
Personifying Programming Tool Feedback
Improves Novice Programmersʼ Learning

Michael J. Lee and Amy J. Ko
The Information School | DUB Group

University of Washington
{mjslee, ajko}@uw.edu

ABSTRACT
Many novice programmers view programming tools as all-
knowing, infallible authorities about what is right and wrong about
code. This misconception is particularly detrimental to beginners,
who may view the cold, terse, and often judgmental errors from
compilers as a sign of personal failure. It is possible, however, that
attributing this failure to the computer, rather than the learner, may
improve learners’ motivation to program. To test this hypothesis,
we present Gidget, a game where the eponymous robot protagonist
is cast as a fallible character that blames itself for not being able to
correctly write code to complete its missions. Players learn
programming by working with Gidget to debug its problematic
code. In a two-condition controlled experiment, we manipulated
Gidget’s level of personification in: communication style, sound
effects, and image. We tested our game with 116 self-described
novice programmers recruited on Amazon’s Mechanical Turk and
found that, when given the option to quit at any time, those in the
experimental condition (with a personable Gidget) completed
significantly more levels in a similar amount of time. Participants
in the control and experimental groups played the game for an
average time of 39.4 minutes (SD=34.3) and 50.1 minutes
(SD=42.6) respectively. These finding suggest that how
programming tool feedback is portrayed to learners can have a
significant impact on motivation to program and learning success.

Categories and Subject Descriptors
K.3.2 Computer Science Education: Introductory Programming,
D.2.5 Testing and Debugging.

General Terms
Design, Human Factors.

Keywords
Programming, Education, Personification, Motivation, Debugging

1. INTRODUCTION
For most beginners, the experience of writing computer programs is
characterized by a distinct sense of failure. The first line of code
beginners write often leads to unexpected behaviors, such as syntax
errors, runtime errors, or program output that the learner did not
intend. While all of these forms of feedback are essential to helping
a beginner understand what programs are and how computers
interpret them, the experience can be quite discouraging [28,29] and
emotional [25].
These findings have significant implications for computing
education. To many learners, error messages are not perceived as

actionable facts, but as evidence that they are incompetent and that
the computer is an all-knowing, infallible authority on what is right
and wrong [6]. Even in programming environments designed for
beginners such as Alice [24] and Scratch [35], where syntax errors
are impossible and most runtime errors are avoided by having the
runtime do something sensible rather than fail, the communication
between the learner and the computer is framed as one-way: the
computer does not express its interpretation of the code, it simply
acts upon it without explanation. These relationships between
learners and programming tools are more command-and-control
than collaboration.
And yet, how people perceive their relationship to a computer is a
critical determinant of not only their attitudes towards computers,
but also their performance in using them to accomplish tasks [27].
Moreover, studies have shown that people expect computers to
behave with the same social responses that people do [41]; for
example, automated systems that blame users for errors negatively
affect users’ performance and their attitudes toward computers [17].
If negative feedback from computers affects people’s performance
on conventional computer tasks, does programming tool feedback
also affect novice programmers motivation and learning success? To
investigate this question, we designed Gidget, a web-based
programming game in which the user helps a damaged robot correct
its faulty code completing its missions (which are expressed as test
cases). To investigate the role of feedback on learners’ motivation,
we designed two versions of the game, manipulating the robot’s
level of personification, changing communication style, sound
effects, and appearance. As seen in Figure 1, the control version of
the game used conventional, impersonal messages and appeared as a
faceless terminal; the experimental version used personified
language with personal pronouns, taking the blame for syntax and
runtime errors, and had a face. In each condition, the information
content conveyed through messages was the same. We then
recruited a total of 250 individuals from all over the world using
Amazon’s Mechanical Turk [1], with 116 of them meeting our
criteria as rank novice programmers. With this latter pool of
participants, we found that those in the experimental group finished
significantly more levels than those in the control group, meaning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICER’11, August 8–9, 2011, Providence, RI, USA.
Copyright 2011 ACM 978-1-4503-0829-8/11/08...$10.00.

Figure 1. Runtime error highlighted in the instruction pane
(rear), with corresponding error messages in the control

109 Most up-to-date version: 06/25/2021

they successfully used more commands in the programming
language. Participants in the control and experimental played the
game for an average time of 39.4 minutes (SD=34.3) and 50.1
minutes (SD=42.6), respectively. However, there was no
significant difference between conditions in the total time played,
nor the number of times an individual executed a version of their
code overall. Our findings also show that the experimental group
completed more levels in fewer program executions than the control
group, suggesting they were attending more to the steps of program
execution explained by the robot.
In the rest of this paper, we discuss prior work on feedback in
programming tools, detail our game and study design, and then
discuss our results and their implications on computing education.

2. RELATED WORK
The role of feedback and critique in learning has long been studied
in education [2,3,4,25,28,29,32,45]. For example, for some learners,
negative feedback is more than discouraging: it is an explicit
judgment of their abilities. Recent work in educational psychology
has found that learners’ sensitivity to critique have a strong
relationship to self-reported motivation, self-reported performance
levels in college courses, and avoidance of further opportunities to
receive critical feedback [2,32]. Other work has found that females
pay greater attention to the valence of critique (positive or negative)
and that they are more likely to view negative critique as indicative
of global ability on any task, rather than ability at a particular task
[45]. Moreover, research on self-efficacy shows that building
confidence at a skill requires not only success on tasks, but the sort
of success learners believe is due to their own perseverance and
creativity [3,4]. Dweck [14] has argued similarly that learners
develop self-theories of themselves, appearing to have either a fixed
mindset (where they believe intelligence is inborn) or a growth
mindset (where they believe that intelligence can improve with hard
work). All of these theories and findings appear to be at play in
learners’ first encounters with computer programming [29,39]. Our
work builds on these ideas, investigating how redirecting negative
feedback away from the learner and back to a personified computer
entity affects learning.
Our research follows a long tradition of efforts to create
programming environments for beginners [23]. Many of these
technologies have focused on increasing learner motivation by
incorporating new factors to entice learners to explore
computational activities. For example, Logo [44] and more recently
EToys [22] both created computational spaces for children to
explore music, language, and mathematics; Light-bot [31] pushed
players to take the robot’s point-of-view of the environment to
successfully navigate through levels; Playground [15] and LEGO
Mindstorms [37] had similar goals, enticing children with the
modeling and simulation of phenomena from the world or actually
enabling them to write programs that sense the world. These
approaches and others like them seek to entice learners with their
intrinsic curiosity about the world and its processes.
Other approaches have motivated children with opportunities for
self-expression. Play [48], My Make Believe Castle [34], Hands
[42], ToonTalk [19], Klik & Play [33], Stagecast [47], Toque [49]
and others all focus on enabling learners to create novel animations
and games. Similar efforts have been made at the college level with
projects such as Georgia Computes! [11] and Game2Learn [5],
which encourages students to create and test their own games.
Examples include Bug Bots [12] – a game where players attempt to
repair robots by dropping tiles into a flowchart representing a
computer program – and Virtual Bead Loom [8] – a game where
students are encouraged to learn looping functions to create bead
artwork instead of placing beads one at a time. Other systems that
have added to these self-expression goals the ability to share the

content one has created. For example, MOOSE Crossing invites
learners to create characters and spaces in a virtual, multi-user text-
based world [10]; more recently, Storytelling Alice [24] and Scratch
[35] have focused on enabling learners to tell and share stories.
Kelleher et al. [24] were one of the first to demonstrate that
opportunities and affordances for storytelling can significantly
improve learners’ motivation to program. Our work follows these
traditions, but provides learners with the story, allowing them to
contribute to its progress by interacting with a character in a game.
While all of the systems discussed thus far aimed to increase
motivation, several systems have aimed to lower demotivating
factors in programming tools. Such approaches include simplifying
the textual programming language syntax [10,43], designing
languages that mimic how children describe program behavior [42],
preventing syntax errors entirely by designing program construction
interfaces that use drag and drop interactions (e.g., [7,22,35]) or
form filling [33,34,47] rather than text. Others have attempted to
simplify the debugging of programs by enabling learners to select
“why” questions about program output [28,30]. Our research
follows the same vein as these projects, aiming to mitigate factors
inherent to programming that would diminish motivation by
changing the programming environment. However, in contrast to
prior work, our work will not add new capabilities to the
programming environment, but rather changes how the existing
capabilities of tools relate to the learner through the delivery and
presentation of feedback and suggestions.
Given practice, novice programmers develop strategies to
effectively understand unfamiliar code [16,18,21]. Working with a
partner often affords the benefit of having working off each others’
strengths and splitting up the work accordingly. Research exploring
the effectiveness of pair-programming in introductory courses have
shown that there are significant benefits for both teammates [9,36]
and individuals [9]. This work has been extended to pair-debugging
for novice programmers by Murphy et al., who report that
interactive pairs often attempt more problems, and that critical pairs
who reflected on their work often were more likely to successfully
identify and resolve bugs [38]. Similarly, recent work has
demonstrated that (cognitive) apprenticeship, where beginners are
given regular feedback by experts, yields a higher retention rate of
students in a beginner computer science course [50].
Our research builds on the ideas from these studies by having the
learner and computer game character co-create the code that will
accomplish the game goals. Previous studies have found that by
simply telling participants that they were on the same team as a
computer and representing this with armbands of the same color,
participants showed greater affinity towards computers, being more
willing to cooperate with it, conform to it suggestions, and assess
the computer as more friendly and intelligent than computers on an
opposing team [40]. Our work will shed new insight on how
changing the role of the computer from an authoritative figure to a
collaborator needing assistance will affect learner motivation.

3. METHOD
The goal of our study was to investigate the role of programming
tool feedback on learners’ motivation to program. To do this, we
designed the programming game Gidget, shown in Figure 2, which
asked learners to help a damaged robot fix its faulty programs, in
order to accomplish its missions. Our study had two conditions –
control and experimental – manipulating the personification of the
robot protagonist, Gidget. By personifying Gidget, we aimed to
increase the agency of the character, adding human-like qualities to
an otherwise cold and emotionless entity. In the control condition,
Gidget was represented as a faceless terminal screen that provided
terse, impersonal feedback in response to commands and error
messages (Figure 1). In contrast, the experimental condition

110

represented Gidget as an emotive robot that included the use of
personal pronouns such as “I” in the feedback, coupled with facial
expressions corresponding to the runtime error state of the program.
Participants were recruited on Amazon Mechanical Turk and offered
40¢ for completing the first level and 10¢ for each additional level
completed. The total bonus and the levels completed were displayed
in the upper right corner of the interface, along with a button giving
the participants the option to quit at any time (Figure 2). The key
dependent variable in our study was levels completed as a measure
of learners’ motivation to program.
Our null hypothesis was:
H0:	
 There	
 is	
 no	
 difference	
 in	
 levels	
 completed	
 between	
 the	
 control	

condi4on,	
 using	
 conven4onal,	
 emo4onless	
 feedback	
 and	
 the	

experimental	
 condi4on,	
 using	
 personified	
 feedback.

In the rest of this section, we describe the game in more detail and
discuss the experiment designed to test this hypothesis.

3.1 The Game
Our online game, called Gidget (shown in Figure 2), is an HTML5
and JavaScript application using jQuery. The game was tested for
compatibility on MacOS X, Windows 7, and Ubuntu Linux 10 using
Apple Safari 5, Mozilla Firefox 3.6 & 4.0, and Google Chrome 10
(we could not support Internet Explorer because it lacked the
contentEditable attribute, which was used to implement the editor).
In the game, learners are guided through a sequence of levels that
teach the design and analysis of basic algorithms in a simple
imperative language designed specifically for the game. When
players begin, they are told a story that motivates the game: there
has been a chemical spill in a small town that has caused all the
locals to evacuate and is threatening the local wildlife. The only
thing that can safely protect the animals and clean the spill is a small
robot capable of identifying and solving problems. Unfortunately,
the robot was damaged during transportation, and now struggles to
complete its missions, generating programs that almost solve the
problems, but not quite. It is up to the learner to help the robot by
figuring out and fixing the problematic code it generates. In this
sense, the learner and the robot are a team, working together to save
animals, clean up the spill, and ultimately shut down the hazardous
chemical factory.
The primary activity in the game is to learn how to communicate
with the robot via commands to help it accomplish a series of goals.
The levels, goals, language, and user interface, however, were

designed to teach specific aspects of algorithm
design. The first 9 levels focus on teaching the 7
basic commands in the robot’s syntax grammar and
variations on how they can be written, each
containing some invalid syntax that the learners
must understand and correct. The subsequent 9
levels teach useful design patterns for composing
these commands to achieve more powerful
behaviors, each containing some semantic error in
the ordering of the composite command sequences.
In each level, one or more goals (Figure 2.2) are
specified in terms of executable tests.
Table 1 explains Gidget’s 7 commands. Learners
were able to access a similar syntax reference as
Table 1, but without the explanations, through the ?
button at the top right of the editor. Each of the 7
commands could be followed by a ‘,’ and
subsequent command, allowing Gidget to iterate
over a set of things with a given name. For
example, if there were multiple kittens in Figure 2,
the command “goto kitten, grab it” would
iteratively go to each kitten, grab the kitten, and

then go to the next kitten. The ‘focus’ stack in Figure 2.5 determines
how the keyword ‘it’ is resolved; the ‘results’ stack in Figure 2.5
tracks matching names for each command.
In the game, Gidget programs are primarily capable of findings
things in the ‘world’ (Figure 2.6), going to them, checking their
properties, and moving them to other places on the grid. In some
cases, objects have their own abilities, which Gidget can invoke like
a function. After each execution step, the effect of these commands
are shown in the ‘memory’ pane (Figure 2.5) and explained by
Gidget (Figure 2.4) to reinforce the semantics of each command.
Each step also costs Gidget 1 unit of ‘energy’ (displayed at the top
of Figure 2.5), forcing learners’ to carefully consider how to write
their code to complete each level within the allotted number of
energy units.
In each condition, the robot is detailed in its interpretation of each
command in its program. Not only does it explain what action it is
taking in each step (Figure 3) and visualize these changes to the data
structures it maintains in memory (Figure 2.5) to support its

Figure 2. Gidget, shown here in its experimental condition, where learners help a
damaged robot fix its programs.

Table 1. Gidget command syntax and semantics.

scan thing
Enables Gidget to goto all things with name thing. Scanned things
are added to the set named scanned in Gidget’s memory.

goto thing1 [avoid thing2]
Moves Gidget to all of the things matching the name thing1, one
square at a time If a thing to avoid is given, for each step that
Gidget takes, he attempts to find a path that stays at least 1 square
away from things with the name thing2.

analyze thing
Enables Gidget to ask all things with name thing to perform an
action. Analyzed things are added to the set named analyzed in
Gidget’s memory.

ask thing to action thing *
Causes thing to perform action, if action is defined. Zero or more
things are passed as arguments. Gidget’s execution is suspended
until the thing asked has completed requested action.

grab thing
Adds all things with name thing to the set named grabbed in
Gidget’s memory, removing them from the grid and constraining
their location to Gidget’s location.

drop thing
Removes all things with name thing in that were previously grabbed
from the set grabbed set.

if thing is[n't] aspect, command
For each thing with name thing that has been analyzed, execute the
specified command if that thing contains an aspect of name aspect.

111

execution, but when it arrives at a command that it does not
recognize or a command with missing information, it explicitly
highlights this missing information and explains to the learner what
interpretation it is going to make of the ambiguous command before
proceeding (Figure 1). Moreover, in the case of parsing errors, the
system opens up a syntax guide mentioned previously, highlighting
the syntax rule that Gidget guessed was being used.
To aid the players with debugging, we implemented four execution
controls for the code: one step, one line, all steps, and to end (Figure
5). The one step button evaluates one compiled instruction in the
code, just like a breakpoint debugger does, but also displaying text
describing the execution of the step (Figure 3). The one line button
evaluates all steps contained on one line of the code, jumping the
the final output of that line immediately. The all steps button
evaluates the entire program and the goals in one button press, but
animates each step. The to end button does the same as all steps, but
does not animate anything.

3.1.2 Control vs. Experimental Condition
Personification of the robot’s appearance was a key manipulation in
our experiment. In the control condition, Gidget was designed to be
a cold, emotionless computer terminal – something that the player
would feel minimal emotional attachment towards. In contrast, in
the experimental condition, Gidget was designed to be more human-
like – a cute, unconfident robot with changing facial expressions
based on the success of its execution. In the control condition,
Gidget had two distinct states: an error/fail state that was shown
during any syntax or runtime error, and a neutral state that was
shown otherwise (Figure 4). The error state, with its large, jarring
stop icon, attempts to capture the style common to compiler error
messages. In contrast, the experimental condition had three distinct
states for Gidget: an error/fail state that was shown during any kind
of error, a success state that was displayed when a goal was
completed, and a neutral state that was shown otherwise (Figure 4).
These facial expressions were specifically designed to make Gidget
more human-like and add affect to its messages throughout the
game (Figure 3).
In both conditions, Gidget was designed to be verbose to help
players know what was going on with the code during execution.
The messages in the control condition were terse, actionable facts
about the program state, presented in conventional fixed-width
Courier New font. The text in the experimental condition contained
the exact same information, using the softer, sans-serif Verdana font
(Figure 3), but was personified in three specific ways. We started
with the control text, then followed one or more of these rules: use a

personal pronoun (e.g. “I,” “you”), admit failure (e.g. “I don’t know
this command”), and express affect (via exclamation points and
emoticons). Examples include:
Control:	
 	
 “Unknown	
 command,	
 so	
 skipping	
 to	
 next	
 step.”
Experimental:	
 “I	
 don’t	
 know	
 what	
 this	
 is,	
 so	
 I’ll	
 just	
 go	
 on	
 to	
 the	
 next	

step.”

Control:	
 “Dropped	
 cat.	
 Removing	
 from	
 memory	
 banks.”
Experimental:	
 “I	
 dropped	
 the	
 cat.	
 I’ll	
 remove	
 it	
 from	
 my	
 memory.”

Control:	
 “ERROR:	
 Nothing	
 to	
 ask	
 by	
 that	
 name.”
Experimental:	
 “Hmm...	
 I	
 couldn’t	
 find	
 anything	
 to	
 ask	
 by	
 that	
 name.”

The dialogue pane between Gidget and the player exhibit another
major difference between the two conditions. In the control
condition, the player is portrayed as a satellite dish (Figure 5) to
signify that there is a large physical distance between the learner and
robot, requiring radio communication. In the experimental
condition, players are given the choice between three avatars
(Figure 5) to represent themselves. This image is used in place of
the satellite dish from the control condition, signifying that there is
closeness and teamwork between Gidget and the player.
Next, the shape of the communication text boxes are different
between the two conditions (as seen in Figure 3). The control
condition was designed to look visually cold and direct. In contrast,
the experimental condition used comic speech-bubbles for both
Gidget and the player with the intention of having the exchange
look like a conversation (Figure 3). These themes were extended to
other parts of the interface, where the control condition’s interface
boxes have shaper curves than their experimental condition
counterparts, which have larger, rounded corners.
Furthermore, there were labeling differences between conditions.
First, level titles in the experimental condition were composed of
the control conditions' level name with the addition of “Gidget” to
add agency. For example, level 1 was titled “Testing Scanner” or
“Testing Gidget’s Scanner,” and level 5 was titled “Utilizing Special
Items” or “Using Special Items with Gidget.” In the same manner,
the memory pane was labeled “Memory banks” in the control
condition, and “Gidget’s memory” in the experimental condition.
Finally, sound effects were played in both conditions when Gidget
performed an action or when a major event, such as Gidget running
out of energy or Gidget not completing his goals, occurred. They
were designed to supplement the text and provide additional depth
to the world as Gidget moved through it (Figure 2.6). All sound
effects were identical between conditions, except the general error
and parser error sounds, which were manipulated to evoke different
feelings. Errors in the control condition used sounds similar to those
heard in operating systems when a critical error occurs. In contrast,
errors in the experimental condition used sounds to attract players’
attention without making it seem like the computer was “yelling.”
These sounds were deliberately chosen to add or subtract from the
personification between the two conditions.

Figure 3. The two communication styles used to express
either a positive or neutral affect. Positive affect is conveyed

through the robot’s facial expressions.

Figure 5. Communications pane representing the user in the
control (top) and experimental (bottom) conditions. Players in
the experimental condition are given the option to choose an

avatar to represent themselves when they start the game.
Figure 4. Representations of Gidget based on its game

condition - control (left), and experimental (right) - and state.

112

3.2 Recruitment
Previous studies have shown effects due to giving computers
personality traits in adult populations of varying ages [17,40,41].
We focused on replicating these studies in programming tools for
adults of a similar age range. To recruit these individuals, we used
Amazon.com’s Mechanical Turk, an online marketplace where
individuals can receive micro-payments for doing small tasks called
Human Intelligence Tests (HITs). It is an attractive platform for
researchers because it provides quick, easy access to a large
workforce willing to receive a small monetary compensation for
their time [46]. Since workers are sampled from all over the globe,
Mechanical Turk studies have the benefit of generalizing to varied
populations more than samples from limited geographic diversity
that are more common in traditional recruiting methods [26].
However, due to the nature of the low monetary compensation and
anonymity of the workers, careful consideration has to be taken to
ensure that participants are not “gaming the system” [13,26]. To
address this, we required that participants complete at least one level
to receive credit for the HIT, ensuring that they actually had to
interact with Gidget and the code before being allowed to quit.

3.3 Pricing & Validation
Since our game had a total of 18 levels, we decided that we would
compensate our participants with a base rate and a nominal bonus
payment for each level they completed. Previous studies have found
that higher payment does not necessarily equate to better results
[20], so we wanted to calibrate our payments to established market
prices. To do this, we observed Mechanical Turk HITs tagged
“game” for a period of 14 days. These HITs were further filtered to
include only those that had an actual gameplay element as the main
component as opposed to tasks such as writing reviews for third-
party games. From these HIT descriptions, we constructed a list of
‘reward’ and ‘time allotted’ values, along with any explicit bonus
payments mentioned. Our goal was to set a base reward that was
high enough to attract participants, but also as low as possible to
minimize participants’ sense of obligation to spend time on our HIT.
Likewise, we wanted our bonus payment per stage to have a
minimal factor on participants’ decision to continue the game.
Based on our data, we determined our optimal base reward as 30¢
for starting the HIT, and an additional 10¢ for each level completed.
To ensure participants actually tried the game, we required that they
complete at least one level to get paid. This meant the minimum
compensation any participant received was 40¢. Participants were
not informed of the total number of levels, eliminating this factor
from their decisions to continue playing the game. Finally, we
deliberately avoided mentioning anything about programming in the
HIT description and tags to prevent people from self-selecting out of
the HIT because of its association with programming. However,
since the HIT description included the words “game” and “robot,”
we may have introduced some gender-biased self-selection effects.
To further validate our pricing model and detect defects and
usability problems in the game, we conducted a pilot test on
Mechanical Turk with 12 paid participants. In addition, an informal,
4-participant, lab study was conducted to gather information that we
could not capture from Mechanical Turk. In this lab study,
participants were asked to think-aloud while playing the game to
test the clarity of the instructions and observe any problems they
had with the interface. Observational study participants were
volunteers and were not compensated for their time.
The pilot study results verified that participants were willing to
complete levels and that the system functioned as-intended overall.
Based on the data we received, we clarified some of the post-game
survey questions and fixed several minor defects. We also set the
ceiling for submission time to 3 hours to make the HIT less

intimidating, as setting it too
high could be misinterpreted
by potential participants as
the task being overly
difficult. The observational
study surfaced unclear
instructions, confusing
interface elements, defects,
and usability problems in
the game. Based on this
information, we improved
the text and interface elements, running another pilot to ensure that
the usability and clarity of the game had improved.

3.4 The Participants
On game load, each participant was randomly assigned one of two
conditions: control or experimental. This information, along with
their current state in the game were logged on the client-side to
ensure participants would not be exposed to the other condition,
even if they refreshed their browser. Once a participant chose to
quit, they were given a post-survey and a unique code to receive
payment for their submission. The survey was designed to get
demographic information (e.g. gender, age, education, country),
identify prior programming experience, and solicit feedback and
attitudes about the game. In addition to the survey responses, we
automatically collected the following information from each
participant upon quitting: the number of levels completed; time
stamps for level start, level complete, quit, and any execution button
invocations;, all character-level edits to each level’s program,
execution button presses, game condition, choice of user avatar (if
in the experimental group), and payment code.
We defined “novice programmers” as participants who reported in
the survey that they have never had: 1) “taken a programming
course,” 2) “written a computer program,” or 3) “contributed code
towards the development of a computer program.” This information
was cross-validated with an additional question later in the survey
that asked them to rate their agreement with the statement, “I
identify myself as a beginner/novice programmer.”
Because we deliberately chose not to mention anything about
programming in our HIT description, we were not able to control
for a specific target audience. Therefore, we recruited a large sample
of 250 participants from Mechanical Turk, with 116 meeting our
criteria as being novice programmers.
Since the scope of this paper is how personification of the computer
and its feedback affects novice programmers, these 116 participants
are the primary focus of our analysis. This was a balanced, between-
subjects design with 58 participants in each condition. Demographic
data revealed that there that participants from the control and
experimental conditions were well proportioned, with no significant
differences between groups by gender, age, or education. There
were a total of 50 females and 66 males with a mean age of 27.5
(SD=8), ranging from 18 to 59 years old. As shown in Figure 6,
participants were spread across 24 countries, with most participants
coming from the USA (27.6%) followed closely by India (22.4%).
About 13.8% of participants were the lone representatives of their
respective countries. Many did not provide geographical data
(24.1%). Consistent with other Mechanical Turk study
demographics, our sample of novice programmers were well-
educated [13,26], answering that their highest level of education
achieved was: less than high school (<1%), high school (13%),
some college (23%), an associates degree (3%), a bachelor’s degree
(38%), a masters degree (14%), or a doctoral degree (6%).

Figure 6. Geographical
distribution of the 116 novice
programmers in our study,

spanning 24 countries.

113

4. RESULTS
In this section, we provide quantitative evidence for a number of
patterns based primarily on the 116 logs and survey responses
collected from the participants identified as novice programmers.
Our dependent measures were not normally distributed so non-
parametric tests were used for analyses. Our level of confidence was
set at α=0.05.

4.1 Difference in Levels Completed
The minimum and maximum number of levels completed for both
conditions were the same, at 1 and 15, respectively. The median
number of levels completed for the control and experimental
conditions were 2 and 5, respectively. There was a significant
difference in the number of levels participants completed between
the two conditions (Wilcoxon rank sums: W=3803, Z=2.3, N=116,
p<.05) – meaning that we reject our null hypothesis.
The distribution of ‘levels completed’ (Figure 7) shows that a large
number of participants from both groups quit the game after
completing the first level. This was particularly true for those in the
control group, who lost 41.3% of their members in contrast to the
29.3% lost by the experimental group. The large drop off in the
sixth level for both conditions will be addressed in the discussion
section, below. Since all participants were classified as novice
programmers and there was no statistical difference in
demographics, this suggests that our personification of Gidget in the
experimental condition had a positive effect on participants’
motivation to play.

Figure 7. Histogram of levels completed for each condition.

4.2 No Difference in Play Time
The minimum time spent playing the game for the control and
experimental condition was 5.4 minutes and 8.4 minutes,
respectively. The maximum time spent playing the game was 2.81
hours and 2.97 hours respectively. The median overall play time for
the control and experimental conditions were 27.1 minutes and 35
minutes, respectively. There was no significant difference in the
length of time participants in either condition played the game
overall (W=3689.5, Z=1.6, N=116, n.s.).
Since the previous result showed that the experimental group
completed more levels than the control group, we checked to see if
participants in either group were spending more time per individual
level. To do this, we calculated the median time each participant
took to complete the levels they attempted, and then compared the
two resulting distributions of medians. We found that there was no
significant difference in the median time to successfully complete
levels between conditions (W=3407.5, Z=0.08, N=116, n.s.).
Likewise, there was no significant difference in the time participants
spent on the level they attempted, but did not complete (W=3387.5,
Z=-0.03, N=116, n.s.).
The difference in levels completed, but the lack of significant
difference in playing time suggests that those in the experimental
condition learned commands (i.e., by completing more levels) more
efficiently. This suggests that something in our manipulation caused
the experimental condition participants to better understand and use

the commands to fix Gidget’s problematic code. We address
possible explanations for this in our discussion.

4.3 No Difference in Execution
There were no significant differences in how frequently the
participants used the four execution control buttons overall (one
step: W=3693.5, Z=1.7, n.s., one line: W=3532, Z=0.8, n.s., all
steps: W=3488, Z=0.5, n.s., to end: W=3740, Z=1.9, n.s.; N=116).
Since we found previously that the experimental group completed
more levels than the control group, we checked to see if there was a
difference between the conditions for the number of code executions
used per individual level. To do this, we calculated the median
number of code executions each participant used to complete the
levels they attempted, and then compared the two resulting
distributions of medians. This was repeated for each execution
button. We found that there were no significant differences in the
median number of code executions for completed levels by
condition (one step: W=3293, Z=-0.5, n.s., all steps: W=3061.5,
Z=-1.9, n.s., to end: W=3305.5, Z=-0.5, n.s.; N=116). However, we
found that the use of one line was significantly different: W=2987.5,
Z=-2.3, N=116, p<.05. On closer inspection of the data, we found
that this difference was due to participants in the control condition
using a higher (median) number of one line code executions. This
means that participants in the control condition were running their
code line-by-line, but skipping some of the finer details provided by
the one step execution.
Finally, we checked both conditions to see if there was a difference
in the raw number of code executions for levels the participants
attempted but did not complete. We found that there were no
significant differences between conditions in the number of code
executions for levels that participants attempted but did not
complete (one step: W=3339.5, Z=-0.3, n.s., one line: W=3310,
Z=-0.5, n.s., all steps: W=3303.5, Z=-0.5, n.s., to end: W=3483,
Z=0.5, n.s.; N=116). Since participants quit on different levels of
varying difficulty, this suggests that those from both conditions put
approximately the same amount of effort into testing and executing
their code before deciding to give up, independent of the level they
were playing.

4.4 Differences in Survey Feedback
There was no significant difference in participants’ self-reported
level of enjoyment playing the game between the two conditions
(W=3117, Z=-1.1, N=116, n.s.). Likewise, there was no significant
difference in participants’ reporting whether they would recommend
the game to a friend wanting to learn programming (W=3629.5,
Z=1.4, N=116, n.s.). These results are consistent with reports by
Nass et. al, who found that participants did not attribute success or
enjoyment of an activity to changes in their performance [40].
There was, however, a significant difference in participants’
reporting that they wanted to help Gidget succeed (W=3901, Z=3.1,
N=116, p<.01). Participants in the experimental condition were
significantly more likely than those in the control condition to agree
to the statement, “I wanted to help Gidget succeed.”

4.5 Comparison to Experienced Programmers
To contrast our reported findings, we briefly present data from
participants who did not qualify as novice programmers. These were
the participants who reported in the survey that they have: 1) taken
a programming course, 2) written a computer program, or 3)
contributed code towards the development of a computer program.
After trimming data that was unusable due to data transmission
errors, we had 120 participants with prior programming experience,
61 in the control condition, and 59 in the experimental condition.

114

This experienced group completed a wider range of levels in both
conditions, with the median number of levels completed for the
control and experimental conditions being 5 and 4, respectively.
However, unlike our major finding from the novice group, there was
not a significant difference in the number of levels completed
between the two conditions in the experienced group (W=3392.5,
Z=-0.9, N=120, n.s.). Likewise, there was no significant difference
in the overall play time between conditions (W=3376, Z=-1.0,
N=120, n.s.).
Like the novice programmers, there was no significant difference in
experienced participants’ self-reported level of enjoyment playing
the game between the two conditions or whether they would
recommend the game to a friend. In addition, unlike the novice
programmers, the experienced participants did not show a
significant difference in wanting to help Gidget succeed (W=3624,
Z=0.3, N=120, n.s.).
Finally, there were no significant differences in how frequently the
participants used three of the four execution control buttons overall
(one step: W=3256.5, Z=-1.6, n.s., one line: W=3398.5, Z=-0.9, n.s.,
all steps: W=3751, Z=0.9, n.s.; N=120). However, there was a
significant difference in the number of code executions for to end:
W=3139, Z=-2.2, N=120, p<.05, where participants in the control
condition used the button more frequently than those in the
experimental condition. This suggests that the experienced
programmers attempted to treat the game more as a traditional edit-
compile-run cycle, rather than debugging the program step-by-step.

5. DISCUSSION
Our findings demonstrate that more personified programming tool
feedback can increase novice programmers’ motivation to program.
More specifically, we have shown that casting the computer as a
verbose but naïve and unconfident teammate that blames itself for
errors has demonstrated to have a positive effect on novice learners’
performance in learning a simple textual programming language.
We also found that novice programmers exposed to this unconfident
teammate were more likely to report that they wanted to help it.
These results, combined with the lack of a significant difference in
median time spent on levels or execution of the program, suggests
that the experimental group was likely making better use of the
information provided by the robot than the control group. One
possible explanation for this is that by personifying the feedback
provided by the programming environment, experimental group
participants were more likely to attend to the information content in
the messages, and thus more likely to understand the program
semantics. This is supported by our finding that the control group
participants were significantly more likely to use the “one line”
execution control, skipping over many (but not all) of the robot’s
messages. Another interpretation is that both groups attended to the
messages similarly, but the phrasing led the experimental group
participants to somehow process the information more deeply, by
framing it as human rather than computer. Future studies should
explore these possible interpretations, isolating the effect of
personification on attention to feedback.
Although our results suggest that our manipulation increased
success on learning, we did not find that participants were willing to
spend more time playing the game. This may be due to the
unconstrained nature of Mechanical Turk tasks, which provide no
additional extrinsic incentives to continue; it may also be due to
difficulties that learners encountered in particular levels of the
game. This was particularly true of level 6, where there was a major
drop off of participants in both conditions (Figure 7). This level
introduced conditional statements, suggesting that it is an inherently
difficult concept for novice programmers to comprehend. More
work needs to be done to uncover how feedback tool personification

affects other aspects of motivation such as wanting to continue to
work on a problem after multiple failures on a single level.
Our analysis of the performance of experienced programmers also
suggests that the motivation and learning effects due to
personification may diminish with experience. It is likely that the
experienced programmers playing the game quickly learned the
semantics of the language and did not need to read the feedback
provided by the programming tool in order to complete each level.

5.1 Threats to Validity
Our study has a number of limitations that limit its generalizability.
First, Mechanical Turk allows participants to self-select into HITs
given that they meet certain qualifications. Our HIT did not require
any special qualifications and used the default setting from Amazon.
Although we tried to account for factors that would affect the HITs
listing on Amazon’s HIT page, those who filtered for higher-paying
HITs would be less likely to find our HIT, whereas those filtering
for a tag labeled “game” would be more likely to find our HIT.
Also, the game was accessible by computer, connected to the
Internet, listed on a website requiring login. Although not directly
translatable to programming ability, gaining access to the game
requires a fair amount of computer knowledge. As our demographic
data indicated, our participants were well-educated, with 86% of
them reporting that they had some college education or beyond.
Finally, though small, there was an economic incentive for
participants to participate in the study. Moreover, they would
receive a bonus payment for levels they completed. Since these
economic incentives would not exist in a place like a classroom, it is
unclear how or findings would generalize to other extrinsically
motivated learning contexts. For instance, Mechanical Turk turk
users have a choice of which tasks to engage in; students in a
classroom often do not.

6. CONCLUSIONS & FUTURE WORK
We have presented Gidget, a game intended for novice
programmers who are tasked with helping a damaged robot
complete its missions by debugging its defective code. By
personifying the robot – characterizing it as fallible, having it
convey information about coding errors conversationally, and
having it take the blame for mistakes – we have found that novice
programmers complete more game levels than learners who
received more conventional feedback, in a comparable amount of
time. Given our results, we conclude that personifying the computer
and making it less authoritative has many immediate motivational
and learning benefits for novices wanting to learn how to program.
Our results also suggest several directions for future work. We want
to further refine our gameplay elements to better understand exactly
which specific manipulations accounted for the experimental
group’s players to complete more levels in the same amount of time.
For example, were they were more attentive to Gidget’s personified
text, or was Gidget’s face? Adding more instructional content or
altering the economic incentive (from Mechanical Turk) may also
yield additional insights. We also want to explore the effectiveness
of Gidget in introductory programming courses to see if our results
hold with students in a classroom setting. If these findings can be
replicated in other learning contexts, they may have a significant
effect on how feedback is provided to learners in a wide range of
computing education contexts.

7. ACKNOWLEDGEMENTS
We would like to thank the second author’s daughter, Ellen Ko, for
her extensive input on game dynamics and level design. This
material is based in part upon work supported by the National
Science Foundation under Grant Number CCF-0952733.

115

8. REFERENCES
1. Amazon Mechanical Turk. http://www.mturk.com
2. Atlas, G.D., Taggart, T., & Goodell D.J. (2004). The effects of

sensitivity to criticism on motivation and performance in
music students, British J. of Music Ed., 21(1), 81-87.

3. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of
behavioral change. Psychological Review, 84: 191-215.

4. Bandura, A. (1986). Social foundations of thought and action:
A social cognitive theory, Englewood Cliffs, NJ: Prentice-Hall.

5. Barnes, T., Richter, H., Powell, E., Chaffin, A., & Godwin, A.
(2007). Game2Learn: building CS1 learning games for
retention. ITiCSE, 121-225.

6. Beckwith, L., Burnett, M., & Cook, C., (2002). Reasoning
about Many-to-Many Requirement Relationships in
Spreadsheet Grids, IEEE VL/HCC, 149.

7. Begel, A. (1996). LogoBlocks: A Graphical Programming
Language for Interacting with the World. EECS, MIT.

8. Boyce, A., & Barnes, T. (2010). BeadLoom Game: Using
Game Elements to Increase Motivation and Learning. FDG,
25-31.

9. Braught, G., Eby, L.M., & Wahls, T. (2008). The effects of
pair-programming on individual programming skill. SIGCSE,
200-204.

10. Bruckman, A. (1997). MOOSE Crossing: Construction,
Community, and Learning in a Networked Virtual World for
Kids. MIT Media Lab. Boston, MA.

11. Bruckman, A., Biggers, M., Ericson, B., McKlin, T., Dimond,
J., DiSalvo, B., Hewner, M., Ni, L., & Yardi, S. (2009).
Georgia Computes!: Improving the Computing Education
Pipeline. SIGCSE, 86-89.

12. Chaffin, A., & Barnes. T (2010). Lessons from a course on
serious games research and prototyping. FDG, 32-39.

13. Downs, JS., Holbrook, MB, Sheng, S., & Cranor, L.F. (2010).
Are your participants gaming the system?: screening
mechanical turk workers. ACM CHI, 2399-2402.

14. Dweck, C. S. (1999). Self-Theories: Their role in motivation,
personality, and development. The Psychology Press.

15. Fenton, J. and Beck, K. (1989). Playground: An Object
Oriented Simulation System with Agent Rules for Children of
All Ages. ACM OOPSLA, 123-137.

16. Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L.,
Simon, B., Thomas, L. and Zander, C., (2008) Debugging:
finding, fixing, and flailing, a multi-institutional study of
novice debuggers. Computer Science Education. v18. 93-116

17. Fogg, B. J., & Nass, C. (1997). How users reciprocate to
computers: an experiment that demonstrates behavior change.
ACM CHI, 331-332.

18. Gross, P. and Kelleher, C., (2010). Non-programmers
identifying functionality in unfamiliar code: strategies and
barriers. JVLC 21, 5, 263-276.

19. Harel, I. Children Designers. (1991) Ablex Publishing, N.J.
20. Hsieh, G., Kraut, RE, & Hudson, SE. (2010). Why pay?:

exploring how financial incentives are used for question &
answer. ACM CHI, 305-314.

21. Jeffries, R. (1982). A comparison of the debugging behavior of
expert and novice programmers. AERA Annual Meeting.

22. Kay, A., Etoys and Simstories. http://www.squeakland.org
23. Kelleher, C. and Pausch, R. (2005). Lowering the barriers to

programming: A taxonomy of programming environments and
languages for novice programmers. ACM CSUR, 37(2),83-137.

24. Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling
Alice Motivates Middle School Girls to Learn Computer
Programming. ACM CHI, 1455-1464.

25. Kinnunen, P., & Simon, B. (2010). Experiencing programming
assignments in CS1: the emotional toll. ICER, 77-86.

26. Kittur, A., Chi, E.H., & Suh, BW. (2008). Crowdsourcing user
studies with Mechanical Turk. ACM CHI, 453-456.

27. Klein, J., Moon, Y., Picard, R.W. (1999). This computer
responds to user frustration. ACM CHI, 242–243.

28. Ko, A. J., Myers, B. A., & Aung, H. (2004). Six Learning
Barriers in End-User Programming Systems. IEEE VL/HCC,
199-206.

29. Ko, A. J. & Myers B.A. (2009). Attitudes and Self-Efficacy in
Young Adults' Computing Autobiographies. IEEE VL/HCC,
67-74.

30. Kulesza, A. (2009). Approximate learning for structured
prediction problems. UPenn WPE-II Report.

31. Light-Bot. http://armorgames.com/play/2205/light-bot
32. Linderbaum, B. (2006) The Development and Validation of the

Feedback Orientation Scale. J. of Management, 1372-1405.
33. Lionet, F., & Lamoureux, Y., Klik and Play, Maxis, 1994.
34. Logo Computer Systems, Inc., My Make Believe Castle, 1995.
35. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond,

E. (2010). The Scratch Programming Language and
Environment. ACM TOCE.

36. McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002).
The effects of pair-programming on performance in an
introductory programming course. SIGCSE, 38–42.

37. MindStorms. http://www.mindstorms.lego.com
38. Murphy, L., Fitzgerald, S., Hanks, B., & McCauley, R. (2010)

Pair debugging: a transactive discourse analysis. ICER, 51-58.
39. Murphy, L. and Thomas, L. (2008). Dangers of a fixed

mindset: Implications of self-theories research for computer
science education. ITiCSE, 271-275.

40. Nass, C., Fogg, B.J., & Moon, Y. (1996). Can computers be
teammates? International J. of Human-Computer Studies, 45,
669-678.

41. Nass, C. (2000). Machines and Mindlessness: Social
Responses to Computers. J. of Social Issues, 56, 81-103.

42. Pane, J. Myers, B.A., & Miller, L.B. (2002). Using HCI
Techniques to Design a More Usable Programming System.
IEEE VL/HCC, 198-206.

43. Papert, S. Mindstorms: Children, Computers, and Powerful
Ideas. Basic Books New York, NY.

44. Resnick, M., Martin, F., Sargent, R., & Silverman, B. (1996).
Programmable Bricks: Toys to Think With. IBM Systems J.,
vol. 35, no. 3-4, 443-452.

45. Roberts, T.A. (1991). Gender and the influence of evaluations
on self-assessments in achievement settings. Psychological
Bulletin, vol. 109(2), 297-308.

46. Ross, J., Irani, I., Silberman, M. Six, Zaldivar, A., &
Tomlinson, B. (2010). Who are the Crowdworkers?: Shifting
Demographics in Amazon Mechanical Turk. ACM CHI,
2863-2872.

47. Smith, D., Cypher, A., & Tesler, L. (2002). Programming by
example: novice programming comes of age. CACM, 75-81.

48. Tanimoto, S., & Runyan, M. (1986). Play: an iconic
programming system for children. Visual Programming
Environments, 367-377.

49. Tarkan, S., Sazawal, V., Druin, A., Golub, E., Bonsignore,
E.M., Walsh, G., & Atrash, Z. (2010). Toque: designing a
cooking-based programming language for and with children.
ACM CHI, 2417-2426.

50. Vihavainen, A., Paksula, M., & Luukkainen, M. (2011).
Extreme apprenticeship method in teaching programming for
beginners. SIGCSE, 93-98.

116

http://www.mturk.com
http://www.mturk.com
http://www.squeakland.org/author/etoys.html
http://www.squeakland.org/author/etoys.html
http://armorgames.com/play/2205/light-bot
http://armorgames.com/play/2205/light-bot
http://www.mindstorms.lego.com
http://www.mindstorms.lego.com

