help a robotic
character fix its code to complete 37 missions.

!
Figure 4. The Gidget Puzzle Designer, which players can use

to create their own Gidget levels using a blank canvas.

!

239

reference guide was available as a standalone help guide or as
tooltips that appeared when hovering over tokens in the code editor.
This was further enhanced by the inclusion of the Idea Garden [11],
which analyzed the players’ code in real-time and presented context
sensitive suggestions if the player requested it, and AnswerDash [2],
which allowed players to click on any part of the interface to ask
questions about it or read responses to others’ queries. Finally, the
game’s code editor provided keystroke-level feedback about syntax
and semantics errors, underlining erroneous code in red and
explaining the problem in Gidget’s speech bubble.
Based on prior studies [40,41], we told our game condition
participants that Gidget would take about 5 hours to complete
before they started the activity. We required learners to complete all
the levels before taking the post-test. For this specific condition, we
automatically logged the time learners took to complete the game.

3.1.3. Activity 3: Gidget Puzzle Designer
The Gidget Puzzle Designer (GPD) is an integrated development
environment used to create and edit Gidget levels (see Figure 4). It
is normally unlocked after finishing the Gidget game. However, for
our study, participants were given access to the GPD without any
prior experience playing the Gidget game. This was to mirror other
open-ended, creation-oriented learning environments like Scratch
[49], Alice [19,21], and others [37], where users are free to explore
and tinker to make their own projects.
The interface for the GPD is a modified version of the regular
Gidget game interface, allowing modification of previously un-
editable code such as the starting world code, the level goals, the
dimension of the world grid, and Gidget’s introductory dialogue and
emotional state at the beginning of the level. In addition, the status
pane on the rightmost section is replaced by a tabbed inventory of
available characters and objects, ground tiles, and sounds that the
learner can use to populate and enrich their programs.
All of the same help tools available in the Gidget game are also
available in the GPD. This includes the syntax highlighting, tooltips,
dictionary, and Idea Garden suggestions. In addition to the help
systems, the learners had access to view and edit all of the regular
game levels, giving them pre-designed puzzles to modify for
creative purposes. These examples also included the solution (i.e.,
learners could see both the incorrect code and the correct code) for
each level. The assessment levels from the end of each module were
excluded, and all the default editable levels were listed in sequential
order without indicating which module they belonged to. Similar
types of help and examples are available in both Scratch and Alice
to help bootstrap learner engagement.
Unlike Codecademy and the Gidget game, the GPD did not have a
curriculum or sequence of steps to follow. Therefore, to help orient
our GPD users, we showed them a list of directions before they

started with their activity. First, we told them their task was to “Use
a creative canvas tool to create multiple stories for a robotic
character named Gidget.” This is based on several works, primarily
by Kelleher et al. [38,39], which shows that adding storytelling
elements to open-ended creative environments can significantly
increase users’ engagement [33,60,72]. Second, we told them about
the various help features available (see previous paragraph and
section 3.1.2), and how to access them. Third, we asked them to
“create, explore, and play with the website for at least several hours
to get the full learning experience” with the activity, to mirror the
ideal case of a learner first engaging with an open-ended, creative
online environment. For this condition, we automatically logged the
time learners spent in the GPD, and collected records of all the
levels they created.

3.2 Knowledge Test for C1 Concepts
In order to measure how much participants learned and what they
learned, we created and validated a test designed to be taken before
and after the learning activities. We adopted this pre-test/post-test
design as it widely used in both educational and non-educational
contexts to measure change resulting from experimental treatments
[6,13,23]. Although we spent considerable time creating and
validating the test, its description will mostly be limited to this
section as it is not the main contribution of this paper.
First, we determined which concepts to test by comparing the
topics that are taught commonly in introductory programming
courses [22,26,45,69,78] to the set of concepts that were covered in
our Codecademy and Gidget game activities. We chose a total of
eight concepts: basics (i.e., variables, mathematical operators,
relational operators, Booleans), logical operators, selection
statements (i.e., conditionals), arrays, indefinite loops (i.e., while),
definite loops (i.e., for), function parameters, and function returns.
We modeled our test questions after Allison Tew’s dissertation
work on the FCS1, a programming language-independent test using
pseudo-code [69]. In her studies, Tew showed that testing
introductory programming students in the classroom with their
native course language and in pseudo-code were strongly
correlated [70] and has the extra benefit of demonstrating transfer
of learning [8]. We generated pseudo-code questions using the
examples, descriptions, and two-page pseudo-code guide Tew
provided [69]. Questions used a verbose style adapted from guides
for programmers published by Whitford [75] and Shackelford [62].
To minimize confounding factors in syntax design, we followed the
latest evidence on syntax learnability, excluding semi-colons and
curly braces, indenting code blocks, upper-casing reserved words,
and closing program blocks with explicit keywords [63] (see
Figures 5 and 6 for examples).
Based on guidelines and examples from Tew's dissertation, we
designed 5 multiple choice questions for each of the concepts

Figure 5. Screenshot of an “if/else” pseudo-code question
from the pre- & post-tests with its answer choices.

Figure 6. Screenshot of a “while” pseudo-code question from
the pre- & post-tests with its answer choices.

240

covered in our learning activities, for a total of 40 questions. All
questions had one correct response and four incorrect distractors.
We designed distractors to deliberately test for common
programming misconceptions [5,71].
To validate our 40 questions, we recruited people on Mechanical
Turk (MTurk). MTurk is an online marketplace where individuals
aged 18 and over (called “Turkers”) can receive micro-payments
for doing small tasks. Our Turkers were paid 2 cents to answer one
pseudo-code question, indicate their experience with programming,
and optionally provide their email address. No additional
demographic information was collected. Each Turker could answer
up to an additional 39 questions for 2 cents each. In these cases,
each additional question would be new, and the Turker did not have
to re-enter their answers for programming experience or their e-
mail address (if provided previously). To mitigate ordering effects,
questions were randomly sequenced each time a participant took
the survey. Answer choices for questions that did not require a
specific order were randomly arranged as well.
To identify problems with our questions and answer choices, we
ran two rounds of pilot tests, with each question getting at least 3
responses for each iteration of testing. We corrected issues dealing
with ambiguous/confusing wording, inappropriate distractors,
syntax errors, and typos. To achieve this, we looked for data
anomalies (e.g., nobody getting the answer correct, or everyone
choosing the same answer) and requested open-ended feedback
from our respondents. We then ran a full test with 1,494 Turkers
and had a total of 8,011 responses to our questions (approximately
200 responses per question). The majority of our Turkers only
answered one question, with 11% completing 3 or more questions.
To avoid ceiling and floor effects and to maximize discriminability
of the assessment, we categorized our data by splitting responses
by the Turkers’ self-reported programming experience. We
categorized novices as those who responded “never” to all of the
following statements: 1) “taken a programming course,” 2)
“written a computer program,” and 3) “contributed code towards
the development of a computer program.” All other respondents
were considered experienced programmers. For our finalized list of
exam questions, we selected the top 3 questions for each concept
(for a total of 24) with highest variance between novice and
experienced programmers (that is, those that novices tended to get
incorrect and those with experience tended to get correct).

3.4 Participants and Procedure
The independent variable in our experiment was the instructional
approach, which had three levels: 1) tutorial (complete the
introductory Python programming tutorial on Codecademy), 2)
game (play through the Gidget game), or 3) canvas (use the GPD
to create Gidget levels). To help participants make an informed
decision about the time commitment required to participate in our
study, we told them that they were allowed seven days to complete

their assigned task, and provided an estimate of the number of
hours their task would take (10 hours for the tutorial condition, 5
hours for the game condition, and open-ended for the canvas
condition). We emphasized these hours were estimates, and that
they could potentially take more or less time than what was listed.
We recruited our participants from Mechanical Turk, specifically
sampling adults who self-reported that they had no experience with
programming (see previous section). We also required participants
to be U.S. residents to minimize English language barriers with the
instructions and activities. Participants were compensated $10 for
completing their assigned task. This amount was carried over from
a previous study [44] and adjusted to account for the extra time
required for the pre-test and post-test.
We sent participants an e-mail with a link that randomly assigned
them to a condition and redirected them to the web-based pre-test.
Each link was uniquely associated with a specific e-mail address,
so that we could identify the owner of each test. Like our pilot
study (see section 3.2), we randomly ordered our finalized
collection of 24 questions to minimize ordering effects, also
randomizing the order of the answers, where appropriate. The test
only showed one question at a time (see Figures 5 and 6) and it was
not possible to go back to a previous question. Each question
required a response before being able to move onto the next
question. There was a progress indicator on the top of the page
showing participants how many questions remained. The system
automatically logged each answer choice and the total time to
complete the exam(s).
The pre-tests and post-tests were identical across all conditions.
There was only one exception to this: the post-test for those in the
tutorial condition had two additional questions for the participants
to report how many modules they completed, and the time they
spent to complete their Codecademy activity. The introductory text
for the pre-test briefly explained that participants would be
answering coding questions and that they should try their best even
though they might not be familiar with the content. The
introductory text for the post-test briefly explained that the
questions were written in another, related programming language
that covered the same concepts available in the learning activity
they had completed.
Our study was a between-subjects design, with an even split of 20
people each among the three conditions. Our participants did not
differ significantly by gender, age, or education (see Table 1).
Consistent with other studies about the demographics of MTurk
workers [57], we found that our participants were well-educated,
with the majority reporting that they had at least a bachelor’s degree
(see Table 1).

Table 1. Demographic summary.

Tutorial 
n=20

Game 
n=20

Canvas 
n=20

Gender (male : female) 10 : 10 11 : 9 11 : 9

Age (min, median, max) 18, 23, 35 18, 25, 41 19, 23, 29

Max education: high school 5% 0% 0%

Max education: some college 10% 10% 5%

Max education: college degree 85% 85% 90%

Max education: master degree 0% 5% 5%

Table 2. Summary statistics pre-test and post-test scores.

Tutorial 
n=20

Game 
n=20

Canvas 
n=20

Minimum score on pre-test 2 0 3

Median score on pre-test 5 5 5.5

Maximum score on pre-test 8 6 9

Minimum score on post-test 6 4 3

Median score on post-test 12 10 5

Maximum score on post-test 18 16 9

Percent increase between median
pre-test and post-test scores 140% 100% -9.1%

241

4. RESULTS
We provide quantitative results comparing the learning outcomes
from our three groups. Throughout this analysis, we use non-
parametric Chi-Squared and Wilcoxon rank sums tests with α=0.01
confidence, as our data were not normally distributed. For post-hoc
analyses, we use the Bonferroni correction for three comparisons: 
(α/3 = 0.0033).

4.1 Better Post-Scores with Tutorial & Game
Overall, participants did poorly on the pre-test exams, with a
median score of 5 out of 24 questions correct (20.8%) across all
three conditions (see Table 2). This was expected, as we had
selected the questions most difficult for novices from our original
set. We compared the pre-test scores across the conditions and found
no significant difference, confirming that all of our participants’
programming knowledge was roughly equivalent prior to the
learning activities.
Participants also did poorly on the post-tests, with the highest
median score among the conditions being 12 out of 24 questions
correct (50%). However, comparing the post-test scores across the
conditions reveal that there is a significant difference in learning
gains between conditions (χ2(2,N=60)=27.03,p<.01). Post-hoc
analysis with Bonferroni correction revealed that two conditional
pairs were significantly different: the tutorial vs. canvas conditions
(W=226,Z=-5.00, p<.01/3) and the game vs. canvas conditions

(W=272.5,Z=-3.72, p<.01/3). The scores on the post-test between
the tutorial and game conditions did not show a significant
difference. Based on these findings, we reject our null hypothesis
(see section 3).
These results indicate that though all the participants had
approximately the same programming knowledge during the pre-
test, participants from the tutorial and game condition performed
significantly better on their post-test, and that their degree of
improvement was also significantly greater than that of the canvas
condition. As seen in Table 2, the effect sizes of learning gains were
140% and 100% increase in scores for the tutorial and game
conditions, respectively, whereas the median score from the canvas
condition did not change significantly (and were actually 9.1%
worse). Since participants had little programming knowledge to start
with and there was no difference in demographics, the learning
activities are likely the primary cause of the increase in scores for
the tutorial and game condition participants.

4.3 Differences in Percent Increase of Scores
Although we had a relatively small sample size of 20 participants
per condition, we found consistent patterns, particularly in the
tutorial and game conditions, where participants made large percent
gains answering questions correctly in their post-tests compared to
their pre-tests (see Tables 3 and 4). As we saw in section 4.1, the
tutorial and game condition participants performed much better than
their canvas condition counterparts. This was particularly true for
the basic concepts (i.e., variables, mathematical operators,
relational operators, Booleans), logical operators, while loops, for
loops, function parameters, and function returns, where participants
increased their rate of correct answers by at least 100% in their
post-test compared to their pre-test.
Tutorial and game condition participants made the largest
improvements (greater than or equal to 150% increase) with while
loop and function parameters concepts. Tutorial condition
participants also made these large improvements answering
questions about logical operators, while the game condition
participants also made similarly large improvements answering
questions about function returns. These results indicate that the
tutorial and game conditions’ learning activities were successful in
helping their participants learn about all the concepts we tested for.
Canvas condition participants did not do well compared to their
counterparts. Although we know from section 4.1 that the canvas
condition participants did not do significantly worse on their post-
tests compared to their pre-tests overall, Table 3 shows that they
struggled answering many of the post-test questions, actually
performing worse on many concepts in the post-test, despite
encountering the identical questions.

Table 4. Summary statistics for activity times.
Tutorial 

n=20
Game 
n=20

Canvas 
n=20

Minimum time on pre-test 20 min 22 min 20 min

Median time on pre-test 25.5 min 28 min 26 min

Maximum time on pre-test 33 min 31 min 41 min

Minimum time on activity 7.0 hours 3.61 hours 1.25 hours

Median time on activity 9.25 hours 4.76 hours 1.94 hours

Maximum time on activity 14.0 hours 7.22 hours 2.98 hours

Minimum time on post-test 23 min 29 min 19 min

Median time on post-test 35 min 34 min 24 min

Maximum time on post-test 55 min 42 min 35 min

Table 3. Percent increase between pre & post -test scores.
Groupings with a mean >= 100% are in bold. Groupings

with a mean >= 150% are also italicized in red.

Question + Concept 
(actual question ordered randomly)

(posttest - pretest) / pretest

Tutorial Game Canvas

Q1 basics 175% 60% -40%
Q2 basics 120% 60% 0%

Q3 basics 100% 50% 0%

Q4 logical operators 175% 133.3% -66.7%
%-40%Q5 logical operators 125% 120% -40%

Q6 logical operators 150% 166.7% -20%

Q7 if / else 100% 100% 20%

Q8 if / else 100% 80% 0%

Q9 if / else 80% 100% 0%

Q10 arrays 75% 100% -33.3%

Q11 arrays 60% 50% -40%

Q12 arrays 100% 50% -33.3%

Q13 while 225% 166.7% -60%

Q14 while 333.3% 266.7% 0%

Q15 while 266.7% 125% 0%

Q16 for 100% 66.7% -50%

Q17 for 200% 133.3% 0%

Q18 for 80% 100% -40%

Q19 function parameters 140% 166.7% 25%

Q20 function parameters 233.3% 200% 0%

Q21 function parameters 233.3% 200% 25%

Q22 function return 166.7% 200% -50%

Q23 function return 80% 166.7% -33.3%

Q24 function return 125% 160% 0%

242

These results indicate that online, educational tutorial and game
resources can be successful at teaching users about programming
concepts, but that open-ended creative resources in discretionary
settings, at least in solitary, are likely not. Tutorial and game
condition participants’ scores indicate that there are large,
measurable learning outcomes (see bolded text in Table 2), and that
these learning activities might teach certain concepts better than
others (see above and italicized text in Table 3).

4.3 More Time on Exams for Tutorial & Game
During the pre-test, participants from all conditions spent roughly
the same amount of time on their exams (see Table 4). However,
when we examine the time they spent on their post-test, there is a
s ign i f i can t d i f f e rence in t ime spen t by cond i t i on
(χ2(2,N=60)=17.87,p<.01). Doing post-hoc analysis with Bonferroni
correction, we found that the tutorial participants spent significantly
more time on the post-test than the canvas condition (W=288.5,
Z=-3.29,p<.01/3); the same was true of the game vs. canvas
conditions (W=263.5,Z=-3.96, p<.01/3). The time spent on the post-
test between the tutorial and game conditions did not show a
significant difference.

4.4 Differences on Learning Activity Time
Each of the three learning activities had largely different estimated
times for completion (10 hours for Codecademy, 5 hours for Gidget,
and open-ended for the GPD). Examining the time spent on each
task (see Table 4), we see that there was indeed a significant
difference in time participants spent on their respective activities
(χ2(2,N=60)=52.34, p<.01). With a post-hoc analysis with
Bonferroni correction, we found that all pairwise comparisons were
significantly different: tutorial vs. canvas (W=210, Z=-5.40, p<.
01/3), tutorial vs. game (W=211, Z=-5.37, p<.01/3), and game vs.
canvas (W=210, Z=-5.40, p<.01/3).
Combined with the large difference on exam performance in the
post-test and pre-test (from section 4.1), this suggests that the
game condition was the most efficient of the three conditions at
improving participants’ post-test scores. Examining Table 4
reveals that the tutorial condition participants took nearly twice as
long as the game condition participants to complete their assigned
learning activity that covered the same materials (see sections
3.1.1 and 3.1.2), but performed similarly in their post-test (from
section 4.2), further demonstrating that the game condition
participants were most efficient at improving their post-test scores.

4.5 No Demographic Differences in Test Scores
We found that there were no significant differences in learning
gains within the groups by gender. This indicates that males and
females all performed similarly within their respective conditions.
Next, we used a simple linear regression for each condition’s pre-
test and post-test to predict test scores based on age. No significant
correlation was found between test scores or age for any of the
conditions in either of the tests. This indicates everyone performed
similarly within their respective conditions, regardless of their age.
For completeness, we also examined if prior education (as
measured in Table 1) had an effect on pre-test and post-test scores
by condition. We found no significant differences within groups
by education. This indicates everyone, regardless of education,
performed similarly within their respective conditions.

4.6 No Demographic Differences in Test Time
We examined if gender had any effect on the time participants
spent on the pre-tests and post-tests by condition. We found that
there were no significant differences within the groups by gender.
This indicates that males and females all spent a similar amount of
time on their tests within their respective conditions.

Next, we used a simple linear regression for each condition’s pre-
test and post-test to predict the time spent on tests based on age.
No significant correlation was found between the time spent on
tests and age for any of the conditions in either of the tests. This
indicates everyone spent a comparable amount of time on their
tests within their respective conditions regardless of their age.
Finally, we examined if education had any effect on the time spent
on the pre-tests and post-tests by condition. We found no
significant differences within groups by participants’ level of
education. This indicates everyone, regardless of their level of
education, spent a similar amount of time on their tests within
their respective conditions.

5. DISCUSSION
Our findings show that online discretionary resources for computing
education such as tutorial websites and games can be successful in
teaching adult novices programming concepts without the need for
additional external help. Even with relatively small sample sizes, we
were able to see large differences in the time players spent on the
learning activities, the exams, and their exam scores. All participants
performed consistently within their own groups, without any
significant differences in the time they spent on either the pre-tests
or post-tests, the time on their learning activities, or on their exam
scores. This consistency is also reflected in participants’
demographics, which showed no differences between males or
females, people of different ages, or level of education, within all
conditions. This is particularly important for online discretionary
learning, because our results indicate that all of our learning
activities were gender-neutral, with everyone performing at equal
levels within their respective conditions, which does not typically
happen in programming-related classroom settings [58,74].
We found that participants in the tutorial and game conditions
significantly increased their overall post-test scores by over 100% in
comparison to their pre-test scores (see Table 2). These participants
showed considerable gains for similar questions (see Table 3),
suggesting that the learning activities from both the conditions
taught similar concepts and also taught them equally well. Although
these participants showed improvements across all the concepts we
tested (see Table 3), the highest increases were in: basics, logical
operators, while loops, for loops, function parameters, and function
returns. Moreover, participants from the tutorial condition appeared
to do slightly better on logical operator questions while participants
from the game condition did slightly better on the function return
questions. We examined the instruction of these two concepts in
both Codecademy and the Gidget game, but did not find anything
obviously different from the modules teaching those specific
concepts from the other concepts within the same learning activity.
Like the rest of the interactions within those groups, Codecademy
had its users follow step-by-step instructions entering code into its
IDE, and the Gidget game required participants to look through,
diagnose, and fix broken code like every other level. None of these
findings were true for the canvas participants, indicating this
condition’s learning activity failed to teach the same concepts even
though all the necessary help resources were available to users.
We did not find any significant difference in the time participants
spent on their pre-test exams. However, participants in the tutorial
and game conditions spent significantly more time on their post-
tests compared to their canvas condition counterparts. This suggests
that those in the tutorial and game condition found more reason to
concentrate and take their time on their respective post-test exams,
possibly because they were better equipped to answer the questions
correctly. Conversely, without clear goals or instruction in the
Gidget Puzzle Designer, participants in the canvas condition likely
did not learn the concepts necessary for them to engage successfully
with the post-test.

243

Unfortunately, we found that none of the conditions led to
substantial learning of the programming concepts (i.e., the highest
median score for a post-test was 12 out of 24 questions correct).
Although it is understandable that novices scored poorly on the pre-
test since it was their first time seeing programming code,
examining the overall scores for both the pre-test and post-test
exams may give the impression that the exams were too difficult.
However, novices performing badly on programming-related
concepts they recently learned is not uncommon [5,47,50,65].
Comparable scores were also reported by Tew who administered a
similar pseudo-code test to students who had taken entire
introductory programming courses [70]. Since our test questions
were generated by combining scores from a crowdsourced group of
adult novices and experienced programmers, our results suggest that
there is a major gap in programming knowledge between beginners
and those with more experience, and that one short exposure with
code, whether it be an online tutorial, online game, or even a formal
high school or university class [70], may be enough to show some
learning outcomes, but is still far from mastery of the subject.
There was a large difference in the time people spent on their
respective learning activities. Learners spent the most time on the
Codecademy course and spent the least amount of time using the
Gidget Puzzle Designer. The time participants spent on the
Codecademy and Gidget game tasks are not surprising, given that
they are close to the developers’ estimated time to complete the
activity. It is also not too surprising that participants spent the least
amount of time on the Gidget Puzzle Designer task. Without any
clear goals or instructions, the Gidget Puzzle Designer participants
likely lacked the motivation required to go beyond tinkering with
the interface a bit. This means that goals are important for
engagement with an activity, and that without proper motivation,
people are likely to disengage with the activity. This is particularly
worrisome for discretionary learning resources, because one
negative/boring encounter with programming might cause a lasting
impression where a learner decides that computer science is not for
them based on this one experience. More generally, it may be that
open-ended, but solitary creative learning tasks such as these fail to
engage online with more substantial extrinsic motivators, such as
teachers, online community, and more directed creative tasks.

5.1 Threats to Validity
Our study has several limitations that may limit its generalizability.
First, we recruited all of our participants through MTurk from the
USA. Our participants were all adults, aged between 18 to 41 years
old. They were also highly educated, with 51 of our 60 participants
having a college degree or higher. This may have introduce a
sampling bias, which may limit the generalizability of our results to
the particular adult populations found on MTurk who want to learn
how to code. Since both Codecademy and Gidget were designed for
people of all ages, future work could examine a wider demographic,
including those without college degrees, youth, and people living
outside of the USA.
We gave participants up to 7 days to complete their assigned
activity. Although we asked them to refrain from using any other
resources to learn or practice programming, participants could have
potentially learned coding concepts from other places, even if it was
unintentional. Learning or practicing programming concepts outside
of the assigned task could have potentially affected exam outcomes,
but could have happened in all conditions. However, unlike the
numerous resources to get guidance for Python, there are no
external resources to get explicit help for Gidget.
Participants spent significantly different times on their task by
condition. Although the numbers for the Codecademy and Gidget
game are similar to the estimates given by their developers, the extra
time they had may have contributed to their performance gains over

the GPD. However, we see that Gidget players performed just as
well as Codecamy players, even though they spent significantly less
time. There is also no evidence that GPD players would have
learned anything more by being forced to play longer since the GPD
did not provide any guided direction. Codecademy and Gidget users
might not have been as successful on their post-tests if they spent
less time and/or did not finish their task. However, our data shows
that unlike the GPD players, these users were engaged enough to
continue through their entire task for hours, and showed
improvements in all the concepts that their assigned tasks covered.
Part of our Codecademy data was reliant on self-reported data that
participants provided, including the time they spent on the task and
how far they got in the course. Although we asked participants to
stop at the “advanced concept” modules so the learning
interventions were as similar as possible, we had no way of
enforcing that since Codecademy is a third-party website.
Finally, there was an economic incentive for participants to
participate in the study. We tried to minimize this effect as much as
possible. We believe that the economic incentive in our study was
minimal, as usage data for both Gidget and Codecademy show that
thousands and millions of people have used these systems without
being paid to play.

6. CONCLUSIONS & FUTURE WORK
We investigated the learning outcomes of three different types of
programming resources designed for beginners. By comparing the
test scores of learners before and after their respective learning
activities, we found that the learners who took a Codecademy
course and the learners who played through the Gidget game
showed considerable improvement in their test scores. Though this
was true of both cases, learners who played the Gidget game were
able to match the post-test performance of learners who completed
the Codecademy tutorial, in approximately half the time.
Furthermore, we found that participants from both of these groups
also spent more time on the post-test exam, suggesting that they
found reason to try harder the second time taking the exam. In
contrast, those who were assigned to create programs from scratch
using the Gidget Puzzle Designer spent approximately the same
amount of time on their pre-test and post-test exams, and did not
show significant improvements in their post-test exam scores. In
addition to these differences, we found that performance by
demographics was consistent within all the conditions, meaning our
learning activities had a similar impact regardless of gender, age, or
level of education.
These findings raise many questions for future work. How might
creativity-oriented online learning environments such as Scratch
better support learners? Is it really the case that creative
environments need a teacher, or can they be designed to teach
effectively without human teachers? How might these findings
apply to other forms of discretionary computing education such as
MOOCs that are modeled more like traditional classroom settings?
With the rising interest in learning to program, and the proliferation
of resources to do so, we believe that knowledge about the
interaction between the design of these resources and engagement
and learning will be essential for learner retention and effective
pedagogy.

7. ACKNOWLEDGEMENTS
We thank our participants. This work was supported in part by the
National Science Foundation (NSF) under grants CNS-1240786,
CNS-1240957, CNS-1339131, CCF-0952733, CCF-1339131,
IIS-1314399, IIS-1314384, and OISE-1210205. Any opinions,
findings, conclusions or recommendations are those of the authors
and do not necessarily reflect the views of NSF. 

244

8. REFERENCES
1. Aleven, V., Myers, E., Easterday, M., & Ogan, A. (2010).

Toward a framework for the analysis and design of educational
games. IEEE DIGITEL, 69-76.

2. Answerdash. http://www.answerdash.com. Accessed:
2015-03-26.

3. Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015).
From scratch to “real” programming. ACM TOCE, 14(4), 25.

4. Beres, D. (2014). Obama Writes His First Line Of Code.
Retrieved 2015-02-08, from http://www.huffingtonpost.com/
2014/12/09/obama-code_n_6294036.html

5. Bonar, J., & Soloway, E. (1985). Preprogramming knowledge:
A major source of misconceptions in novice programmers.
Human–Computer Interaction, 1(2), 133-161.

6. Bonate, P.L. (2000). Analysis of pretest-posttest designs. CRC
Press.

7. Boustedt, J., Eckerdal, A., McCartney, R., Sanders, K.,
Thomas, L., & Zander C. (2011). Students’ perceptions of the
differences between formal and informal learning. ACM ICER,
61–68

8. Bransford, J.D., Brown, A.L., & Cocking, R.R. (1999). How
people learn: Brain, mind, experience, and school. National
Academy Press.

9. Breslow, L., Pritchard, D.E., DeBoer, J., Stump, G.S., Ho, A.
D., & Seaton, D.T. (2013). Studying learning in the worldwide
classroom: Research into edX’s first MOOC. Research &
Practice in Assessment, 8(1), 13-25.

10. Bruckman, A., Biggers, M., Ericson, B., et al. (2009). Georgia
computes!: Improving the computing education pipeline. ACM
SIGCSE Bulletin, 41(1), 86-90.

11. Cao, J., Kwan, I., White, R., Fleming, S.D., Burnett, M., &
Scaffidi, C. (2012). From barriers to learning in the Idea
Garden: An empirical study. IEEE VL/HCC, 59-66.

12. Charters, P., Lee, M.J., Ko, A.J., & Loksa, D. (2014).
Challenging stereotypes and changing attitudes: the effect of a
brief programming encounter on adults' attitudes toward
programming. ACM SIGCSE, 653-658.

13. Chumley-Jones, H.S., Dobbie, A., & Alford, C.L. (2002).
Web-based learning: Sound educational method or hype? A
review of the evaluation literature. Academic medicine, 77(10),
S86-S93.

14. Codecademy. http://www.codecademy.com. Accessed:
2015-03-26.

15. Code Combat. http://www.codecombat.com. Accessed:
2015-03-26.

16. Code Hunt. http://www.codehunt.com. Accessed: 2015-03-26.
17. Code School. http://www.codeschool.com. Accessed:

2015-03-26.
18. Connolly, T.M., & Stansfield, M.H. (2006). Enhancing

eLearning: Using Computer Games to Teach Requirements
Collection and Analysis. WG HCI & UE of the Austrian
Computer Society.

19. Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool
for introductory programming concepts. J. of Computing
Sciences in Colleges, 15(5), 107-116.

20. Cross, J. (2006). Informal learning: rediscovering the natural
pathways that inspire innovation and performance. San
Francisco, CA: Pfeiffer.

21. Dann, W.P., Cooper, S., & Pausch, R. (2011). Learning to
Program with Alice. Prentice Hall Press.

22. Deitel, H., & Deitel, P. (2005). C++: How to program (5th
ed.). Upper Saddle River, NJ: Prentice Hall.

23. Dimitrov, D.M., & Rumrill, Jr, P.D. (2003). Pretest-posttest
designs and measurement of change. Work: A Journal of
Prevention, Assessment and Rehabilitation, 20(2), 159-165.

24. Eagle, M., & Barnes, T. (2009). Experimental evaluation of an
educational game for improved learning in introductory
computing. ACM SIGCSE Bulletin, 41(1), 321-325.

25. edX. https://www.edx.org. Accessed: 2015-03-26.
26. Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S.

(2001). How to design programs: An introduction to
programming and computing. Cambridge, MA: MIT Press.

27. Franklin, D., Conrad, P., Boe, B., et al. (2013). Assessment of
computer science learning in a scratch-based outreach
program. ACM SIGCSE, 371-376.

28. Garris, R., Ahlers, R., & Driskell, J.E. (2002). Games,
motivation, and learning: A research and practice model.
Simulation & Gaming, 4, 441–467.

29. Gee, J.P. (2014). What video games have to teach us about
learning and literacy. Macmillan.

30. Gidget. http://www.helpgidget.org. Accessed: 2015-03-26.
31. Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification

work? – a literature review of empirical studies on
gamification. HICSS, 3025-3034.

32. Hays, R.T. (2005). The effectiveness of instructional games: A
literature review and discussion (Technical Report 2005-004).
Naval air warfare ctr. training systems division. Orlando, FL.

33. Ivala, E., Gachago, D., Condy, J., & Chigona, A. (2013).
Enhancing student engagement with their studies: a digital
storytelling approach. Creative Education, 4(10), 82.

34. Kapp, K.M. (2012). The gamification of learning and
instruction: game-based methods and strategies for training
and education. San Francisco, CA: Pfeiffer.

35. Khan Academy. http://www.kahnacademy.com. Accessed:
2015-03-26.

36. Kirriemuir, J., & McFarlane, A. (2004). Literature Review in
Games and Learning. Report 8, NESTA, Futurelab, Bristol.

37. Kelleher, C., & Pausch, R. (2005). Lowering the barriers to
programming: A taxonomy of programming environments and
languages for novice programmers. ACM CSUR, 37(2),
83-137.

38. Kelleher, C., & Pausch, R. (2007). Using storytelling to
motivate programming. Comm. of the ACM, 50(7), 58-64.

39. Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling
Alice Motivates Middle School Girls to Learn Computer
Programming. ACM CHI, 1455-1464.

40. Lee, M.J. (2015). Teaching and Engaging with Debugging
Puzzles. PhD dissertation, University of Washington.

41. Lee, M.J, Bahmani, F., Kwan, I., Laferte, J., Charters, P.,
Horvath, A., Luor, F., Cao, J., Law, C., Beswetherick, M.,
Long, S., Burnett, M., & Ko, A.J. (2014). Principles of a
Debugging-First Puzzle Game for Computing Education.
IEEE VL/HCC, 57-64.

42. Lee, M.J., & Ko, A.J. (2011). Personifying programming tool
feedback improves novice programmers' learning. ACM ICER,
109-116.

43. Lee, M.J., & Ko, A.J. (2012). Investigating the role of
purposeful goals on novices' engagement in a programming
game. IEEE VL/HCC, 163-166.

44. Lee, M.J., Ko, A.J., & Kwan, I. (2013). In-game assessments
increase novice programmers' engagement and level
completion speed. ACM ICER, 153-160.

45. Lewis, J., & Loftus, W. (2005). Java software solutions (Java
5.0 version): Foundations of program design (4th ed.). Boston,
MA: Addison Wesley.

46. Lightbot. http://www.lightbot.com. Accessed: 2015-03-26.

245

47. Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., McCartney, et al. (2004). A multi-national
study of reading and tracing skills in novice programmers.
ACM SIGCSE Bulletin, 36(4), 119-150.

48. Malone, T.W. (1981). What Makes Things Fun to Learn? A
Study of Intrinsically Motivating Computer Games. Palo Alto,
CA: Xerox.

49. Maloney, J., Resnick, M., Rusk, N., Silverman, B., &
Eastmond, E. (2010). The scratch programming language and
environment. ACM TOCE, 10(4), 16.

50. McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan,
D., Kolikant, Y.B.D., Laxer, C., Thomas, L., Utting, I. &
Wilusz, T. (2001). A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students.
ACM SIGCSE Bulletin, 33(4), 125-180.

51. McNamara, D., Jackson, G., Graesser, A. (2009) Intelligent
tutoring and games. Artificial Intelligence in Education, 1–10.

52. Papert, S., & Harel, I. (1991). Situating constructionism.
Constructionism, 36, 1-11.

53. Pear, J.J. (2004). Enhanced feedback using computer-aided
personalized system of instruction. In W. Buskist, V.W.
Hevern, B.K. Saville, & T. Zinn, (Eds.), Essays from
excellence in teaching (Chapter 11).

54. Prensky, M. (2003). Digital game-based learning. Computers
in Entertainment, 1(1), 21-21.

55. Prensky, M. (2006). Don’t Bother Me, Mom, I'm Learning!:
How Computer and Video Games Are Preparing Your Kids for
21st Century Success and How You Can Help. Saint Paul,
Paragon House.

56. Randel, J.M., Morris, B.A., Wetzel, C.D., & Whitehill, B.V.
(1992). The effectiveness of games for educational purposes: A
review of recent research. Simulation & Gaming, 23(3),
261-276.

57. Ross, J., Irani, L., Silberman, M., Zaldivar, A., & Tomlinson,
B. (2010). Who are the crowdworkers?: shifting demographics
in mechanical turk. ACM CHI, 2863-2872.

58. Rubio, M.A., Romero-Zaliz, R., Mañoso, C., & Angel, P.
(2015). Closing the gender gap in an introductory
programming course. Computers & Education, 82, 409-420.

59. Ruf, A., Mühling, A., & Hubwieser, P. (2014). Scratch vs.
Karel: impact on learning outcomes and motivation. ACM
WiPCSE, 50-59.

60. Ryokai, K., Lee, M.J., & Breitbart, J.M. (2009). Children's
storytelling and programming with robotic characters. ACM
Creativity & Cognition, 19-28.

61. Shute, V.J., Ventura, M., Bauer, M., & Zapata-Rivera, D.
(2009). Melding the power of serious games and embedded
assessment to monitor and foster learning. Serious games:
Mechanisms and Effects, 295-321.

62. Shackelford, R. L. (1997). Introduction to computing and
algorithms. Boston, MA: Addison Wesley.

63. Sime, M., Green, T., & Guest, D. (1976). Scope marking in
computer conditionals: A psychological evaluation.
International Journal of Man-Machine Studies, 9, 107–118.

64. Soflano, M., Connolly, T.M., & Hainey, T. (2015). An
Application of Adaptive Games-Based Learning based on
Learning Style to Teach SQL. Computers & Education.

65. Soloway, E. (1986). Learning to program = learning to
construct mechanisms and explanations. Communications of
the ACM, 29(9), 850-858.

66. Steffe, L.P., & Gale, J. E. (Eds.). (1995). Constructivism in
education. Hillsdale, NJ: Lawrence Erlbaum, 159.

67. Summers, N. (n.d.) Codecademy surpasses 24 million unique
users for its free online coding courses. The Next Web.
Retrieved 23 April 2014.

68. Sykes, E.R. (2007). Determining the effectiveness of the 3D
Alice programming environment at the computer science I
level. Journal of Educational Computing Research, 36(2),
223-244.

69. Tew, A.E. (2010). Assessing fundamental introductory
computing concept knowledge in a language independent
manner. PhD dissertation, Georgia Institute of Technology.

70. Tew, A.E., & Guzdial, M. (2011). The FCS1: A language
independent assessment of CS1 knowledge. ACM SIGCSE,
111-116.

71. Thompson, S.M. (2006). An Exploratory Study of Novice
Programming Experiences and Errors. Thesis., University of
Victoria, Victoria.

72. Umaschi, M. (1997). Soft toys with computer hearts: Building
personal storytelling environments. ACM CHI, 20-21.

73. Webb, H. C., & Rosson, M. B. (2011). Exploring careers while
learning Alice 3D: a summer camp for middle school girls.
ACM SIGCSE, 377-382.

74. Werner, L L., Hanks, B., & McDowell, C. (2004). Pair-
programming helps female computer science students. Journal
on Educational Resources in Computing, 4(1).

75. Whitfort, T. (n.d.). Pseudo code guide [web page]. http://
ironbark.bendigo.latrobe.edu.au/subjects/PE/2005s1/
other_resources/pseudocode_ guide.html.

76. Williamson, B. (2009). Computer games, schools, and young
people: A report for educators on using games for learning.
Bristol: Futurelab.

77. Young, J. (2008). "Badges" earned online pose challenge to
traditional college diplomas. Chronicle of Higher Education.

78. Zelle, J. M. (2004). Python programming: An introduction to
computer science. Wilsonville, OR: Franklin Beedle.

246

