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ABSTRACT
Many novice programmers view programming tools as all-
knowing, infallible authorities about  what is  right and wrong about 
code. This  misconception is particularly  detrimental to beginners, 
who may view the cold, terse, and  often judgmental errors from 
compilers as a sign  of personal failure. It is  possible, however, that 
attributing this failure to  the computer, rather than the learner, may 
improve learners’  motivation to program. To test this  hypothesis, 
we present Gidget, a game where the eponymous robot protagonist 
is  cast as a fallible character that blames itself for not being able to 
correctly write code to  complete its missions. Players learn 
programming by working with Gidget to debug its  problematic 
code. In a two-condition controlled experiment, we manipulated 
Gidget’s level of personification in: communication style, sound 
effects, and image. We tested our game with 116 self-described 
novice programmers recruited on Amazon’s Mechanical Turk and 
found that, when given the option to quit  at any time, those in the 
experimental condition (with  a personable Gidget) completed 
significantly more levels  in a similar amount of time. Participants 
in  the control and experimental groups played the game for an 
average time of 39.4 minutes (SD=34.3) and 50.1 minutes 
(SD=42.6) respectively. These finding  suggest that  how 
programming tool  feedback is portrayed to learners can have a 
significant impact on motivation to program and learning success.

Categories and Subject Descriptors
K.3.2 Computer Science Education: Introductory Programming,
D.2.5 Testing and Debugging.

General Terms
Design, Human Factors.
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1. INTRODUCTION
For most beginners, the experience of writing computer programs is 
characterized by a distinct sense of failure. The first line of code 
beginners write often leads to unexpected behaviors, such as syntax 
errors, runtime errors, or program output that the learner did not 
intend. While all of these forms of feedback are essential to helping 
a beginner understand what programs are and how computers 
interpret them, the experience can be quite discouraging [28,29] and 
emotional [25].
These findings have significant implications for computing 
education. To many learners, error messages are not perceived as 

actionable facts, but as evidence that they are incompetent and that 
the computer is an all-knowing, infallible authority on what is right 
and wrong [6]. Even in programming environments designed for 
beginners such as Alice [24] and Scratch [35], where syntax errors 
are impossible and most runtime errors are avoided by  having the 
runtime do something sensible rather than fail, the communication 
between the learner and the computer is  framed as  one-way: the 
computer does not express its interpretation of the code, it simply 
acts upon it without explanation. These relationships between 
learners and programming tools are more command-and-control 
than collaboration.
And yet, how people perceive their relationship to a computer is a 
critical determinant of not only their attitudes towards computers, 
but also their performance in using them to accomplish tasks [27]. 
Moreover, studies have shown that people expect computers to 
behave with the same social responses that people do [41]; for 
example, automated systems that  blame users for errors negatively 
affect users’ performance and their attitudes toward computers [17].
If negative feedback  from computers affects people’s performance 
on conventional computer tasks, does programming tool feedback 
also affect novice programmers motivation and learning success?  To 
investigate this  question, we designed Gidget, a web-based 
programming game in which the user helps a damaged robot correct 
its faulty code completing its missions (which are expressed as test 
cases). To investigate the role of feedback on learners’  motivation, 
we designed two versions of the game, manipulating the robot’s 
level  of personification, changing communication style, sound 
effects, and  appearance. As seen in Figure 1, the control version of 
the game used conventional, impersonal messages and appeared as  a 
faceless terminal; the experimental version used personified 
language with personal pronouns, taking the blame for syntax and 
runtime errors, and had a face. In each condition, the information 
content conveyed through messages was the same. We then 
recruited a total of 250 individuals  from all  over the world using 
Amazon’s Mechanical Turk [1], with 116 of them meeting our 
criteria as rank novice programmers. With this latter pool of 
participants, we found that those in the experimental group finished 
significantly more levels  than those in the control group, meaning 
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Figure 1.  Runtime error highlighted in the instruction pane 
(rear), with corresponding error messages in the control 
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they successfully used more commands in the programming 
language. Participants in the control  and experimental played the 
game for an average time of 39.4 minutes (SD=34.3) and 50.1  
minutes  (SD=42.6), respectively. However, there was no 
significant  difference between conditions in the total time played, 
nor the number of times an  individual executed a version of their 
code overall. Our findings also show that the experimental  group 
completed more levels in  fewer program executions than the control 
group, suggesting they were attending more to the steps of program 
execution explained by the robot.
In the rest of this paper, we discuss prior work on feedback in 
programming tools, detail our game and study design, and then 
discuss our results and their implications on computing education.

2. RELATED WORK
The role of feedback and critique in learning has long been studied 
in education [2,3,4,25,28,29,32,45]. For example, for some learners, 
negative feedback is more than discouraging: it is  an explicit 
judgment of their abilities. Recent  work in  educational psychology 
has found that learners’  sensitivity to  critique have a strong 
relationship to  self-reported motivation, self-reported  performance 
levels in college courses, and avoidance of further opportunities to 
receive critical feedback [2,32]. Other work has found that  females 
pay greater attention to the valence of critique (positive or negative) 
and that they are more likely  to view negative critique as indicative 
of global ability on any task, rather than  ability at a particular task 
[45]. Moreover, research on self-efficacy shows that building 
confidence at a skill requires not only success on tasks, but the sort 
of success learners believe is due to their own perseverance and 
creativity [3,4]. Dweck [14] has argued similarly that learners 
develop self-theories of themselves, appearing to have either a fixed 
mindset (where they believe intelligence is inborn) or a growth 
mindset (where they believe that intelligence can improve with hard 
work). All of these theories and findings appear to be at play in 
learners’  first  encounters  with computer programming [29,39]. Our 
work builds on  these ideas, investigating how redirecting negative 
feedback away from the learner and back to a personified computer 
entity affects learning.
Our research follows a long tradition of efforts to create 
programming environments for beginners [23]. Many of these 
technologies have focused on increasing learner motivation by 
incorporating new factors to  entice learners  to explore 
computational activities. For example, Logo [44] and more recently 
EToys [22] both created computational spaces for children to 
explore music, language, and mathematics; Light-bot [31] pushed 
players to take the robot’s point-of-view of the environment to 
successfully navigate through levels; Playground [15] and LEGO 
Mindstorms [37] had similar goals, enticing children with the 
modeling and simulation of phenomena from the world or actually 
enabling them to write programs that sense the world. These 
approaches and others like them seek to entice learners with their 
intrinsic curiosity about the world and its processes.
Other approaches have motivated children with opportunities for 
self-expression. Play [48], My Make Believe Castle [34], Hands 
[42], ToonTalk [19], Klik & Play [33], Stagecast  [47], Toque [49] 
and others all focus on enabling learners to create novel animations 
and games. Similar efforts have been made at the college level  with 
projects such as Georgia Computes! [11] and Game2Learn [5], 
which encourages students to  create and test  their own games. 
Examples include Bug Bots  [12] – a game where players  attempt to 
repair robots by dropping tiles into a flowchart representing a 
computer program – and Virtual Bead  Loom [8] – a game where 
students are encouraged to learn  looping functions to create bead 
artwork instead of placing beads one at  a time. Other systems that 
have added to these self-expression goals the ability to share the 

content one has created. For example, MOOSE Crossing invites 
learners to create characters  and spaces  in a virtual, multi-user text-
based world [10]; more recently, Storytelling Alice [24] and Scratch 
[35] have focused on enabling learners to tell and share stories. 
Kelleher et al. [24] were one of the first to demonstrate that 
opportunities and affordances for storytelling can significantly 
improve learners’  motivation to  program. Our work follows these 
traditions, but provides learners with the story, allowing them to 
contribute to its progress by interacting with a character in a game.
While all of the systems discussed thus far aimed to increase 
motivation, several systems have aimed to lower demotivating 
factors in programming tools. Such approaches include simplifying 
the textual programming language syntax [10,43], designing 
languages that mimic how children describe program behavior [42], 
preventing syntax errors entirely by designing program construction 
interfaces that use drag and drop interactions (e.g., [7,22,35]) or 
form filling [33,34,47] rather than text. Others have attempted to 
simplify the debugging of programs by enabling learners to select 
“why” questions about program output [28,30]. Our research 
follows the same vein as these projects, aiming to mitigate factors 
inherent to  programming that would diminish motivation  by 
changing the programming environment. However, in contrast to 
prior work, our work will not add new capabilities to  the 
programming environment, but rather changes how the existing 
capabilities of tools relate to the learner through the delivery and 
presentation of feedback and suggestions.
Given practice, novice programmers  develop strategies to 
effectively understand unfamiliar code [16,18,21]. Working  with a 
partner often affords the benefit of having working off each others’ 
strengths and splitting up  the work accordingly. Research exploring 
the effectiveness of pair-programming in introductory courses have 
shown that there are significant benefits for both teammates [9,36] 
and individuals [9]. This work has been extended to pair-debugging 
for novice programmers by Murphy et al., who report that 
interactive pairs often attempt  more problems, and that critical pairs 
who reflected on their work often were more likely to successfully 
identify and resolve bugs [38]. Similarly, recent work has 
demonstrated that (cognitive) apprenticeship, where beginners are 
given regular feedback by experts, yields a higher retention rate of 
students in a beginner computer science course [50].
Our research builds  on the ideas from these studies by having the 
learner and computer game character co-create the code that will 
accomplish the game goals. Previous studies have found that by 
simply  telling participants  that  they  were on the same team as a 
computer and representing this with armbands of the same color, 
participants showed greater affinity  towards computers, being more 
willing to cooperate with it, conform to it suggestions, and assess 
the computer as more friendly and intelligent than computers on an 
opposing team [40]. Our work will  shed new insight  on how 
changing the role of the computer from an authoritative figure to a  
collaborator needing assistance will affect learner motivation.

3. METHOD
The goal of our study was to investigate the role of programming 
tool feedback on learners’  motivation to program. To do this, we 
designed the programming game Gidget, shown in Figure 2, which 
asked learners to help a damaged robot fix its faulty programs, in 
order to accomplish its  missions. Our study had two conditions – 
control and experimental – manipulating the personification of the 
robot protagonist, Gidget. By personifying Gidget, we aimed to 
increase the agency of the character, adding human-like qualities to 
an otherwise cold and emotionless entity. In the control condition, 
Gidget  was represented as a faceless terminal  screen that provided 
terse, impersonal feedback in response to commands and error 
messages (Figure 1). In contrast, the experimental condition 
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represented Gidget as  an emotive robot that included the use of 
personal pronouns such as  “I” in the feedback, coupled with facial 
expressions corresponding to  the runtime error state of the program. 
Participants were recruited on Amazon Mechanical  Turk and offered 
40¢ for completing the first level and  10¢ for each additional level 
completed. The total bonus and  the levels completed were displayed 
in the upper right corner of the interface, along with a button giving 
the participants  the option to quit at any time (Figure 2). The key 
dependent variable in  our study was levels completed  as a measure 
of learners’ motivation to program.
Our null hypothesis was:
H0:	
   There	
   is	
   no	
   difference	
   in	
   levels	
   completed	
   between	
   the	
   control	
  
condi4on,	
   using	
   conven4onal,	
   emo4onless	
   feedback	
   and	
   the	
  
experimental	
  condi4on,	
  using	
  personified	
  feedback.

In the rest of this  section, we describe the game in more detail and 
discuss the experiment designed to test this hypothesis.

3.1 The Game
Our online game, called Gidget (shown in Figure 2), is an HTML5 
and JavaScript application using jQuery. The game was tested for 
compatibility on MacOS X, Windows 7, and Ubuntu Linux 10 using 
Apple Safari 5, Mozilla Firefox 3.6 & 4.0, and Google Chrome 10 
(we could  not support Internet Explorer because it  lacked the 
contentEditable attribute, which was used to implement the editor).
In the game, learners are guided through a sequence of levels that 
teach the design and analysis of basic algorithms in a simple 
imperative language designed specifically for the game. When 
players begin, they are told a story that  motivates the game: there 
has been  a chemical spill in a small town that has  caused all the 
locals to evacuate and is  threatening the local wildlife. The only 
thing that can safely  protect the animals  and clean the spill is a small 
robot capable of identifying and solving problems. Unfortunately, 
the robot was damaged during transportation, and now struggles to 
complete its missions, generating programs that almost  solve the 
problems, but not quite. It is up to  the learner to help  the robot by 
figuring out and  fixing the problematic code it generates. In this 
sense, the learner and the robot are a team, working together to save 
animals, clean up the spill, and ultimately shut down the hazardous 
chemical factory.
The primary  activity in the game is to learn how to communicate 
with the robot via commands to help it accomplish a series of goals. 
The levels, goals, language, and user interface, however, were 

designed to teach specific aspects of algorithm 
design. The first  9  levels  focus on teaching the 7 
basic commands in  the robot’s  syntax grammar and 
variations on how they can  be written, each 
containing some invalid syntax that  the learners 
must understand and correct. The subsequent 9 
levels teach useful  design patterns for composing 
these commands to achieve more powerful 
behaviors, each containing some semantic error in 
the ordering of the composite command sequences. 
In each level, one or more goals (Figure 2.2) are 
specified in terms of executable tests.
Table 1 explains Gidget’s  7 commands. Learners 
were able to access a similar syntax reference as 
Table 1, but  without the explanations, through the ? 
button at  the top right of the editor. Each of the 7 
commands could be followed by a ‘,’  and 
subsequent command, allowing Gidget to iterate 
over a set of things with a given name. For 
example, if there were multiple kittens in Figure 2, 
the command “goto kitten, grab it” would 
iteratively go to  each kitten,  grab  the kitten, and 

then go to the next kitten. The ‘focus’  stack in Figure 2.5 determines 
how the keyword ‘it’  is resolved; the ‘results’  stack in Figure 2.5 
tracks matching names for each command. 
In the game, Gidget  programs are primarily capable of findings 
things in the ‘world’ (Figure 2.6), going to them, checking their 
properties, and moving them to other places on the grid. In  some 
cases, objects have their own abilities, which Gidget can invoke like 
a function. After each execution step, the effect of these commands 
are shown in the ‘memory’  pane (Figure 2.5) and explained by 
Gidget  (Figure 2.4) to reinforce the semantics of each command. 
Each step also costs Gidget  1 unit of ‘energy’ (displayed at the top 
of Figure 2.5), forcing learners’  to carefully consider how to write 
their code to  complete each level within the allotted number of 
energy units.
In each condition, the robot is detailed in  its interpretation of each 
command in its program. Not only does it explain what action it is 
taking in  each step (Figure 3) and visualize these changes to the data 
structures it maintains in memory (Figure 2.5) to support its 

Figure 2.  Gidget, shown here in its experimental condition, where learners help a 
damaged robot fix its programs.

Table 1. Gidget command syntax and semantics.

scan thing
Enables Gidget to goto all things with name thing. Scanned things 
are added to the set named scanned in Gidget’s memory.

goto thing1 [avoid thing2]
Moves Gidget to all of the things matching the name thing1, one 
square at a time If a thing to avoid is given, for each step that 
Gidget takes, he attempts to find a path that stays at least 1 square 
away from things with the name thing2.

analyze thing
Enables Gidget to ask all things with name thing to perform an 
action. Analyzed things are added to the set named analyzed in 
Gidget’s memory.

ask thing to action thing *
Causes thing to perform action, if action is defined. Zero or more 
things are passed as arguments. Gidget’s execution is suspended 
until the thing asked has completed requested action.

grab thing
Adds all things with name thing to the set named grabbed in 
Gidget’s memory, removing them from the grid and constraining 
their location to Gidget’s location.

drop thing
Removes all things with name thing in that were previously grabbed 
from the set grabbed set.

if thing is[n't] aspect, command
For each thing with name thing that has been analyzed, execute the 
specified command if that thing contains an aspect of name aspect.
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execution, but when it arrives at a command that it does not 
recognize or a command with missing  information, it explicitly 
highlights this missing information and explains to the learner what 
interpretation it is going to make of the ambiguous command before 
proceeding (Figure 1). Moreover, in the case of parsing errors, the 
system opens up a syntax guide mentioned previously, highlighting 
the syntax rule that Gidget guessed was being used.
To aid the players with debugging, we implemented four execution 
controls for the code: one step, one line, all steps, and to end  (Figure 
5). The one step button evaluates one compiled instruction in the 
code, just like a breakpoint debugger does, but also displaying text 
describing the execution of the step (Figure 3). The one line button 
evaluates all steps contained on one line of the code, jumping the 
the final output of that line immediately. The all  steps button 
evaluates the entire program and the goals in one button press, but 
animates each step. The to end  button does the same as all steps, but 
does not animate anything.

3.1.2 Control vs. Experimental Condition
Personification of the robot’s  appearance was a key manipulation in 
our experiment. In the control condition, Gidget was designed  to be 
a cold, emotionless computer terminal –  something that the player 
would feel minimal emotional attachment towards. In contrast, in 
the experimental condition, Gidget was designed to be more human-
like – a cute, unconfident robot with changing facial expressions 
based on the success of its  execution. In the control condition, 
Gidget  had two distinct states: an  error/fail state that was shown 
during any syntax or runtime error, and a neutral  state that was 
shown otherwise (Figure 4). The error state, with its large, jarring 
stop icon, attempts to capture the style common to compiler error 
messages. In contrast, the experimental condition had three distinct 
states for Gidget: an error/fail state that was shown during any kind 
of error, a success state that was  displayed when a goal was 
completed, and a neutral state that was shown otherwise (Figure 4). 
These facial  expressions were specifically designed to make Gidget 
more human-like and add affect to its messages throughout  the 
game (Figure 3).
In both conditions, Gidget was designed to be verbose to help 
players know what  was going on with the code during execution.  
The messages in the control condition were terse, actionable facts 
about the program state, presented in conventional  fixed-width 
Courier New font. The text in the experimental condition contained 
the exact same information, using the softer, sans-serif Verdana font 
(Figure 3), but was personified in  three specific ways. We started 
with the control text, then followed one or more of these rules:  use a 

personal pronoun (e.g. “I,” “you”), admit failure (e.g. “I don’t  know 
this command”), and  express affect (via exclamation points  and 
emoticons). Examples include:
Control:	
  	
  “Unknown	
  command,	
  so	
  skipping	
  to	
  next	
  step.”
Experimental:	
  “I	
  don’t	
  know	
   what	
   this	
   is,	
   so	
  I’ll	
   just	
   go	
  on	
  to	
  the	
   next	
  
step.”

Control:	
  “Dropped	
  cat.	
  Removing	
  from	
  memory	
  banks.”
Experimental:	
  “I	
  dropped	
  the	
  cat.	
  I’ll	
  remove	
  it	
  from	
  my	
  memory.”

Control:	
  “ERROR:	
  Nothing	
  to	
  ask	
  by	
  that	
  name.”
Experimental:	
  “Hmm...	
  I	
  couldn’t	
  find	
  anything	
  to	
  ask	
  by	
  that	
  name.”

The dialogue pane between Gidget and  the player exhibit another 
major difference between the two conditions. In  the control 
condition, the player is portrayed as a satellite dish (Figure 5) to 
signify that there is a large physical distance between the learner and 
robot, requiring radio communication. In the experimental 
condition, players are given the choice between three avatars 
(Figure 5) to represent  themselves. This image is used in place of 
the satellite dish from the control condition, signifying that  there is 
closeness and teamwork between Gidget and the player.
Next, the shape of the communication text boxes are different 
between the two conditions (as seen in Figure 3). The control 
condition was designed to look visually cold and direct. In contrast, 
the experimental condition used comic speech-bubbles for both 
Gidget  and the player with the intention of having the exchange 
look like a conversation (Figure 3). These themes were extended to 
other parts of the interface, where the control condition’s interface 
boxes have shaper curves than their experimental  condition 
counterparts, which have larger, rounded corners.
Furthermore, there were labeling differences between conditions. 
First, level titles in the experimental condition were composed of 
the control conditions' level name with the addition of “Gidget” to 
add agency. For example, level 1 was titled “Testing Scanner” or 
“Testing Gidget’s Scanner,” and level 5 was titled “Utilizing  Special 
Items” or “Using Special Items with Gidget.” In the same manner, 
the memory pane was labeled “Memory banks” in the control 
condition, and “Gidget’s memory” in the experimental condition.
Finally, sound effects were played in both conditions when Gidget 
performed an action or when a major event, such as Gidget running 
out of energy or Gidget not completing his  goals, occurred. They 
were designed to supplement the text and provide additional depth 
to the world as Gidget moved through it (Figure 2.6). All sound 
effects were identical  between conditions, except the general error 
and parser error sounds, which were manipulated to evoke different 
feelings. Errors in the control condition used sounds similar to those 
heard in operating  systems when a critical  error occurs. In contrast, 
errors in the experimental condition used  sounds to attract players’ 
attention without making it seem like the computer was “yelling.” 
These sounds were deliberately chosen to add or subtract from the 
personification between the two conditions.

Figure 3.  The two communication styles used to express 
either a positive or neutral affect. Positive affect is conveyed 

through the robot’s facial expressions.

Figure 5.  Communications pane representing the user in the 
control (top) and experimental (bottom) conditions. Players in 
the experimental condition are given the option to choose an 

avatar to represent themselves when they start the game.
Figure 4.  Representations of Gidget based on its game 

condition - control (left), and experimental (right) - and state.
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3.2 Recruitment
Previous studies have shown effects due to giving computers 
personality  traits in  adult populations of varying ages [17,40,41]. 
We focused on replicating these studies in programming tools for 
adults  of a similar age range. To recruit these individuals, we used 
Amazon.com’s Mechanical Turk, an online marketplace where 
individuals  can receive micro-payments for doing small tasks called 
Human Intelligence Tests (HITs). It is an attractive platform for 
researchers because it provides quick, easy access to a large 
workforce willing to  receive a small monetary compensation for 
their time [46]. Since workers are sampled from all over the globe, 
Mechanical  Turk studies have the benefit of generalizing to varied 
populations more than samples from limited geographic diversity 
that are more common in traditional recruiting methods [26]. 
However, due to the nature of the low monetary compensation and 
anonymity of the workers, careful consideration has  to be taken to 
ensure that  participants  are not “gaming the system” [13,26]. To 
address this, we required that participants complete at least  one level 
to receive credit for the HIT, ensuring that  they actually had to 
interact with Gidget and the code before being allowed to quit.

3.3 Pricing & Validation
Since  our game had a total of 18 levels, we decided that we would 
compensate our participants with a base rate and a nominal bonus 
payment for each level they completed. Previous studies have found 
that higher payment  does not necessarily equate to better results 
[20], so we wanted to calibrate our payments to established market 
prices. To do this, we observed Mechanical Turk HITs tagged 
“game” for a period of 14 days. These HITs were further filtered to 
include only those that had an actual gameplay element as the main 
component as  opposed to tasks such as writing reviews for third-
party games. From these HIT descriptions, we constructed a list of 
‘reward’ and ‘time allotted’  values, along with any explicit bonus 
payments mentioned. Our goal was to set  a base reward that  was 
high enough to attract participants, but also  as low as possible to 
minimize participants’ sense of obligation to spend time on our HIT. 
Likewise, we wanted our bonus payment  per stage to have a 
minimal factor on participants’ decision to continue the game.
Based on our data, we determined our optimal base reward as 30¢ 
for starting the HIT, and an additional 10¢ for each level completed. 
To ensure participants  actually tried the game, we required  that they 
complete at least one level to get paid. This meant the minimum 
compensation any participant received was 40¢. Participants were 
not informed of the total number of levels, eliminating this factor 
from their decisions to  continue playing the game. Finally, we 
deliberately avoided mentioning anything  about programming in the 
HIT description and tags  to prevent people from self-selecting out of 
the HIT because of its association with programming. However, 
since the HIT description included the words “game” and “robot,” 
we may have introduced some gender-biased self-selection effects.
To further validate our pricing model and detect defects and 
usability problems in the game, we conducted a pilot test  on 
Mechanical  Turk with 12 paid  participants. In addition, an informal, 
4-participant, lab study was conducted to  gather information that we 
could not  capture from Mechanical Turk. In this lab study, 
participants were asked to  think-aloud while playing the game to 
test the clarity of the instructions and observe any problems they 
had with the interface. Observational study participants were 
volunteers and were not compensated for their time.
The pilot study results verified that  participants were willing  to 
complete levels and that the system functioned as-intended overall. 
Based on the data we received, we clarified some of the post-game 
survey questions and fixed several minor defects. We also set the 
ceiling for submission time to 3 hours  to  make the HIT less 

intimidating, as  setting  it too 
high could be misinterpreted 
by potential participants  as 
the task  being overly 
difficult. The observational 
study surfaced unclear 
instructions, confusing 
interface elements, defects, 
and usability  problems in 
the game. Based on this 
information, we improved 
the text and interface elements, running  another pilot to ensure that 
the usability and clarity of the game had improved. 

3.4 The Participants
On game load, each participant was randomly assigned one of two 
conditions:  control or experimental. This information, along with 
their current state in the game were logged on the client-side to 
ensure participants would not be exposed to the other condition, 
even if they refreshed their browser. Once a participant chose to 
quit, they were given a post-survey and a unique code to receive 
payment for their submission. The survey was designed to get 
demographic information (e.g. gender, age, education, country), 
identify prior programming experience, and solicit  feedback and 
attitudes about the game. In  addition to the survey responses, we 
automatically collected the following information from each 
participant upon quitting: the number of levels completed;  time 
stamps for level start, level complete, quit, and any execution button 
invocations;, all character-level edits to each level’s program, 
execution button presses, game condition, choice of user avatar (if 
in the experimental group), and payment code.
We defined “novice programmers” as participants who reported in 
the survey that they have never had: 1) “taken a programming 
course,” 2) “written a computer program,” or 3) “contributed code 
towards the development  of a computer program.” This information 
was cross-validated with  an additional question later in the survey 
that asked them to rate their agreement with the statement, “I 
identify myself as a beginner/novice programmer.”
Because we deliberately chose not to mention anything about 
programming in our HIT description, we were not able to control 
for a specific target audience. Therefore, we recruited a large sample 
of 250 participants  from Mechanical Turk, with 116 meeting our 
criteria as being novice programmers.
Since the scope of this paper is  how personification of the computer 
and its feedback affects novice programmers, these 116 participants 
are the primary focus of our analysis. This was a balanced, between-
subjects design with 58 participants in each condition. Demographic 
data revealed that there that participants  from the control and 
experimental conditions  were well proportioned, with no significant 
differences between groups by gender, age, or education. There 
were a total  of 50 females and 66 males with  a mean age of 27.5 
(SD=8), ranging from 18 to 59 years old. As shown in Figure 6, 
participants were spread across  24 countries, with most participants 
coming from the USA (27.6%) followed closely by India (22.4%). 
About 13.8% of participants were the lone representatives of their 
respective countries. Many did not provide geographical data 
(24.1%). Consistent with other Mechanical Turk  study 
demographics, our sample of novice programmers were well-
educated [13,26], answering that their highest level of education 
achieved was: less than high school (<1%), high school (13%), 
some college (23%), an associates degree (3%), a bachelor’s degree 
(38%), a masters degree (14%), or a doctoral degree (6%).

Figure 6.  Geographical 
distribution of the 116 novice 
programmers in our study, 

spanning 24 countries.
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4. RESULTS
In this section, we provide quantitative evidence for a number of 
patterns based primarily on the 116  logs and survey responses 
collected from the participants identified as novice programmers. 
Our dependent measures were not normally distributed  so non-
parametric tests were used for analyses. Our level of confidence was 
set at α=0.05. 

4.1 Difference in Levels Completed
The minimum and maximum number of levels completed for both 
conditions were the same, at 1 and 15, respectively. The median 
number of levels  completed for the control and experimental 
conditions were 2 and 5, respectively. There was a significant 
difference in the number of levels participants completed between 
the two conditions (Wilcoxon rank sums: W=3803, Z=2.3, N=116, 
p<.05) – meaning that we reject our null hypothesis.
The distribution  of ‘levels completed’  (Figure 7) shows that a large 
number of participants from both groups quit the game after 
completing the first level. This was particularly true for those in the 
control group, who lost  41.3% of their members in contrast to the 
29.3% lost by the experimental group. The large drop off in the 
sixth level for both conditions will  be addressed in the discussion 
section, below. Since all participants were classified as novice 
programmers and there was no statistical difference in 
demographics, this suggests that  our personification of Gidget  in the 
experimental condition had a positive effect on participants’ 
motivation to play.

Figure 7. Histogram of levels completed for each condition.

4.2 No Difference in Play Time
The minimum time spent playing the game for the control  and 
experimental condition was 5.4 minutes and 8.4 minutes, 
respectively. The maximum time spent playing the game was 2.81 
hours and 2.97 hours respectively. The median overall play time for 
the control and experimental conditions were 27.1 minutes and 35 
minutes, respectively. There was  no significant difference in the 
length  of time participants in either condition played  the game 
overall (W=3689.5, Z=1.6, N=116, n.s.).
Since the previous result showed that the experimental  group 
completed more levels than the control group, we checked to see if 
participants in either group were spending more time per individual 
level. To do this, we calculated the median time each participant 
took to complete the levels they attempted, and then compared the 
two resulting distributions of medians. We found that there was no 
significant  difference in the median  time to successfully complete 
levels between conditions  (W=3407.5, Z=0.08, N=116, n.s.). 
Likewise, there was no significant difference in the time participants 
spent on the level they attempted, but did not  complete (W=3387.5, 
Z=-0.03, N=116, n.s.).
The difference in  levels completed, but the lack of significant 
difference in playing time suggests that those in the experimental 
condition learned commands (i.e., by completing  more levels) more 
efficiently. This suggests that something in our manipulation caused 
the experimental condition  participants to better understand and use 

the commands to fix Gidget’s  problematic code. We address 
possible explanations for this in our discussion.

4.3 No Difference in Execution
There were no significant differences in how frequently the 
participants used the four execution control buttons overall (one 
step: W=3693.5, Z=1.7, n.s., one line: W=3532, Z=0.8, n.s., all 
steps: W=3488, Z=0.5, n.s.,  to end: W=3740, Z=1.9, n.s.; N=116). 
Since we found previously that  the experimental group completed 
more levels  than the control  group, we checked to see if there was a 
difference between the conditions for the number of code executions 
used per individual level. To do this, we calculated the median 
number of code executions each participant used to complete the 
levels they attempted, and then compared the two resulting 
distributions of medians. This was repeated for each execution 
button. We found that  there were no  significant differences in  the 
median  number of code executions  for completed  levels  by 
condition (one step: W=3293, Z=-0.5, n.s., all steps: W=3061.5, 
Z=-1.9, n.s., to end: W=3305.5, Z=-0.5, n.s.; N=116). However, we 
found that the use of one line was significantly different: W=2987.5, 
Z=-2.3, N=116, p<.05. On closer inspection of the data, we found 
that this difference was  due to participants in the control condition 
using a higher (median) number of one line code executions.  This 
means that participants in the control condition were running  their 
code line-by-line, but skipping some of the finer details provided  by 
the one step execution.
Finally, we checked both conditions to  see if there was a difference 
in the raw number of code executions  for levels the participants 
attempted but did not complete. We found that there were no 
significant  differences between conditions in the number of code 
executions for levels that participants attempted but  did not 
complete (one step: W=3339.5, Z=-0.3, n.s., one line: W=3310, 
Z=-0.5, n.s., all  steps: W=3303.5, Z=-0.5, n.s., to  end:  W=3483, 
Z=0.5, n.s.; N=116). Since participants quit on different  levels of 
varying difficulty, this suggests that those from both conditions put 
approximately the same amount of effort into testing and executing 
their code before deciding to  give up, independent of the level they 
were playing.

4.4 Differences in Survey Feedback
There was no significant difference in participants’  self-reported 
level  of enjoyment  playing the game between the two conditions 
(W=3117, Z=-1.1, N=116, n.s.). Likewise, there was no significant 
difference in participants’  reporting whether they would recommend 
the game to a friend wanting to learn programming (W=3629.5, 
Z=1.4, N=116, n.s.). These results are consistent with reports by 
Nass et. al, who found that participants did not attribute success or 
enjoyment of an activity to changes in their performance [40].
There was, however, a significant difference in participants’ 
reporting that they wanted to help  Gidget succeed (W=3901, Z=3.1, 
N=116, p<.01). Participants  in the experimental  condition were 
significantly more likely than those in the control condition to agree 
to the statement, “I wanted to help Gidget succeed.”

4.5 Comparison to Experienced Programmers
To contrast our reported findings, we briefly present data from 
participants who did not qualify as novice programmers. These were 
the participants who reported in  the survey that they have:   1) taken 
a programming course, 2) written a computer program, or 3) 
contributed code towards the development of a computer program. 
After trimming data that was unusable due to data transmission 
errors, we had 120 participants  with prior programming experience, 
61 in the control condition, and 59 in the experimental condition.
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This experienced group completed  a wider range of levels in both 
conditions, with the median number of levels  completed for the 
control and experimental  conditions being 5 and 4, respectively. 
However, unlike our major finding from the novice group, there was 
not a significant  difference in the number of levels completed 
between the two conditions in the experienced group (W=3392.5, 
Z=-0.9, N=120, n.s.). Likewise, there was  no significant difference 
in the overall play time between conditions (W=3376, Z=-1.0, 
N=120, n.s.).
Like the novice programmers, there was no significant  difference in 
experienced participants’  self-reported level of enjoyment  playing 
the game between the two conditions or whether they would 
recommend the game to a friend. In addition, unlike the novice 
programmers, the experienced participants did not show a 
significant  difference in wanting to help Gidget succeed (W=3624, 
Z=0.3, N=120, n.s.).
Finally, there were no significant differences in how frequently the 
participants used three of the four execution control buttons overall 
(one step: W=3256.5, Z=-1.6, n.s., one line:  W=3398.5, Z=-0.9, n.s., 
all steps: W=3751, Z=0.9, n.s.; N=120). However, there was a 
significant  difference in the number of code executions for to  end: 
W=3139, Z=-2.2, N=120, p<.05, where participants in the control 
condition used the button more frequently than those in the 
experimental condition. This suggests  that the experienced 
programmers  attempted to treat the game more as a traditional edit-
compile-run cycle, rather than debugging the program step-by-step.

5. DISCUSSION
Our findings demonstrate that more personified programming tool 
feedback can increase novice programmers’  motivation  to program. 
More specifically, we have shown that casting the computer as a 
verbose but naïve and  unconfident teammate that blames itself for 
errors has demonstrated to have a positive effect  on novice learners’ 
performance in learning a simple textual programming language. 
We also found that novice programmers exposed to this unconfident 
teammate were more likely to report that they wanted to help it. 
These results, combined with the lack of a significant difference in 
median  time spent on levels or execution of the program, suggests 
that the experimental  group was likely making better use of the 
information provided by the robot than the control group. One 
possible explanation for this is that by  personifying the feedback 
provided by the programming environment, experimental group 
participants were more likely to attend  to the information content in 
the messages, and thus more likely to understand the program 
semantics. This is supported by our finding that  the control group 
participants were significantly more likely  to  use the “one line” 
execution control, skipping over many (but not all) of the robot’s 
messages. Another interpretation is  that both groups attended to the 
messages similarly, but  the phrasing led the experimental group 
participants to somehow process the information more deeply, by 
framing it as  human rather than computer. Future studies should 
explore these possible interpretations, isolating the effect of 
personification on attention to feedback.
Although our results  suggest that our manipulation increased 
success on learning, we did not find that participants were willing to 
spend more time playing the game. This may be due to  the 
unconstrained nature of Mechanical Turk tasks, which provide no 
additional extrinsic incentives to continue; it may also be due to 
difficulties that  learners encountered in particular levels  of the 
game. This was particularly  true of level 6, where there was  a major 
drop off of participants in both conditions (Figure 7). This level 
introduced conditional statements, suggesting that it  is an inherently 
difficult  concept for novice programmers to comprehend. More 
work needs to be done to uncover how feedback tool personification 

affects other aspects of motivation such as wanting to continue to 
work on a problem after multiple failures on a single level.
Our analysis of the performance of experienced programmers also 
suggests that the motivation  and learning effects due to 
personification may diminish with experience. It is likely that the 
experienced programmers playing the game quickly learned the 
semantics of the language and did not need to read the feedback 
provided by the programming tool in order to complete each level.

5.1 Threats to Validity
Our study has a number of limitations that limit its generalizability. 
First, Mechanical Turk allows participants to self-select  into HITs 
given that they meet  certain qualifications. Our HIT did not require 
any special qualifications and used the default setting from Amazon. 
Although we tried to account for factors that would  affect the HITs 
listing on Amazon’s HIT page, those who filtered for higher-paying 
HITs would be less likely  to  find our HIT, whereas those filtering 
for a tag labeled “game” would be more likely to find our HIT.
Also, the game was accessible by computer, connected to the 
Internet, listed on a website requiring login. Although not  directly 
translatable to programming ability, gaining access to the game 
requires a fair amount of computer knowledge. As our demographic 
data indicated, our participants were well-educated, with 86% of 
them reporting that they had some college education or beyond.
Finally, though small, there was an economic incentive for 
participants to participate in the study. Moreover, they would 
receive a bonus payment for levels they  completed. Since these 
economic incentives would not exist in a place like a classroom, it  is 
unclear how or findings would generalize to other extrinsically 
motivated learning contexts. For instance, Mechanical Turk turk 
users  have a choice of which tasks to engage in; students in a 
classroom often do not.

6. CONCLUSIONS & FUTURE WORK
We have presented Gidget, a game intended for novice 
programmers  who are tasked  with helping a damaged robot 
complete its missions by debugging its defective code. By  
personifying the robot – characterizing it as fallible, having it 
convey information about coding errors conversationally, and 
having it take the blame for mistakes – we have found that novice 
programmers  complete more game levels than learners who 
received more conventional feedback, in a comparable amount of 
time. Given our results, we conclude that personifying the computer 
and making it less authoritative has many immediate motivational 
and learning benefits for novices wanting to learn how to program. 
Our results  also suggest several directions for future work. We want 
to further refine our gameplay elements to better understand exactly 
which specific manipulations  accounted for the experimental 
group’s players  to  complete more levels in the same amount of time. 
For example, were they were more attentive to Gidget’s  personified 
text, or was Gidget’s face? Adding more instructional  content or 
altering the economic incentive (from Mechanical  Turk) may also 
yield additional insights. We also want to explore the effectiveness 
of Gidget  in introductory programming courses to see if our results 
hold with students in a classroom setting. If these findings can be 
replicated in other learning contexts, they may have a significant 
effect on how feedback is provided to learners in a wide range of 
computing education contexts.
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