
Comparing the Effectiveness of Online Learning 
Approaches on CS1 Learning Outcomes 

ABSTRACT 
People are increasingly turning to online resources to learn to 
code. However, despite their prevalence, it is still unclear how 
successful these resources are at teaching CS1 programming 
concepts. Using a pretest-posttest study design, we measured the 
performance of 60 novices before and after they used one of the 
following, randomly assigned learning activities: 1) complete a 
Python course on a website called Codecademy, 2) play through 
and finish a debugging game called Gidget, or 3) use Gidget’s 
puzzle designer to write programs from scratch. The pre- and post-
test exams consisted of 24 multiple choice questions that were 
selected and validated based on data from 1,494 crowdsourced 
respondents. All 60 of our novices across the three conditions did 
poorly on the exams overall in both the pre-tests and post-tests 
(e.g., the best median post-test score was 50% correct). However, 
those completing the Codecademy course and those playing 
through the Gidget game showed over a 100% increase in correct 
answers when comparing their post-test exam scores to their pre-
test exam scores. Those playing Gidget, however, achieved these 
same learning gains in half the time. This was in contrast to 
novices that used the puzzle designer, who did not show any 
measurable learning gains. All participants performed similarly 
within their own conditions, regardless of gender, age, or 
education. These findings suggest that discretionary online 
educational technologies can successfully teach novices 
introductory programming concepts (to a degree) within a few 
hours when explicitly guided by a curriculum. 

Categories and Subject Descriptors 
K.3.2 Computer Science Education: Introductory Programming, 
D.2.5 Testing and Debugging.

General Terms 
Design; Human Factors; Measurement. 

Keywords 
Programming; debugging; educational game; computing education; 
learning outcomes; Gidget; Codecademy. 

1. INTRODUCTION
In recent years, major efforts such as the Hour of Code and CS 
Education Week events have attracted millions of people, including 
celebrities and even the U.S. president, to try programming using 
many of the discretionary learning resources available for free 
online [4]. These resource include tutorial websites such as 

Codecademy [14] and CodeSchool [17], open-ended creative 
environments such as Scratch [49] and Alice [19,21], and 
educational games such as Gidget [30] and LightBot [46]. Users of 
these systems report that they enjoy these informal resources more 
than traditional coursework because they allow for flexibility in how 
they learn, they provide a better sense of retention of the material 
[7], and they are more motivating, engaging, and interesting than 
traditional classroom courses [20]. Some of these attitudes can be 
attributed to these resources’ use of game mechanics such as 
scaffolded materials, structured mastery learning, concrete goals, 
and extrinsic incentives such as badges [77]. Furthermore, these 
online resources allow users to learn about programming in a safe 
environment at their own pace, which gives them the opportunity to 
clear up any of their negative misconceptions about programming or 
their ability to learn it, to something more positive [12]. 
Although all these resources are undoubtably useful at attracting, 
exposing, and engaging new people in computer programming, few 
(if any) of these online resources report anything beyond the 
number of users that have signed up for their services and how 
many activities their users have completed. We do not know how 
long it takes learners to complete (or quit) the activities, if they ever 
come back, or, most importantly, what they are learning, if anything. 
This lack of evaluation makes it unclear how useful these tools are 
beyond merely engaging learners for a brief period of time, which 
resources are actually successful at teaching coding, or what parts of 
these resources contribute to success or failure. Without this 
knowledge, we risk designing instructional tools that do not actually 
instruct learners [28]. 
To investigate the learning outcomes of these online resources, we 
conducted a pretest-posttest experiment using three types of online 
educational technologies (see Figure 1), comparing the learning 
gains of each. We specifically compared the Python course on 
Codecademy [14], a debugging puzzle game called Gidget [30], and 
the open-ended creative environment found in Gidget called the 
Puzzle Designer [41], which is analogous to other creative 
development environments such as Scratch [49] and Alice [19,21]. 
We recruited learners aged 18 and above through Mechanical Turk. 
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Figure 1.  We examined if novice programmers produced 
measurable learning outcomes after using the three different 

types of discretionary, online learning tools shown here.
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In the rest of this paper, we discuss prior work on educational 
technologies, detail our test and study design, and discuss our results 
and their implications for online computing education. 

2. RELATED WORK 
This paper explores three major areas of work in educational 
technologies designed to teach beginners programming online: 1) 
open-ended, creative environments, 2) massively open online 
courses (MOOCs), and 3) educational games. Although these 
resources may differ in the way they deliver content and engage 
their users, there is little doubt that online learning will continue to 
be a major medium in 21st century computing education. This 
requires us not only to know about how these different instructional 
approaches perform in isolation, but also how they compare. 
Open-ended, creative environments are largely unstructured and 
allow users to explore, tinker, and create content that is meaningful 
for themselves. These attributes align with constructivist theories of 
learning through hands-on experience [66] and constructionist ideas 
of learning through construction of meaningful projects [52]. 
Exemplars of these kinds of environments include Scratch [49] and 
Alice [19,21]. Prior work has shown that summer camps using these 
resources are great at engaging their users [10,73], but all of these 
reports required instructional scaffolding by teachers for learners to 
succeed.  
MOOCs and self-paced learning resources such as CodeSchool 
[17], Codecademy [14], edX [25], and Khan Academy [35] attract 
millions of users and are an increasingly popular way for people to 
learn new skills such as programming. Many people view these 
approaches as connectivist learning, which is related to social 
learning theory (learning through social interactions and 
experiences). However, as Connolly and Stansfield [18] have 
suggested, many of these resources simply replicate the traditional 
classroom experience and may be too focused trying to deliver 
materials over the web rather than on teaching and learning, or 
motivating and engaging students [64]. 
Educators have considered games to be a beneficial platform in 
supporting student learning [55] and have pushed for more 
educational games to teach STEM (science, technology, 
engineering, and mathematics) subjects [32,56]. Games have been 
designed using a range of learning approaches, some constructivist 
(allowing learners to participate and experiment in non-threatening 
scenarios), some experiential (learning by doing), and some situated 
(providing relevant context or setting; for multiplayer, learning takes 
place alongside social interaction and collaboration). Video games 
are able to engage learners over extensive periods of time and can 
also motivate learners to replay the game repeatedly until they have 
mastered it [36]. This includes educational games such as CodeHunt 
[16], LightBot [46], CodeCombat [15], and Gidget [30]. 
Researchers have taken advantage of this interest to improve 
educational games to be more fun, informative, and educational, 
prompting more people to use games for both education and 
entertainment [29,54,76]. Some research focuses on creating games 
that directly try to teach a skill or subject such as computer 
programming [24,42,43,44], others focus on adding game-like 
features to existing teaching systems such as intelligent tutors 
[34,51], and some focus more generally on creating frameworks for 
effective evaluation [1,61]. Several works have also attempted to 
identify the specific parts of games that motivate [48] and attract 
people to pursue computing education [28,29,48]. 
Researchers and educators have evaluated the efficacy of many of 
these systems in isolation (e.g., Scratch [3,27], Alice [68], and edX 
[9]), and in comparison with other similar systems (e.g. Scratch vs. 
Karel [59]). However, only a few have examined how to effectively 
measure the outcomes of educational games [31,61], and very little 

is known about how online educational games actually compare to 
other technologies such as MOOCs and open-ended creative 
environments in teaching their users introductory programming 
concepts [13]. We aim to address this gap by comparing the learning 
outcomes of an open-ended creative environment, a self-paced 
MOOC, and an educational game. 

3. METHOD 
The goal of our study was to examine the extent to which adult 
novices of any age showed measurable learning gains after using 
one of three online learning technologies. To do this, we first 
selected three learning activities that are representative of the types 
of discretionary, online resources that people currently use to learn 
programming: 1) an online tutorial system using a web-based IDE, 
where learners go through a didactic, structured curriculum, 2) an 
educational game using an IDE, where learners go through a 
problem-based, structured curriculum, and 3) an open-ended 
creation IDE, where there is no planned curriculum and learners 
acquire skills by creating with code. Next, we developed a test 
designed to measure one’s knowledge of different introductory 
programming concepts before and after completing one of the 
learning activities. 
Our null hypothesis was: 
H0:	   There	   is	   no	  difference	   in	   learners’	  post-‐test	   performance	   among	  
the	  condi7ons	  a8er	  comple7ng	  their	  assigned	  learning	  ac7vity.	  

In the rest of this section, we describe our three learning activities in 
more detail, explain the design of our pre-post test, and discuss the 
experiment designed to test our hypothesis. 

3.1 Learning Activities 
3.1.1. Activity 1: Codecademy Course 
Codecademy [14] is a popular online interactive tutorial website 
that offers free courses in multiple programming languages (see 
Figure 2). It has had over 24 million users who have completed 
over 100 million exercises [67]. For our study, learners participated 
in the introductory “Python Language Skills” course. According to 
the Codecademy website, over 2.5 million users are enrolled in this 
course designed for beginners. The website also states that the 
Python course takes an estimated 13 hours to complete. 
Codecademy’s course interface consists of a two-pane window split 
vertically on the screen (see Figure 2). The left pane consists of 
instructions, examples, and hints for the user to follow. For each 
activity, it contains a numbered list of explicit instructions for the 
user to follow (e.g., “01. Set the variable my_varaiable equal to the 

Figure 2. A Codecademy lesson, where users follow step-by-
step instructions entering code into a virtual terminal.

!
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value 10” and “02. Click the Save & Submit button to run your 
code.”). The right pane is an IDE for users to type in and execute 
their code, with an overlay on the upper-right corner that shows 
console output on code execution. In case learners need assistance, 
there is a “Stuck? Get a hint!” button below the list of instructions 
on the left pane that users can click to view more help text. The 
hints are typically explicit instructions (e.g., “All you need to do is 
type 3 after the equals sign on line 8.” ) or closely related examples 
(e.g., “Make sure you're setting your variable like this: 
the_machine_goes = ‘Ping!’ ”.). Finally, the bottom-most area of 
the left pane includes two buttons that opens up a new browser tab: 
one labeled “Q&A forum” where fellow Codecademy users can 
post and answer questions, and another one labeled “glossary,” that 
goes to a dictionary of Python commands and concepts. 
The introductory Python course has a total of 12 modules covering 
the following topics: syntax, variables, mathematical and logical 
operator, strings, conditionals, control flow, functions, lists and 
dictionaries, and advanced concepts (e.g., classes and file input/
output). Each module is split into two parts. The first part is 
designed to teach a specific concept or set of concepts and consists 
of several activities that subsequently build on the previous activity. 
The second part of the section is an exercise to practice combining 
the first part to build something interesting. For example, in the 
case of the syntax module (where learners are introduced to 
variable assignment and the use of mathematical operators), the 
second part of the module tasks users to fill in variables with values 
to calculate gratuity for a meal. 
To ensure that the concepts covered by Codecademy and the 
Gidget game (described below) were as close as possible, we asked 
learners to complete only the first 8 of 12 modules before taking 
our post-test. Although learners would not be tested on these extra 
advanced concepts on the post-test exam, finishing them would 
have given them additional practice with many of the previously 
learned concepts. We asked learners to keep track of the time they 
spent using Codecademy so that they could report their total time 
after taking the post-test exam. Since the Codecademy website 
states it takes around 13 hours to complete the 12 modules in the 
Python course, we informed our tutorial condition participants it 
would take approximately 10 hours to complete their assigned 8 
modules before they started their activity. 

3.1.2. Activity 2: Gidget Game 
Gidget is a web application (see Figure 3) that has been played by 
thousands of people worldwide, with nearly half of its users being 
female [30,40]. The game was specifically designed to teach and 
appeal to both youth [41] and adult [12] novices, presenting 

debugging tasks as puzzles and using an imperative Python-like 
programming language. For this study, we asked learners to play 
through the entire game, which takes approximately 5 hours [41]. 
In each level of the game, the player must identify the level goals 
(written as test cases), inspect the given code, then modify and 
execute it until it satisfies all the level’s test cases. Following the 
mastery learning paradigm [53], each of the game’s levels is 
designed to be passable only if the learner has grasped a particular 
concept in the game’s programming language. 
Gidget’s interface consists of three vertically-split sections (see 
Figure 3). The left section consists of the IDE to type in code, the 
list of goals (written as test cases that are checked after code 
execution), and the execution buttons. The execution buttons allow 
the player to control the level of execution (e.g., one compiled 
instruction, all instructions on one line of code like a breakpoint 
debugger, or the entire program), or halt the program. The central 
section shows the graphical representation of all the characters and 
objects in the game world, and also includes a large speech bubble 
where the game’s protagonist provides detailed explanation of the 
execution of each statement in the program, highlighting changes 
in the runtime environment. This serves as the game’s primary 
instructional content, explicitly teaching the language syntax and 
semantics. Finally, the right section updates after each instruction, 
showing the current runtime state of all the game’s current objects 
and their respective variables. 
The game had a total of 7 modules totaling 37 levels, with each 
module containing a set of levels focusing on a related set of 
programming keywords or concepts. The game covered exactly the 
same topics as the Codecademy modules listed earlier, excluding 
Python dictionaries and the “advanced topics,” which we asked 
Codecademy participants to skip so the two learning activities 
would be as similar as possible. Each module was split into two 
parts, where each level in the first part (between 3-5 levels) had a 
specific learning objective to familiarize the player with a specific 
programming concept. The second part of each module included 
two assessment levels where learners did not have to edit code, but 
had to answer a question that cumulatively tested the concepts for 
that module. This was found in prior work to improve adult players’ 
engagement and subsequent level completion speed [44]. 
Gidget included several ways for players to receive help. After 
signing up, the game presents the player with a tutorial highlighting 
and explaining the different parts of the interface and the sequence 
of steps players should take to proceed through each level. The 
game also features an in-game reference guide, providing 
explanations and examples of each command in the language. The 

Figure 3. The Gidget game. Where players help a robotic 
character fix its code to complete 37 missions.

!
Figure 4. The Gidget Puzzle Designer, which players can use 

to create their own Gidget levels using a blank canvas.

!
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reference guide was available as a standalone help guide or as 
tooltips that appeared when hovering over tokens in the code editor. 
This was further enhanced by the inclusion of the Idea Garden [11], 
which analyzed the players’ code in real-time and presented context 
sensitive suggestions if the player requested it, and AnswerDash [2], 
which allowed players to click on any part of the interface to ask 
questions about it or read responses to others’ queries. Finally, the 
game’s code editor provided keystroke-level feedback about syntax 
and semantics errors, underlining erroneous code in red and 
explaining the problem in Gidget’s speech bubble. 
Based on prior studies [40,41], we told our game condition 
participants that Gidget would take about 5 hours to complete 
before they started the activity. We required learners to complete all 
the levels before taking the post-test. For this specific condition, we 
automatically logged the time learners took to complete the game. 

3.1.3. Activity 3: Gidget Puzzle Designer 
The Gidget Puzzle Designer (GPD) is an integrated development 
environment used to create and edit Gidget levels (see Figure 4). It 
is normally unlocked after finishing the Gidget game. However, for 
our study, participants were given access to the GPD without any 
prior experience playing the Gidget game. This was to mirror other 
open-ended, creation-oriented learning environments like Scratch 
[49], Alice [19,21], and others [37], where users are free to explore 
and tinker to make their own projects. 
The interface for the GPD is a modified version of the regular 
Gidget game interface, allowing modification of previously un-
editable code such as the starting world code, the level goals, the 
dimension of the world grid, and Gidget’s introductory dialogue and 
emotional state at the beginning of the level. In addition, the status 
pane on the rightmost section is replaced by a tabbed inventory of 
available characters and objects, ground tiles, and sounds that the 
learner can use to populate and enrich their programs. 
All of the same help tools available in the Gidget game are also 
available in the GPD. This includes the syntax highlighting, tooltips, 
dictionary, and Idea Garden suggestions. In addition to the help 
systems, the learners had access to view and edit all of the regular 
game levels, giving them pre-designed puzzles to modify for 
creative purposes. These examples also included the solution (i.e., 
learners could see both the incorrect code and the correct code) for 
each level. The assessment levels from the end of each module were 
excluded, and all the default editable levels were listed in sequential 
order without indicating which module they belonged to. Similar 
types of help and examples are available in both Scratch and Alice 
to help bootstrap learner engagement. 
Unlike Codecademy and the Gidget game, the GPD did not have a 
curriculum or sequence of steps to follow. Therefore, to help orient 
our GPD users, we showed them a list of directions before they 

started with their activity. First, we told them their task was to “Use 
a creative canvas tool to create multiple stories for a robotic 
character named Gidget.” This is based on several works, primarily 
by Kelleher et al. [38,39], which shows that adding storytelling 
elements to open-ended creative environments can significantly 
increase users’ engagement [33,60,72]. Second, we told them about 
the various help features available (see previous paragraph and 
section 3.1.2), and how to access them. Third, we asked them to 
“create, explore, and play with the website for at least several hours 
to get the full learning experience” with the activity, to mirror the 
ideal case of a learner first engaging with an open-ended, creative 
online environment. For this condition, we automatically logged the 
time learners spent in the GPD, and collected records of all the 
levels they created. 

3.2 Knowledge Test for C1 Concepts 
In order to measure how much participants learned and what they 
learned, we created and validated a test designed to be taken before 
and after the learning activities. We adopted this pre-test/post-test 
design as it widely used in both educational and non-educational 
contexts to measure change resulting from experimental treatments 
[6,13,23]. Although we spent considerable time creating and 
validating the test, its description will mostly be limited to this 
section as it is not the main contribution of this paper. 
First, we determined which concepts to test by comparing the 
topics that are taught commonly in introductory programming 
courses [22,26,45,69,78] to the set of concepts that were covered in 
our Codecademy and Gidget game activities. We chose a total of 
eight concepts: basics (i.e., variables, mathematical operators, 
relational operators, Booleans), logical operators, selection 
statements (i.e., conditionals), arrays, indefinite loops (i.e., while), 
definite loops (i.e., for), function parameters, and function returns. 
We modeled our test questions after Allison Tew’s dissertation 
work on the FCS1, a programming language-independent test using 
pseudo-code [69]. In her studies, Tew showed that testing 
introductory programming students in the classroom with their 
native course language and in pseudo-code were strongly 
correlated [70] and has the extra benefit of demonstrating transfer 
of learning [8]. We generated pseudo-code questions using the 
examples, descriptions, and two-page pseudo-code guide Tew 
provided [69]. Questions used a verbose style adapted from guides 
for programmers published by Whitford [75] and Shackelford [62]. 
To minimize confounding factors in syntax design, we followed the 
latest evidence on syntax learnability, excluding semi-colons and 
curly braces, indenting code blocks, upper-casing reserved words, 
and closing program blocks with explicit keywords [63] (see 
Figures 5 and 6 for examples). 
Based on guidelines and examples from Tew's dissertation, we 
designed 5 multiple choice questions for each of the concepts 

Figure 5. Screenshot of an “if/else” pseudo-code question 
from the pre- & post-tests with its answer choices.

Figure 6. Screenshot of a “while” pseudo-code question from 
the pre- & post-tests with its answer choices.
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covered in our learning activities, for a total of 40 questions. All 
questions had one correct response and four incorrect distractors. 
We designed distractors to deliberately test for common 
programming misconceptions [5,71].  
To validate our 40 questions, we recruited people on Mechanical 
Turk (MTurk). MTurk is an online marketplace where individuals 
aged 18 and over (called “Turkers”) can receive micro-payments 
for doing small tasks. Our Turkers were paid 2 cents to answer one 
pseudo-code question, indicate their experience with programming, 
and optionally provide their email address. No additional 
demographic information was collected. Each Turker could answer 
up to an additional 39 questions for 2 cents each. In these cases, 
each additional question would be new, and the Turker did not have 
to re-enter their answers for programming experience or their e-
mail address (if provided previously). To mitigate ordering effects, 
questions were randomly sequenced each time a participant took 
the survey. Answer choices for questions that did not require a 
specific order were randomly arranged as well. 
To identify problems with our questions and answer choices, we 
ran two rounds of pilot tests, with each question getting at least 3 
responses for each iteration of testing. We corrected issues dealing 
with ambiguous/confusing wording, inappropriate distractors, 
syntax errors, and typos. To achieve this, we looked for data 
anomalies (e.g., nobody getting the answer correct, or everyone 
choosing the same answer) and requested open-ended feedback 
from our respondents. We then ran a full test with 1,494 Turkers 
and had a total of 8,011 responses to our questions (approximately 
200 responses per question). The majority of our Turkers only 
answered one question, with 11% completing 3 or more questions. 
To avoid ceiling and floor effects and to maximize discriminability 
of the assessment, we categorized our data by splitting responses 
by the Turkers’ self-reported programming experience. We 
categorized novices as those who responded “never” to all of the 
following statements: 1) “taken a programming course,” 2) 
“written a computer program,” and 3) “contributed code towards 
the development of a computer program.” All other respondents 
were considered experienced programmers. For our finalized list of 
exam questions, we selected the top 3 questions for each concept 
(for a total of 24) with highest variance between novice and 
experienced programmers (that is, those that novices tended to get 
incorrect and those with experience tended to get correct). 

3.4 Participants and Procedure 
The independent variable in our experiment was the instructional 
approach, which had three levels: 1) tutorial (complete the 
introductory Python programming tutorial on Codecademy), 2) 
game (play through the Gidget game), or 3) canvas (use the GPD 
to create Gidget levels). To help participants make an informed 
decision about the time commitment required to participate in our 
study, we told them that they were allowed seven days to complete 

their assigned task, and provided an estimate of the number of 
hours their task would take (10 hours for the tutorial condition, 5 
hours for the game condition, and open-ended for the canvas 
condition). We emphasized these hours were estimates, and that 
they could potentially take more or less time than what was listed. 
We recruited our participants from Mechanical Turk, specifically 
sampling adults who self-reported that they had no experience with 
programming (see previous section). We also required participants 
to be U.S. residents to minimize English language barriers with the 
instructions and activities. Participants were compensated $10 for 
completing their assigned task. This amount was carried over from 
a previous study [44] and adjusted to account for the extra time 
required for the pre-test and post-test. 
We sent participants an e-mail with a link that randomly assigned 
them to a condition and redirected them to the web-based pre-test. 
Each link was uniquely associated with a specific e-mail address, 
so that we could identify the owner of each test. Like our pilot 
study (see section 3.2), we randomly ordered our finalized 
collection of 24 questions to minimize ordering effects, also 
randomizing the order of the answers, where appropriate. The test 
only showed one question at a time (see Figures 5 and 6) and it was 
not possible to go back to a previous question. Each question 
required a response before being able to move onto the next 
question. There was a progress indicator on the top of the page 
showing participants how many questions remained. The system 
automatically logged each answer choice and the total time to 
complete the exam(s). 
The pre-tests and post-tests were identical across all conditions. 
There was only one exception to this: the post-test for those in the 
tutorial condition had two additional questions for the participants 
to report how many modules they completed, and the time they 
spent to complete their Codecademy activity. The introductory text 
for the pre-test briefly explained that participants would be 
answering coding questions and that they should try their best even 
though they might not be familiar with the content. The 
introductory text for the post-test briefly explained that the 
questions were written in another, related programming language 
that covered the same concepts available in the learning activity 
they had completed. 
Our study was a between-subjects design, with an even split of 20 
people each among the three conditions. Our participants did not 
differ significantly by gender, age, or education (see Table 1). 
Consistent with other studies about the demographics of MTurk 
workers [57], we found that our participants were well-educated, 
with the majority reporting that they had at least a bachelor’s degree 
(see Table 1). 

Table 1. Demographic summary.

Tutorial 
n=20

Game 
n=20

Canvas 
n=20

Gender (male : female) 10 : 10 11 : 9 11 : 9

Age (min, median, max) 18, 23, 35 18, 25, 41 19, 23, 29

Max education: high school 5% 0% 0%

Max education: some college 10% 10% 5%

Max education: college degree 85% 85% 90%

Max education: master degree 0% 5% 5%

Table 2. Summary statistics pre-test and post-test scores.

Tutorial 
n=20

Game 
n=20

Canvas 
n=20

Minimum score on pre-test 2 0 3

Median score on pre-test 5 5 5.5

Maximum score on pre-test 8 6 9

Minimum score on post-test 6 4 3

Median score on post-test 12 10 5

Maximum score on post-test 18 16 9

Percent increase between median 
pre-test and post-test scores 140% 100% -9.1%
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4. RESULTS 
We provide quantitative results comparing the learning outcomes 
from our three groups. Throughout this analysis, we use non-
parametric Chi-Squared and Wilcoxon rank sums tests with α=0.01 
confidence, as our data were not normally distributed. For post-hoc 
analyses, we use the Bonferroni correction for three comparisons: 
(α/3 = 0.0033). 

4.1 Better Post-Scores with Tutorial & Game 
Overall, participants did poorly on the pre-test exams, with a 
median score of 5 out of 24 questions correct (20.8%) across all 
three conditions (see Table 2). This was expected, as we had 
selected the questions most difficult for novices from our original 
set. We compared the pre-test scores across the conditions and found 
no significant difference, confirming that all of our participants’ 
programming knowledge was roughly equivalent prior to the 
learning activities. 
Participants also did poorly on the post-tests, with the highest 
median score among the conditions being 12 out of 24 questions 
correct (50%). However, comparing the post-test scores across the 
conditions reveal that there is a significant difference in learning 
gains between conditions (χ2(2,N=60)=27.03,p<.01). Post-hoc 
analysis with Bonferroni correction revealed that two conditional 
pairs were significantly different: the tutorial vs. canvas conditions 
(W=226,Z=-5.00, p<.01/3) and the game vs. canvas conditions 

(W=272.5,Z=-3.72, p<.01/3). The scores on the post-test between 
the tutorial and game conditions did not show a significant 
difference. Based on these findings, we reject our null hypothesis 
(see section 3). 
These results indicate that though all the participants had 
approximately the same programming knowledge during the pre-
test, participants from the tutorial and game condition performed 
significantly better on their post-test, and that their degree of 
improvement was also significantly greater than that of the canvas 
condition. As seen in Table 2, the effect sizes of learning gains were 
140% and 100% increase in scores for the tutorial and game 
conditions, respectively, whereas the median score from the canvas 
condition did not change significantly (and were actually 9.1% 
worse). Since participants had little programming knowledge to start 
with and there was no difference in demographics, the learning 
activities are likely the primary cause of the increase in scores for 
the tutorial and game condition participants.  

4.3 Differences in Percent Increase of Scores  
Although we had a relatively small sample size of 20 participants 
per condition, we found consistent patterns, particularly in the 
tutorial and game conditions, where participants made large percent 
gains answering questions correctly in their post-tests compared to 
their pre-tests (see Tables 3 and 4). As we saw in section 4.1, the 
tutorial and game condition participants performed much better than 
their canvas condition counterparts. This was particularly true for 
the basic concepts (i.e., variables, mathematical operators, 
relational operators, Booleans), logical operators, while loops, for 
loops, function parameters, and function returns, where participants 
increased their rate of correct answers by at least 100% in their 
post-test compared to their pre-test. 
Tutorial and game condition participants made the largest 
improvements (greater than or equal to 150% increase) with while 
loop and function parameters concepts. Tutorial condition 
participants also made these large improvements answering 
questions about logical operators, while the game condition 
participants also made similarly large improvements answering 
questions about function returns. These results indicate that the 
tutorial and game conditions’ learning activities were successful in 
helping their participants learn about all the concepts we tested for. 
Canvas condition participants did not do well compared to their 
counterparts. Although we know from section 4.1 that the canvas 
condition participants did not do significantly worse on their post-
tests compared to their pre-tests overall, Table 3 shows that they 
struggled answering many of the post-test questions, actually 
performing worse on many concepts in the post-test, despite 
encountering the identical questions. 

Table 4. Summary statistics for activity times.
Tutorial 

n=20
Game 
n=20

Canvas 
n=20

Minimum time on pre-test 20 min 22 min 20 min

Median time on pre-test 25.5 min 28 min 26 min

Maximum time on pre-test 33 min 31 min 41 min

Minimum time on activity 7.0 hours 3.61 hours 1.25 hours

Median time on activity 9.25 hours 4.76 hours 1.94 hours

Maximum time on activity 14.0 hours 7.22 hours 2.98 hours

Minimum time on post-test 23 min 29 min 19 min

Median time on post-test 35 min 34 min 24 min

Maximum time on post-test 55 min 42 min 35 min

Table 3. Percent increase between pre & post -test scores. 
Groupings with a mean >= 100% are in bold. Groupings 

with a mean >= 150% are also italicized in red.

Question + Concept 
(actual question ordered randomly)

(posttest - pretest) / pretest

Tutorial Game Canvas

Q1 basics 175% 60% -40%
Q2 basics 120% 60% 0%

Q3 basics 100% 50% 0%

Q4 logical operators 175% 133.3% -66.7%
%-40%Q5 logical operators 125% 120% -40%

Q6 logical operators 150% 166.7% -20%

Q7 if / else 100% 100% 20%

Q8 if / else 100% 80% 0%

Q9 if / else 80% 100% 0%

Q10 arrays 75% 100% -33.3%

Q11 arrays 60% 50% -40%

Q12 arrays 100% 50% -33.3%

Q13 while 225% 166.7% -60%

Q14 while 333.3% 266.7% 0%

Q15 while 266.7% 125% 0%

Q16 for 100% 66.7% -50%

Q17 for 200% 133.3% 0%

Q18 for 80% 100% -40%

Q19 function parameters 140% 166.7% 25%

Q20 function parameters 233.3% 200% 0%

Q21 function parameters 233.3% 200% 25%

Q22 function return 166.7% 200% -50%

Q23 function return 80% 166.7% -33.3%

Q24 function return 125% 160% 0%

242



These results indicate that online, educational tutorial and game 
resources can be successful at teaching users about programming 
concepts, but that open-ended creative resources in discretionary 
settings, at least in solitary, are likely not. Tutorial and game 
condition participants’ scores indicate that there are large, 
measurable learning outcomes (see bolded text in Table 2), and that 
these learning activities might teach certain concepts better than 
others (see above and italicized text in Table 3). 

4.3 More Time on Exams for Tutorial & Game  
During the pre-test, participants from all conditions spent roughly 
the same amount of time on their exams (see Table 4). However, 
when we examine the time they spent on their post-test, there is a 
s ign i f i can t d i f f e rence in t ime spen t by cond i t i on 
(χ2(2,N=60)=17.87,p<.01). Doing post-hoc analysis with Bonferroni 
correction, we found that the tutorial participants spent significantly 
more time on the post-test than the canvas condition (W=288.5, 
Z=-3.29,p<.01/3); the same was true of the game vs. canvas 
conditions (W=263.5,Z=-3.96, p<.01/3). The time spent on the post-
test between the tutorial and game conditions did not show a 
significant difference. 

4.4 Differences on Learning Activity Time 
Each of the three learning activities had largely different estimated 
times for completion (10 hours for Codecademy, 5 hours for Gidget, 
and open-ended for the GPD). Examining the time spent on each 
task (see Table 4), we see that there was indeed a significant 
difference in time participants spent on their respective activities 
(χ2(2,N=60)=52.34, p<.01). With a post-hoc analysis with 
Bonferroni correction, we found that all pairwise comparisons were 
significantly different: tutorial vs. canvas (W=210, Z=-5.40, p<.
01/3), tutorial vs. game (W=211, Z=-5.37, p<.01/3), and game vs. 
canvas (W=210, Z=-5.40, p<.01/3). 
Combined with the large difference on exam performance in the 
post-test and pre-test (from section 4.1), this suggests that the 
game condition was the most efficient of the three conditions at 
improving participants’ post-test scores. Examining Table 4 
reveals that the tutorial condition participants took nearly twice as 
long as the game condition participants to complete their assigned 
learning activity that covered the same materials (see sections 
3.1.1 and 3.1.2), but performed similarly in their post-test (from 
section 4.2), further demonstrating that the game condition 
participants were most efficient at improving their post-test scores. 

4.5 No Demographic Differences in Test Scores 
We found that there were no significant differences in learning 
gains within the groups by gender. This indicates that males and 
females all performed similarly within their respective conditions. 
Next, we used a simple linear regression for each condition’s pre-
test and post-test to predict test scores based on age. No significant 
correlation was found between test scores or age for any of the 
conditions in either of the tests. This indicates everyone performed 
similarly within their respective conditions, regardless of their age. 
For completeness, we also examined if prior education (as 
measured in Table 1) had an effect on pre-test and post-test scores 
by condition. We found no significant differences within groups 
by education. This indicates everyone, regardless of education, 
performed similarly within their respective conditions. 

4.6 No Demographic Differences in Test Time 
We examined if gender had any effect on the time participants 
spent on the pre-tests and post-tests by condition. We found that 
there were no significant differences within the groups by gender. 
This indicates that males and females all spent a similar amount of 
time on their tests within their respective conditions. 

Next, we used a simple linear regression for each condition’s pre-
test and post-test to predict the time spent on tests based on age. 
No significant correlation was found between the time spent on 
tests and age for any of the conditions in either of the tests. This 
indicates everyone spent a comparable amount of time on their 
tests within their respective conditions regardless of their age. 
Finally, we examined if education had any effect on the time spent 
on the pre-tests and post-tests by condition. We found no 
significant differences within groups by participants’ level of 
education. This indicates everyone, regardless of their level of 
education, spent a similar amount of time on their tests within 
their respective conditions. 

5. DISCUSSION 
Our findings show that online discretionary resources for computing 
education such as tutorial websites and games can be successful in 
teaching adult novices programming concepts without the need for 
additional external help. Even with relatively small sample sizes, we 
were able to see large differences in the time players spent on the 
learning activities, the exams, and their exam scores. All participants 
performed consistently within their own groups, without any 
significant differences in the time they spent on either the pre-tests 
or post-tests, the time on their learning activities, or on their exam 
scores. This consistency is also reflected in participants’ 
demographics, which showed no differences between males or 
females, people of different ages, or level of education, within all 
conditions. This is particularly important for online discretionary 
learning, because our results indicate that all of our learning 
activities were gender-neutral, with everyone performing at equal 
levels within their respective conditions, which does not typically 
happen in programming-related classroom settings [58,74]. 
We found that participants in the tutorial and game conditions 
significantly increased their overall post-test scores by over 100% in 
comparison to their pre-test scores (see Table 2). These participants 
showed considerable gains for similar questions (see Table 3), 
suggesting that the learning activities from both the conditions 
taught similar concepts and also taught them equally well. Although 
these participants showed improvements across all the concepts we 
tested (see Table 3), the highest increases were in: basics, logical 
operators, while loops, for loops, function parameters, and function 
returns. Moreover, participants from the tutorial condition appeared 
to do slightly better on logical operator questions while participants 
from the game condition did slightly better on the function return 
questions. We examined the instruction of these two concepts in 
both Codecademy and the Gidget game, but did not find anything 
obviously different from the modules teaching those specific 
concepts from the other concepts within the same learning activity. 
Like the rest of the interactions within those groups, Codecademy 
had its users follow step-by-step instructions entering code into its 
IDE, and the Gidget game required participants to look through, 
diagnose, and fix broken code like every other level. None of these 
findings were true for the canvas participants, indicating this 
condition’s learning activity failed to teach the same concepts even 
though all the necessary help resources were available to users. 
We did not find any significant difference in the time participants 
spent on their pre-test exams. However, participants in the tutorial 
and game conditions spent significantly more time on their post-
tests compared to their canvas condition counterparts. This suggests 
that those in the tutorial and game condition found more reason to 
concentrate and take their time on their respective post-test exams, 
possibly because they were better equipped to answer the questions 
correctly. Conversely, without clear goals or instruction in the 
Gidget Puzzle Designer, participants in the canvas condition likely 
did not learn the concepts necessary for them to engage successfully 
with the post-test. 
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Unfortunately, we found that none of the conditions led to 
substantial learning of the programming concepts (i.e., the highest 
median score for a post-test was 12 out of 24 questions correct). 
Although it is understandable that novices scored poorly on the pre-
test since it was their first time seeing programming code, 
examining the overall scores for both the pre-test and post-test 
exams may give the impression that the exams were too difficult. 
However, novices performing badly on programming-related 
concepts they recently learned is not uncommon [5,47,50,65]. 
Comparable scores were also reported by Tew who administered a 
similar pseudo-code test to students who had taken entire 
introductory programming courses [70]. Since our test questions 
were generated by combining scores from a crowdsourced group of 
adult novices and experienced programmers, our results suggest that 
there is a major gap in programming knowledge between beginners 
and those with more experience, and that one short exposure with 
code, whether it be an online tutorial, online game, or even a formal 
high school or university class [70], may be enough to show some 
learning outcomes, but is still far from mastery of the subject. 
There was a large difference in the time people spent on their 
respective learning activities. Learners spent the most time on the 
Codecademy course and spent the least amount of time using the 
Gidget Puzzle Designer. The time participants spent on the 
Codecademy and Gidget game tasks are not surprising, given that 
they are close to the developers’ estimated time to complete the 
activity. It is also not too surprising that participants spent the least 
amount of time on the Gidget Puzzle Designer task. Without any 
clear goals or instructions, the Gidget Puzzle Designer participants 
likely lacked the motivation required to go beyond tinkering with 
the interface a bit. This means that goals are important for 
engagement with an activity, and that without proper motivation, 
people are likely to disengage with the activity. This is particularly 
worrisome for discretionary learning resources, because one 
negative/boring encounter with programming might cause a lasting 
impression where a learner decides that computer science is not for 
them based on this one experience. More generally, it may be that 
open-ended, but solitary creative learning tasks such as these fail to 
engage online with more substantial extrinsic motivators, such as 
teachers, online community, and more directed creative tasks. 

5.1 Threats to Validity 
Our study has several limitations that may limit its generalizability. 
First, we recruited all of our participants through MTurk from the 
USA. Our participants were all adults, aged between 18 to 41 years 
old. They were also highly educated, with 51 of our 60 participants 
having a college degree or higher. This may have introduce a 
sampling bias, which may limit the generalizability of our results to 
the particular adult populations found on MTurk who want to learn 
how to code. Since both Codecademy and Gidget were designed for 
people of all ages, future work could examine a wider demographic, 
including those without college degrees, youth, and people living 
outside of the USA. 
We gave participants up to 7 days to complete their assigned 
activity. Although we asked them to refrain from using any other 
resources to learn or practice programming, participants could have 
potentially learned coding concepts from other places, even if it was 
unintentional. Learning or practicing programming concepts outside 
of the assigned task could have potentially affected exam outcomes, 
but could have happened in all conditions. However, unlike the 
numerous resources to get guidance for Python, there are no 
external resources to get explicit help for Gidget. 
Participants spent significantly different times on their task by 
condition. Although the numbers for the Codecademy and Gidget 
game are similar to the estimates given by their developers, the extra 
time they had may have contributed to their performance gains over 

the GPD. However, we see that Gidget players performed just as 
well as Codecamy players, even though they spent significantly less 
time. There is also no evidence that GPD players would have 
learned anything more by being forced to play longer since the GPD 
did not provide any guided direction. Codecademy and Gidget users 
might not have been as successful on their post-tests if they spent 
less time and/or did not finish their task. However, our data shows 
that unlike the GPD players, these users were engaged enough to 
continue through their entire task for hours, and showed 
improvements in all the concepts that their assigned tasks covered. 
Part of our Codecademy data was reliant on self-reported data that 
participants provided, including the time they spent on the task and 
how far they got in the course. Although we asked participants to 
stop at the “advanced concept” modules so the learning 
interventions were as similar as possible, we had no way of 
enforcing that since Codecademy is a third-party website. 
Finally, there was an economic incentive for participants to 
participate in the study. We tried to minimize this effect as much as 
possible. We believe that the economic incentive in our study was 
minimal, as usage data for both Gidget and Codecademy show that 
thousands and millions of people have used these systems without 
being paid to play. 

6. CONCLUSIONS & FUTURE WORK 
We investigated the learning outcomes of three different types of 
programming resources designed for beginners. By comparing the 
test scores of learners before and after their respective learning 
activities, we found that the learners who took a Codecademy 
course and the learners who played through the Gidget game 
showed considerable improvement in their test scores. Though this 
was true of both cases, learners who played the Gidget game were 
able to match the post-test performance of learners who completed 
the Codecademy tutorial, in approximately half the time. 
Furthermore, we found that participants from both of these groups 
also spent more time on the post-test exam, suggesting that they 
found reason to try harder the second time taking the exam. In 
contrast, those who were assigned to create programs from scratch 
using the Gidget Puzzle Designer spent approximately the same 
amount of time on their pre-test and post-test exams, and did not 
show significant improvements in their post-test exam scores. In 
addition to these differences, we found that performance by 
demographics was consistent within all the conditions, meaning our 
learning activities had a similar impact regardless of gender, age, or 
level of education. 
These findings raise many questions for future work. How might 
creativity-oriented online learning environments such as Scratch 
better support learners? Is it really the case that creative 
environments need a teacher, or can they be designed to teach 
effectively without human teachers? How might these findings 
apply to other forms of discretionary computing education such as 
MOOCs that are modeled more like traditional classroom settings? 
With the rising interest in learning to program, and the proliferation 
of resources to do so, we believe that knowledge about the 
interaction between the design of these resources and engagement 
and learning will be essential for learner retention and effective 
pedagogy. 
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