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Abstract
Software developers solve a diverse and wide range of problems. While software
engineering research often focuses on tools to support this problem solving, the strategies
that developers use to solve problems are at least as important. In this paper, we offer a
novel approach for enabling developers to follow explicit programming strategies that
describe how an expert tackles a common programming problem. We define explicit
programming strategies, grounding our definition in prior work both within software
engineering and in other professions which have adopted more explicit procedures for
problem solving. We then present a novel notation called Roboto and a novel strategy
tracker tool that explicitly represent programming strategies and frame executing strate-
gies as a collaborative effort between human abilities to make decisions and computer
abilities to structure process and persist information. In a formative evaluation, 28
software developers of varying expertise completed a design task and a debugging task.
We found that, compared to developers who are free to choose their own strategies,
developers given explicit strategies experienced their work as more organized, systematic,
and predictable, but also more constrained. Developers using explicit strategies were
objectively more successful at the design and debugging tasks. We discuss the implica-
tions of Roboto and these findings, envisioning a thriving ecosystem of explicit strategies
that accelerate and improve developers’ programming problem solving.
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1 Introduction

Programmer productivity has been a major focus of software engineering research for decades.
The field has studied tools to make developers more productive (e.g., Kersten and Murphy
2006), it has long investigated measures of individual developer productivity (e.g. Sackman
et al. 1968), it has tried to predict productivity from numerous factors (e.g., Dieste et al. 2017),
and it has contextualized productivity among the larger set of skills that developers must have
to be great engineers (e.g., Li et al. 2015). At the heart of all of these efforts is the goal of
understanding what factors make developers productive.

Much of this research has focused on specific skills. For example, researchers have
captured low-level programming knowledge as part of learning technologies (Anderson
et al. 1989). A long history of work has theorized about program comprehension skills,
describing the bottom up, top down, and opportunistic strategies that developers use at a high
level (Roehm et al. 2012; Von Mayrhauser and Vans 1995). Some have theorized about
debugging strategies, characterizing them as iterative convergent processes (Gilmore 1991).
More broadly, research on program comprehension suggests that “experts seem to acquire a
collection of strategies for performing programming tasks, and these may determine success
more than does the programmer’s available knowledge” (Gilmore 1990).

However, developers today have few explicit programming strategies which they may
apply. An explicit programming strategy is a human-executable procedure for accomplishing a
programming task. It describes steps in which a human acts or retrieves and interprets
information from the world.

Consider, for example, debugging: there are many abstract descriptions of what developers do
when debugging (e.g., forming hypotheses, gathering data) (Zeller 2009), but few explicit strategies
which enumerate steps a developer can follow to reliably localize a fault from a failure. Similarly,
consider program design. Work has abstractly characterized it as a process of transforming a
programming problem into a program that solves it, but few strategies offer explicit steps by which
developers can do this activity. Or consider API selection, which likely has many hard-won
strategies in industry, few of which have been written down systematically as a strategy. While
programmers perform these software engineering skills daily, we have few explicit strategies for
doing these tasks that developers can follow, either to improve their performance, or to learn the skill
for the first time. These strategies, reflecting developers processes and skills, therefore remain
invisible, mostly residing in the minds of the world’s most experienced developers.

In other engineering disciplines, researchers explicitly prescribe procedures in handbooks to
train new engineers. Consider, for example, the Civil Engineering Handbook (Chen and Liew
2002). It is a tome, bursting with examples of how to plan and schedule construction, how to
process wastewater, and how to design steel structures. Such handbooks not only describe
numerous procedures that constitute civil engineering skill, but also provide numerous exam-
ples of how to apply these procedures to solve problems in the domain. These books provide
engineers with explicit procedures for solving common problems in a field of engineering, and
often determine what is taught in engineering classes, what constitutes an accredited curricu-
lum, and what is tested in engineering licensing exams. Handbooks also support the work of
expert engineers, providing them reminders, guidance, and evidence-based procedures that
present the best practices for solving engineering problems.

Software engineering, in contrast, has no such handbook. While computer science and
software engineering has cataloged algorithms, design patterns, architectural styles and other
specific solutions, this knowledge is declarative, rather than procedural in form, describing
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templates that can be applied in a situation rather than a procedure for taking action. Yet much
of software engineering work constitutes problem solving, where developers seek information
and make decisions, such as when localizing a fault, reasoning about the implications of a
change, or formulating a design (LaToza et al. 2007; Ko et al. 2007; Sillito et al. 2008). If we
had a software engineering handbook encompassing procedural knowledge, novice software
engineers might more rapidly learn effective software engineering strategies. Experts might be
more productive, following well-tested procedures for solving a range of software engineering
problems, rather than taking shortcuts, satisficing, and using organically-developed personal
strategies. This formalization of programming problem solving could ultimately result in better
software by both accelerating software engineering work and by preventing defects, which
often have their root causes in human error (Ko and Myers 2005).

Of course, following an explicit strategy is not a panacea. Judgement is required to choose
effective strategies, new problems may sometimes require new strategies to solve them,
differing contexts may lead to different effective strategies, and different problem solving
styles among developers may lead to differences in effectiveness. Systematic dedication to a
strategy might sometimes improve performance, helping avoid shortcuts that miss key steps,
and other times might stifle effective work. Yet key to future research understanding the fit of
programming strategy to purpose is first writing down the strategies that do exist.

Before we can create a handbook for software engineering, there must first be a way of
explicitly representing strategies for programming, so that developers may read and follow
these strategies to guide their work. Unfortunately, there are many open questions about how
to represent strategies for developer use:

& How can we describe explicit programming strategies?
& How can we support developers in following explicit programming strategies?
& How do explicit programming strategies help and hinder developers’ effectiveness?

In this paper, we investigate representing programming strategies as semi-formal proce-
dures that involve the productive interaction between a developers’ ability to reason and decide
and a computer’s ability to structure, process, and persist information. This paper introduces
the idea of explicit programming strategies, describes the design and motivation of a notation
for describing strategies as well as a strategy tracker for helping developers follow a strategy,
and describes a formative evaluation examining how explicit strategies change developers
behavior and help or hinder their progress. In separate work, we focus specifically on the use
of strategies by novice programmers and report results examining the use and adoption of
strategies in the setting of an introductory programming class (Ko et al. 2019).

We first review related background on strategies, surveying work in other domains as well
as software engineering (Section 2). We then propose Roboto, a mixed-initiative strategy
description language for explicitly describing programming strategies, and a strategy tracker
tool for supporting developers in following these strategies (Fig. 1, Section 3). Through a
formative evaluation comparing Roboto strategies to developers’ own self-guided strategies,
we show that developers were not only more systematic with Roboto strategies but that they
also found the explicit support helpful and organizing, and that the explicit strategies led to
increased success (Section 4). While developers also found explicit strategies constraining,
many viewed this as a reasonable tradeoff if the strategies are more effective. We then discuss
the implications of this work for software engineering (Section 6) and conclude (Section 7).
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2 Background

Academic literature on strategies varies widely in how it defines strategies. For example, in
educational psychology, there has long been concern about the lack of a coherent definition:
“[It] appears that “strategy” is too broad term and must be defined more specifically for
meaningful interpretations to be made.” Ames and Archer (1988). And yet, in psychology,
there is a vast literature about the effects of explicit training on strategies, showing the effects
of explicit strategies on physics problem solving (Ċalıṡkan et al. 2010), the significant role of
choice of strategy on task performance (Locke et al. 1984), and the importance of meta-
cognitive strategies in retaining general problem solving among the elderly (Labouvie-Vief
and Gonda 1976). In this literature, regardless of how strategies are defined or operationalized,
strategy training appears to have strong effects.

It has long been known that humans have limited attention and working memory resources,
limiting problem solving performance and leading to human error when limits are exceeded
(Reason 1990). In response, work in the area of distributed cognition views human problem
solving not as computation that occurs exclusively in the head but as computation that is
distributed between the human and the artifacts that exist in their environment. Environments
in complex domains, such as naval ships, often explicitly offload some responsibility for
planning and persistence to the world (Hutchins 1995). Controlled lab studies examining
problem solving found that external representations provide memory aids, ease use of infor-
mation from the environment, structure cognitive behavior, and change the nature of the task
(Zhang and Norman 1994). Studies of developers have found that experts offload working
memory demands by taking notes during programming tasks (Robillard et al. 2004).

One form of external representation supporting problem solving is the standard operating
procedure (SOP). SOPs formalize complex, error-prone operations, such as landing a plane or

Fig. 1 Explicit programming strategies capture a specific sequence of actions for accomplishing a programming
task. For example, the above example offers a strategy for merging using Git. To execute this strategy, the
strategy tracker lets the computer and developer work together, assigning responsibilities to each. For example, in
an if statement, the developer determines if the query is true or false and the computer then advances the program
counter to the appropriate next statement
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repairing a nuclear power plant (Wieringa et al. 1998). SOPs offer a series of step-by-step
instructions that help people in an organization achieve efficiency, prevent errors, reduce
communication, and comply with regulations. Widely deployed in the military, health, and
other safety critical settings, SOPs regulate individual, team, and organizational behavior.

In health care, a similar idea of checklists has increased in popularity, partly due to
Gawande’s Checklist Manifesto (Gawande and Lloyd 2010). This book argued that many
problems in medicine are so complex, no individual or team can adequately manage com-
plexity; checklists of actions and states to verify in medical and surgical procedures can
manage this complexity by guarding against medical errors and setting a standard of perfor-
mance. Gawande notes that many providers in health care are resistant to embracing checklists
because they take autonomy away from the expert and put it in a document. He argues that the
collaborative definition of checklists by teams is key to encouraging experts to embrace
explicit strategies, and presents evidence that when they do, medical errors decline and
outcomes improve.

Suchman also addressed strategies in her book Plans and Situated Actions (Suchman
1987). In it, she argued that human behavior generally does not emerge from individuals
making plans and executing them. Rather, the context in which one is situated, and the rich
awareness it affords, make plans more of a resource to draw upon to inform decisions and
action. She argues that rather than designing plans and expecting people to follow them, one
should design contexts in which plans inform and guide behavior, along with other factors,
such as the expertise of individuals and teams.

In software engineering, one way to capture expertise is by codifying specific recurring
groups of elements, such as in the form of design patterns or architectural styles. For example,
Gamma et al. outline a set of design patterns that address common problems in achieving
modularity and reuse in object-oriented design (Gamma et al. 1995). Shaw and Garlan
envision a world in which architectural styles are made explicit and shared and outline several
common architectural styles (Shaw and Garlan 1996). These capture the structure of systems,
whereas programming strategies offer complementary expertise, prescribing the structure of
developers’ work.

Representing strategies through a dedicated description language is an example of a
domain-specific language. A domain-specific language offers developers a language special-
ized for supporting a specific task, offering task-specific notations and constructs that trade
generality for fitness for a specific purpose (Mernik et al. 2005). Traditional domain-specific
languages focus on specifying computation that is done entirely by the computer. Our work
explores how domain-specific languages might be used to describe work that is distributed
across both computers and humans.

Research on programming and software engineering links explicit strategies and produc-
tivity. For example, studies have shown that the use of explicit slicing strategies in debugging
(Francel and Rugaber 2001), the use of explicit strategies in tracing program execution (Xie
et al. 2018), and the use of explicit strategies to extract requirements from problem statements
(Haidry et al. 2017), are either correlated with or cause decreases in task completion time or
increases in task performance. Early research on the LISP tutor (Anderson et al. 1989) and
software design environments (Rist 1995) similarly showed that by defining expert problem
solving strategies, and nudging novices to follow those expert strategies through hints and
feedback, novices could approach expert performance. Many have also described explicit
strategies for debugging; Metzger, for example, describes debugging strategies as a high-level
plan for accomplishing a goal through a sequence of physical and cognitive actions (Metzger
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2004) and Zeller presents a series of formal and informal procedures for isolating causes and
effects of defects (Zeller 2009). In the area of software architecture, work has described
techniques by which developers should choose between various design alternatives to make
design decisions (Bass et al. 2012; Falessi et al. 2011).

Research on programming has also found that metacognitive strategies—helping
developers to think more systematically about their thinking and their progress—is
both associated with and causes increases in task performance. Early work speculated
that “the strategic elements of programming skill may, in some case, be of greater
significance than the knowledge-based components.” Davies (1993). Later studies
confirmed this for novices, finding that while novices have many diverse strategies
while programming (McCartney et al. 2007), most of their strategies are either inher-
ently ineffective, executed ineffectively, or interleaved with ineffective strategies
(Robins et al. 2003; Murphy et al. 2008; Loksa and Ko 2016a). To explain these
effects, some studies demonstrated that self-regulation strategies, such as monitoring
one’s work and explicitly evaluating one’s progress and use of time, and self-explana-
tion, were associated with greater problem solving success (Robillard et al. 2004;
Falkner et al. 2014). Other studies showed experimentally that explicit training on
these general self-regulation strategies (Bielaczyc et al. 1995) or self-regulation strate-
gies specifically related to programming (Loksa et al. 2016b), can cause significant
increases in task productivity and programming self-efficacy. Other work has explored
the possibility of teaching specific problem solving strategies to novice programmers
and the challenges that this brings (Ko et al. 2019).

In software engineering, a common way to offer prescriptive problem solving guidance is
through a “practice” or development methodology. For example, Agile (Beck et al. 2001)
presents high-level plans and principles for guiding action, offering principles such as “Con-
tinuous attention to technical excellence and good design enhances agility.“ Such general
guidelines and principles do not, by themselves, offer step-by-step guidance, but might be used
to motivate more detailed strategies describing how they should be carried out. Some prior
work has proposed explicit steps for specific activities in software engineering. For example,
research on process specification languages attempt to model software development processes
to specify steps engineers must follow to achieve a software engineering goal (Zamli 2001).
Other work has described steps in a design process, such as laying out a linear design process
to specify, implement, test, and review a function (Felleisen 2001). Perhaps the most extensive
catalogs exist for refactoring (Fowler et al. 1999; Kerievsky 2004). Test-driven development
(Beck 2003) offers specific steps developers should use to write tests, then write the minimum
amount of code for tests to pass. Research has also studied emergent strategies in contexts like
pair programming, finding that explicit strategies can evolve organically through negotiation
(Salinger and Prechelt 2013). Other recent work has investigated mixed-initiative “lab proto-
cols“ that scientists often write when analyzing data computationally, finding that while lab
protocols represent idealized steps, scientists use a range of techniques to expand or limit the
semantic interpretation of these protocols (Abbott et al. 2015).

While this prior work suggests that explicit strategies and explicit self-regulation of the
execution of these strategies can increase success in many domains, including software
engineering, and there have been some informal descriptions of how to solve specific classes
of software engineering problems, this prior work does not provide guidance on how to
represent programming strategies or guide developers on the use of them. This leaves an
important gap in supporting and training software engineers.
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3 Explicit programming strategies

We define an explicit programming strategy as a human-executable procedure for
accomplishing a programming task. Figure 1 shows one example of an explicit program
strategy that provides step by step guidance for resolving a merge conflict. This example is
human-executable in that a human can interpret and follow its steps, and it is a procedure in
that the steps are a well-defined series of actions to be performed.

As with strategies in other domains, programming strategies are expressed imperatively, describ-
ing steps in which a human acts or retrieves and interprets information from the world. Describing a
sequence of steps as a strategy does not mean it is the best approach or even that it is ever a
successful approach; for example, there are other ways to resolve merge conflicts than the approach
portrayed in Fig. 1. For a given programming task, theremay bemany distinct strategies, whichmay
vary in effectiveness; and, for each strategy, there may be many variants, which might choose to
include or exclude details or handle specific cases in different ways.

Explicit programming strategies capture detailed prescriptive advice describing how to
work in a specific way, going beyond high-level characterizations of the types of activities
developers should do. For example, consider a high-level characterization of a software
development process, such as agile software development. Agile specifies that working
software should be preferred over comprehensive documentation and responding to change
should be preferred over following a plan (Beck et al. 2001). In practice, there may be
countless ways developers might act that is consistent with this advice. A project might have
an agile practice of never documenting anything under any circumstances but instead collocate
software developers. This might then require a strategy describing how a developer might
decide who to ask for a specific issue, how much, if any, investigation to do before asking
them. There might be a family of agile strategies which describe an agile approach to the
problem of eliciting requirements, actions a developer should take whenever a requirement
changes, or how to decide what decisions, if any, should be documented. In this way, strategies
might be used to teach a software development practice, but offer much more specific,
prescriptive advice describing concrete actions a developer may take in the midst of a software
engineering activity and the order in which they should occur.

Programming strategies may be represented in a variety of forms. One might characterize
test-driven development (Beck 2003) as a process wherein a developer writes tests first, or
more specifically as writing a test for a behavior, verifying that it fails, implementing the
behavior, and then testing the behavior. But even this more specific description leaves some of
this activity unspecified: when, if ever, should a developer identify and address design issues?
Should these issues be addressed after implementing each behavior, or all together after
implementing many behaviors as part of a larger feature? How and from where should the
developer identify the behaviors? As descriptions of strategies become more detailed to offer
guidance on such questions, pure natural language descriptions might become unwieldy or
unreasonably ambiguous. This suggests the need for a representation of strategies that
separately lists actions for a developer to take, just as in a recipe or checklist. In situations
where developers act conditionally or repeat actions (e.g., edit the code to address the failure,
run the tests, repeat until all the tests pass), it may be helpful to introduce control structures or
to even decompose strategies into separate sub-strategies, to help developers be more thorough
and systematic in following the strategy. As strategies offer more specific guidance, become
more detailed, and grow in complexity, this suggests the need for a more formal and structured
notation, such as a programming language.
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A fundamental goal of a notation for programming strategies is to enable a developer to
change their behavior to be consistent with a strategy. Prior work on lab protocols, a form of
mixed-initiative program in data science, found that it is important to offer both guidance as
well as sufficient flexibility to accommodate expertise not captured in a procedure (Abbott
et al. 2015). We found similar requirements in an early prototype in which we simply presented
an explicit strategy to the user as text and asked them to follow it. This high degree of
autonomy introduced a number of challenges for developers. As they moved back and forth
between the strategy text and their development environment, some lost their place and did not
know which statement to read next. As developers’ cognitive load increased due to the
overhead of understanding the code, they sometimes forgot that they were being asked to
work using a different strategy. Instead, they reverted to working through their traditional
strategies, abandoning the remaining steps described in the strategy they were asked to use.
These pilots, along with prior work, suggest that carefully choosing what kind of autonomy
developers have when executing strategies is key to jointly leveraging human cognition and
computation.

In this paper, we explore how we might describe explicit programming strategies for individual
developers. We build upon recent work envisioning distributed human computation (Quinn and
Bederson 2011; Abbott et al. 2015), in which humans and computers jointly compute, requiring
mixed-initiative interfaces that coordinate human and computer actions (Horvitz 1999). We bring
these high-level visions for human-computer coordination to the specific domain of programming
strategies. Our premise is that when working independently, a developer is left to plan and monitor
plan execution while also reasoning about code, retrieving information, and devising design
solutions. Novices lack many of these skills, which lessens their ability to be systematic in their
reasoning (Loksa et al. 2016b), and experts often engage in similar externalization strategies to
regulate planning and information persistence during a task (Robillard et al. 2004). Moreover,
prospective memory (their memory for future plans) is faulty, especially as people age, making
external memory aids critical to avoid failure (Einstein and McDaniel 1990). Therefore, our
hypothesis is that by explicitly offloading these planning and information persistence functions to
the computer, both novices and experts may perform better on tasks by allowing them to focus on
information retrieval and decision making.

How then, should this collaboration between developer and computer be supported? There
are many possible ways. A “high autonomy” approach might simply be to encourage
developers to write down their strategies for problems they encounter, check them regularly,
and adjust their plans accordingly. Prior work shows that such informal task scaffolding can
improve rank novice behavior (Loksa et al. 2016b); perhaps it can also improve the perfor-
mance of more experienced developers, or perhaps the lack of structure would result in
minimal impact. A “low autonomy” approach might be to precisely structure developer
behavior, prescribing exact strategies for the developer to follow at the level of precision that
might be required for a computer to execute (like a Standard Operating Procedure). This
extreme form of explicit strategy might leave no room for the developer’s own knowledge or
expertise; it might also cause them to reject the strategy because it leaves them no autonomy.

In this paper, we present a point in the design space that is a compromise between these
extremes, delegating roles to the computer and the developer as best suited. With this
flexibility, it allows strategy authors to make an informed choice about how to divide the
labor. We call this strategy description language Roboto. In the rest of this section, we describe
the Roboto strategy description language and then present a tool for executing Roboto
strategies.
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3.1 Roboto

The overarching design principle behind Roboto is that developers are better than computers at
retrieving complex information and making decisions, while computers are better than devel-
opers at remembering, being thorough, and being systematic. For example, Fig. 2 shows an
example of a Roboto strategy that guides a developer through the error-prone process of
renaming a variable in a web application built in a dynamic language. In this strategy, the
computer is responsible for ensuring that the developer finds all of the lines to update,
remembers to check documentation, and remembers to update each one; the developer is
responsible for using tools to actually perform these actions in their editor or IDE. This
notation gives developers the responsibility of acting in the world and retrieving information
from it, and assigns the computer the responsibility for the strategy’s control flow and its
persistence of information from the world. Strategies may be short and simple or long and
complex, may be organized into separate, cohesive substrategies, and may be recursive. While
the focus of our design is on strategies for programming, explicit strategies may also be used in
other domains where computers and humans work together to accomplish a task. For example,
Fig. 3 shows an example of a Roboto strategy for solving the Tower of Hanoi puzzle.
Additional examples of explicit strategies can be found in our online repository 1.

Figure 4 shows the Roboto grammar that achieves this division of responsibilities. Some of
the non-terminals in the grammar convey actions that are executed by a developer:

& Actions are a series of natural language words describing an action a developer should
take in the world (e.g., “Rename the name“ in Fig. 2, line 9). Developers perform all of
this work. Anything a developer would need to do, including operating a tool, navigating
within an IDE, or asking a colleague for information, might be captured by an action.

& Queries describe information that a developer should obtain from the world, either to
make a decision or to persist state for later use (e.g., “all lines of documentation that
contain the name ‘name’“ in Fig. 2, line 2). This might include finding information in
source code, conducting an Internet search, or some other activity producing information.

& Comments annotate a statement in a Roboto strategy and typically contain rationale for
the statement or other knowledge a developer might need to successfully execute it (e.g.,
“We will now jump to a substrategy to move some discs to the auxilary“ in Fig. 3, line 4).
Comments are critical to convincing a developer that the next step is reasonable as well as
helping developers understand the overarching approach of a strategy and how an
individual statement supports that approach.

The remaining non-terminals in the grammar are executed by the computer:

& Assignments take the result of a query that a developer has executed and store the
resulting information in a variable (e.g., “SET codeLines TO all lines of source code that
contain name ‘name’“ in Fig. 2, line 2). Multiple assignments may reference the same
variable, storing a new value which overwrites the previous value. This is effectively a way
of persisting some fact for later use by the developer or the computer, much like a
developer might use a notepad to keep notes during a task. A computer is responsible
for this since it will not forget or lose the information a developer has captured.

1 http://programmingstrategies.org
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& Conditions take the result of a query and branch the strategy’s execution (e.g., “IF the line
contains a reference to the name“ in Fig. 2, line 8). During execution, they ask a developer
to indicate whether the associated query is true or false, and then the computer branches
accordingly. We gave this responsibility to the computer because of its larger responsibility
in structuring the control flow of a strategy.

& Loops (for each and until) also involve a condition, and iterate through lists of data a
developer has retrieved from the world or ask a developer to repetitively perform a series
of actions until a condition is reached (e.g., “FOR EACH ‘line’ in ‘codeLines’“ in Fig. 2,
line 3). After finishing the execution of the statements within the loop’s block, the
computer returns control to the first statement. In this way, the computer is responsible
for ensuring that developers are exhaustive in their consideration of data, rather than
satisficing (Simon 1972), helping to prevent inefficiencies and defects in decision making.

& Strategy enables strategies to be functionally decomposed into sub-strategies and invoked,
supporting functional decomposition and reuse of strategies, while also giving further
control flow to the strategy (e.g., “STRATEGY renameVariable (name)“ in Fig. 2, line 1).
Like in other programming languages, sub-strategies execute, then return control of
execution to the caller. Sub-strategies also create separate variable scopes, reducing the
information a developer must consider at once.

In allocating responsibility between the human and the computer, Roboto represents
an intermediate point between pure natural language descriptions and traditional pro-
gramming languages. Existing catalogs of strategies use natural language, describing
strategies as a list of actions, relying on sentences of text to describe conditional
behavior or repetition, or else omit conditional behavior and iteration entirely
(Felleisen 2001; Kerievsky 2004; Fowler et al. 1999). In making explicit control flow
and permitting strategies to be structured into sub-strategies, it is possible to more
precisely describe exactly when particular actions will be taken and to group and reuse

Fig. 2 An example Roboto strategy that systematically renames a variable in source and documentation. In
Roboto, the developer is responsible for retrieving complex information and making decisions. For example, the
developer determines which lines of documentation reference the variable name. The computer helps ensure that
the developer is thorough, systematic, and remembers past information they’ve written down. For example, the
computer tracks the name of the variable to be renamed, the set of program statements a developer decides to
inspect, and the next strategy step to execute, which is displayed to the developer through the strategy tracker

Fig. 3 An example of a recursive Roboto strategy for solving the Tower of Hanoi puzzle
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complex sequences of actions. This makes strategies more explicit by clarifying exactly
what a developer should do as well as enabling better tool support for strategy
execution.

Roboto, as a notation, differs from programming languages in several ways by what it does
not include. Work that is allocated entirely to the human is left as natural language descriptions
of actions. For example, there are no comparison operators, as the human makes judgments
about the state of the world. Similarly, there are no arithmetic operators, as the human is
responsible for acting in the world. And loops do not include increment forms, as either the
computer has responsibility for ensuring all elements in a collection are visited in a for each
loop or the human has responsibility for determining when a condition is reached in an until
loop.

One complexity of persisting state through variables is whether to type the results of
queries that developers perform. In our design, all variables are either strings or lists of
strings, under the assumption that most tasks will require the description of some state
in the world, and that developers are best capable of writing these descriptions for their
use. We support lists so that the computer can systematically iterate through items
retrieved by a developer.

None of these design decisions are necessarily “right.” As we have discussed, there are
many possible ways to describe explicit programming strategies, and Roboto is just one.
Because our investigation was formative, our goal was not to find the “best” strategy notation,
but to investigate the impact of “a” notation on developer behavior, building an understanding
of how alternative decisions might have led to different behavior. We would expect many
future works to explore these design choices in more detail.

3.2 Supporting strategy execution

Successfully following a strategy requires developers to be systematic by following each
statement as written in a strategy step by step. We found in our early explorations that
developers struggled to track the information they’d gathered from the world and keep their
place in a strategy, which led them to not follow the strategy systematically. Therefore, to
offload the responsibility of keeping track of a place within the strategy, we chose to design a
strategy execution tool, adopting the model of an interactive debugger. The tool helps
developers step through the strategy one statement at a time, executing the parts for which
they are responsible, and letting the computer execute the parts for which it is responsible.
Figure 5 depicts the strategy tracker tool for Roboto.

Fig. 4 The Roboto language grammar
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When developers first begin executing a strategy, they need both confidence that the
strategy they have selected is appropriate for their context and to understand what it will offer
them. Roboto strategies may have an introductory comment, describing the purpose of the
strategy. As a developer begins the strategy, this information is displayed to the developer in
the form of a popup (Fig. 5a). When an initial strategy includes parameters, the popup displays
the name of each parameter and prompts the developer to enter an argument value for each in a
textbox (e.g., ”requirements”, with a textbox to enter a list of requirements).

Like in a traditional debugger, a program counter keeps track of the active statement in the
strategy. As in Roboto each statement constitutes an individual and indivisible operation,
control passes from statement to statement. The developer advances the program counter with
the next button (Fig. 5b), which steps the user to the next statement. The current statement is
indicated to the developer by highlighting and bolding the statement text. This reduces the
burden on the developer’s working memory, enabling the developer returning their focus from
the programming environment to the strategy to rapidly see where to resume.

a

b

c

e

f

d

g

Fig. 5 In the strategy tracker, the developer and computer work collaboratively to execute a strategy. After
selecting a strategy, the developer a is introduced to the strategy through an introductory popup. The developer
then works through the strategy statement by statement, b using the next button to advance the program counter
and c performing the described statement, and d communicating decisions to the tracker when necessary.
Developers may e record a value for a variable, offloading to the computer the responsibility of remembering
it. For each statement, f the division of responsibility between the computer and developer is outlined through a
list of steps each should perform
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To help developers understand the rationale for a statement, the tracker provides both the
statement and a comment (listed in a line immediately below the statement), which may offer
rationale and additional guidance (Fig. 5c). Developers who are more expert may focus only
on the statement while ignoring the guidance, while the comment provides a learning resource
for developers with less experience.

For some Roboto statements, input from the developer is required before proceeding to the
next statement. For assignment statements, for example, the tracker prompts the developer to
enter a value for a variable, disabling the next button until they do so. For condition statements,
the developer advances to the next statement by determining whether the query in the
statement is True or False (Fig. 5d), with the next button disabled.

Developers can assign values to variables using the variables pane (Fig. 5e), externalizing
the value and offloading the burden of remembering it. When a query statement asks the
developer to record a value, they can use the variables pane to write it down. All variable
values are treated as a string or list of strings, giving the users flexibility to record data in
whatever way is appropriate for the diversity of information they might gather from the world.
Developers may also enter lists of values, separated with a comma, to denote multiple
elements. When a list is referenced within a for each loop, the tracker automatically steps
through each element, automatically assigning a named temporary variable a value corre-
sponding to the current element in the list. To reduce information overload, variables are only
shown in the variables pane after they have been referenced by at least one statement, as with a
breakpoint debugger.

To reinforce the partnership between the computer and the developer, the developer needs a
clear understanding of their role. Each statement in a strategy consists of steps executed by the
computer and by the developer. A list of steps (Fig. 5f) communicates, for the current
statement, the responsibilities assigned to the computer and those assigned to the developer.
Icons indicate whether each step is performed by the developer or the computer. For example,
in a conditional, the developer is assigned the responsibility to find the value of any referenced
variables, interpret the query to determine if it is true or false, and communicate this by
clicking True or False. The computer then determines the next statement to execute and
advances the program counter.

As in a breakpoint debugger, the strategy tracker maintains a stack frame for each sub-
strategy, containing the values for local variables defined in the sub-strategy. When a developer
enters a sub-strategy, a new stack frame is created for that sub-strategy. Variables that were in
scope for the previously executing sub-strategy are hidden from the variables pane. When
control returns to the calling sub-strategy, the stack frame is popped and the variables pane
again shows the values for the calling sub-strategy.

To grant developers flexibility in how they use the strategy, the developer can, at any time,
change the value of variables, including those not assigned in the current statement. If a
developer later decides that the value they had written down in a previous step was incorrect,
they can edit it. Changing the value of a variable only influences the execution of subsequent
statements. If the developer intends to change the path taken, the developer may use the
previous button to go backwards to before the conditional, edit the value, and then proceed.
Loops pose an additional complication, as the developer might delete the currently active
element in the loop or delete an element which has already been used in the loop iteration. For
this reason, editing or deleting values previously used in the loop iteration is disabled.
Developers may influence the subsequent behavior of the loop by editing, adding, or deleting
values that have not yet been referenced.
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To give further flexibility, the tracker also gives developers the ability to step backwards, as
in a reversible or omniscient debugger (Pothier and Tanter 2009; Ko and Myers 2004). If a
developer realizes that they have gone off track, making the wrong choice at a conditional or
loop, they can use the previous button (Fig. 5g) to move step by step back to the point where
they diverged and then resume forward progress. When a developer steps backwards, they
undo the statement they just executed and return to the state of the previous statement. If, in
executing this statement, the developer had assigned a variable, either as instructed by an
assignment statement or in editing any other variable’s value, this action is undone and the
value is reverted. Variables that have no longer been referenced in the current sub-strategy are
again hidden. In this way, stepping backwards lets developers return to the state they were in
before and try an alternative path forward.

As developers may complete programming tasks using diverse tools, including a
wide variety of integrated development environments, programming languages, com-
mand line tools, communication tools, and websites, we designed the strategy tracker to
be used alongside any programming tool. To achieve this, we implemented the strategy
tracker as a web application. Developers may interact with the strategy tracker in one
window side by side with the programming tools they use to accomplish their task.
Strategies may be referenced in a developer’s work by, for example, including a link to
a strategy within another tool (e.g., in a slack message or code commit), which may
then open a browser window with the strategy. Programming tools may offer deeper
integration by hosting the strategy tracker from a dedicated browser window within the
tool, which might enable automatically configuring window positions to show the
strategy and appropriate windows side by side.

4 Formative evaluation

Most of the empirical studies in software engineering research are summative in nature,
attempting to answer a question with some certainty by gathering and analyzing data.
Summative studies tend to pose well-defined hypotheses, ideally derived from well-defined
theories, and then test them. For example, a notable study of the effect of physical distance
between developers on defect density in their components was a summative study, testing the
theoretically-grounded hypothesis that distance matters (Bird et al. 2009). In other disciplines,
such as medicine, summative studies are things like large human-subject clinical trials that
carefully analyze the causal effects of some medical intervention such as a drug or surgery at
scale.

In contrast, formative studies, rather than seeking to rigorously test hypotheses, seek to
rigorously generate hypotheses. Formative studies are typically done at the beginning of a
field’s investigation into a new phenomenon, to help identify what might be true about a
phenomenon, so that theories might be developed and hypotheses derived from that theory
might be tested in future work. In software engineering, formative evaluations include things
like case studies of new tool innovations, which do not demonstrate utility, value, or feasibility
at scale, but rather identify existence proofs of value, while also surfacing unsolved problems.
In medicine, a formative study might be an early, small-sample, animal-subject observational
study, which reveals possible effects of an intervention for later study. Formative evaluations
such as these are common in education research (Frick and Reigeluth 1999) and in HCI
research (Sears and Jacko 2007), two disciplines our work builds upon.

Empirical Software Engineering



Our evaluation of Roboto and the strategy tracker was formative in nature: our goal was not
to test whether Roboto and its tracker are “effective,” but rather to understand how explicit
strategies written in Roboto and executed in the tracker change developers’ strategic behavior
and thereby help or hinder their progress, so that future work may improve upon the
effectiveness, utility, and use of explicit programming strategies. Specifically, we sought to
investigate:

& What strategies do guided and self-guided developers choose to use?
& How do explicit strategies help and hinder developers’ problem solving?
& To what extent do explicit strategies improve success on debugging and design tasks?

As Roboto and our tool for executing Roboto strategies are just one first attempt to explore
explicit strategies, these questions help us identify hypotheses and questions for future work to
investigate, not to provide definitive summative evidence of benefits. Because of this, we
focused on closely analyzing a smaller set of developers’ strategic behavior rather than a more
shallow analysis of a larger group of developers’ behavior.

The design of our study involved two groups completing the same set of two tasks. Our
goal was for each group to have similar basic knowledge of a set of languages, APIs, and tools,
but varying the independent variable of strategic knowledge. One group, which we will call
self-guided, completed the tasks through standard practice, unaided by explicit strategies or the
strategy tracker tool. This group provided us a baseline for comparison, helping us understand
variation of strategies without the presence of explicit Roboto strategies. The second group,
which we will call guided, completed the tasks with explicit strategies through the strategy
tracker tool and was instructed to follow the strategies as long as they were helping accomplish
the task. These two groups allowed us to contrast guided and self-guided strategic behavior,
highlighting the strengths and weakness of both forms of programming work. Our study
materials and replication package are publicly available 2.

4.1 Programming Strategies

Rather than construct our own explicit strategies, we adapted strategies reported in prior work
into Roboto notation, including those that have been fully automated in prior tools but are also
appropriate for manual execution and strategies that cannot or have not yet been automated.
We selected two strategies, one for design and one for fault localization.

For a design strategy, we adapted Test-Driven Development (Beck 2003) into the Roboto
strategy shown in Fig. 6. We described each step in detail, adding comments to explain the
motivation for each step. In piloting, we found that this explanation was largely sufficient in
helping participants understand the idea of the strategy.

For fault localization, we selected a precise backwards dynamic slicing algorithm, as used
in the Whyline (Ko and Myers 2010), which has been shown to significantly reduce devel-
opers’ time to localize a fault (Ko and Myers 2009). While this strategy has been used in a
purely automated tool, few widely used platforms support the execution tracing stack neces-
sary to use the Whyline in practice. Therefore, manually following the algorithm by leveraging
human cognition as a source of data collection and capture may be a reasonable substitute.
Figure 7 shows the Roboto strategy we wrote for precise backwards dynamic slicing. We

2 https://github.com/devuxd/ExplicitProgrammingStrategiesStudyMaterials
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found during piloting that in addition to providing the core approach to backwards slicing, the
strategy also required extensive rationale and guidance to help developers execute their portion
of the strategy successfully. We included these as comments, iteratively refining the explana-
tions and rationale in the comments through pilot testing, while attempting to keep the strategy
generic.

4.2 Participants

To understand the range of possible benefits and problems, we sought to recruit developers
with diverse programming expertise. This would help us reveal the range of reactions that
developers have to explicit strategies. Measuring programming expertise is still more of an art
than a science, with no validated general instruments, and only early evidence of what
programming expertise is and scant evidence of which factors correlate with it. However,
recent prior work suggests that the best predictors of productivity and program quality are
granular measurements related to a task, not years of experience (Dieste et al. 2017), and so we
grounded our measures of expertise in the task domain we selected: front-end web develop-
ment in JavaScript. Therefore, our inclusion criteria for study participation were robust
knowledge of JavaScript semantics and robust knowledge of front-end web development
APIs. For each, participants were given a JavaScript program and asked to describe its output.
We scored each based on the number of correct described output lines, with a maximum
possible score of 7 across the two tasks. There was a clear bimodal distribution in the middle of
the scale, so we invited participants who scored 5 or above to participate. To ensure that
participants in each condition had similar levels of expertise, we used stratified random

Fig. 6 The test-driven development strategy, translating scenarios into tests, which drive development
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Fig. 7 The backwards slicing debugging strategy, showing extensive comments detailing the rationale for each step
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sampling to assign participants to groups. For the 19 participants with the maximum possible
score of 7, 10 were assigned to the control condition and 9 to the experimental condition. Of
the remainder, 5 were assigned to the experimental and 4 to the control condition.

Because our goal was a diverse sample with varying expertise, our recruitment strategy
involved several distinct efforts. First, we recruited from undergraduate populations with
students who had taken a web development course that taught HTML, CSS, JavaScript, and
the React framework, as well as from undergraduate populations that self-reported experience
in web development. Second, we recruited from several populations of graduate students,
spanning both full time students as well as part time students currently employed full time as a
software developer. Finally, we recruited full-time software developers from our professional
networks. Overall, this yielded a sample of 28 participants, with a range of 2 to 28 years of
programming experience (median 5, inter-quartile 5) and 0 to 15 years of industrial experience
as a software developer (median 2, inter-quartile 3). Participants were between 20 and 36 years
of age (median 25, inter-quartile 7). 21 participants were male, and 7 female.

4.3 Tasks

To help us explore the varying impact of explicit strategies, we asked participants to complete
two tasks, one debugging task localizing a defect from reproduction steps and one design task
translating a natural language problem statement into an implementation. Because our partic-
ipants had a range of strategic expertise, we needed tasks that would be challenging for experts
but not impossible for novices. Therefore, the debugging and design tasks focused on helping
participants learn to use the strategies and strategy tracker, approximating first-time use rather
than long-term expert use. To select these tasks, we first iterated on their design using pilot
studies. The final debugging task provided a defective web-based action game with a snake
that only moved diagonally rather than in response to keyboard input. The design task asked
participants to create a simple auto-complete control which generates and ranks completions
based on the words that the user has entered in a text area.

4.4 Data

To understand how explicit programming strategies helped and hindered developers, we
gathered several sources of data for analysis.

Before beginning the study, we administered the inclusion criteria measure of JavaScript
prior knowledge, then collected demographic data to characterize who was participating in the
study.

To explore the effect of prior expertise on progress, our approach was to focus on task
expertise, rather than overall programming expertise. This is because decades of prior work
expertise in learning sciences clearly demonstrates that expertise is task-specific (Bransford
et al. 2000). Therefore, to measure task-specific expertise, in our demographic survey, we
presented natural language descriptions of the TDD and precise backwards dynamic slicing
debugging strategies, and asked participants to self-report prior experience with each guided
strategy (e.g., our TDD scale ranged from, “used TDD extensively” to “have never heard of
TDD”). While there are clearly many facets to expertise on these specific strategies, and likely
many degrees of expertise with these facets, participants responses to these task-expertise
questions were largely bimodal: most participants reported being entirely unfamiliar with each
strategy, and participants who reported having using the strategy in the past. Therefore, we
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ultimately classified each participant, for each task, as either unfamiliar or familiar with the
strategy. (We use these labels in presenting our results).

To observe participants’ work, the experimenter had a display mirroring the participant’s
screen and described high-level visible actions the participant was taking, including interac-
tions with the IDE, the strategy tracker, and transcripts of think aloud speech. While we
initially asked participants to think aloud, participants often forgot, and we did not prompt
them to think aloud more than once. We also collected the final code produced for each task as
well as the time on task.

After completing each task, we interviewed participants, asking them to describe the
strategies they used (“Describe the strategy or strategies you used to complete the task.”)
and how they helped and hindered their progress (“How did this strategy help in making
progress on the task?” and “In what ways, if any, did the strategy get in the way of making
progress?”). (We describe how we analyzed this data in Sections 4.7.1 and 4.7.2, where we
present results).

While observing the actual actions that developers performed to execute their strategies
would also be indicative of their strategies, and potentially more objective, prior work on
problem solving in other domains (primarily mathematics) has shown that it is not possible to
objectively infer strategies from actions because there are many possible different strategies
that can lead to similar actions (Schoenfeld 1981). A more common approach to observing
strategy is to retrospectively ask a person to describe the strategies they used in as much detail
as possible. While these retrospective accounts have the risk of not reflecting the strategies that
someone actually used, prior work with children as young as 8 are capable of accurately
describing their strategic intents (Desoete et al. 2001) as long as the prompt occurs immedi-
ately after a short period of problem solving. This has the added benefit of not requiring the
experimenter to ask clarifying questions about the actions they were taking, which can invoke
self-regulation skills that would not have otherwise been used Chi (1997).

4.5 Piloting

A standard best practice in designing controlled experiments of software engineering tools is
piloting, which involves conducting a study procedure to identify and then eliminate con-
founding factors in measurement (Ko et al. 2015). Because our study design involved a new
idea of explicit strategies and a potentially unfamiliar programming environment, we piloted
our study design and materials for the guided condition over 15 times before we had
confidence that participants could comprehend the strategies and tools they were to use. Pilot
participants were drawn from the same underlying population as the study participants,
graduate and undergraduate students as well as full-time software developers with knowledge
of web development. Each pilot participant completed both the debugging and design tasks. To
identify points of confusion participants had understanding our materials, we used a number of
signals: misuse of tools, misunderstanding of a strategy, misunderstanding of a task, usability
problems with the tracker, misunderstanding of interview questions, and insufficient prior
knowledge about the languages and platforms. After each round of piloting, we updated our
materials to address these issues. After fifteen pilots, we no longer observed any of these
categories of issues and were therefore confident that most participants would have sufficient
time and cognitive resources to make sufficient progress on the tasks. We did not want or need
everyone to succeed at the tasks. This would have resulted in a ceiling effect in our task
performance measurements, which would have masked the effects of the strategies we
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provided. We separately conducted three pilot sessions with the self-guided condition, who
interacted with a subset of the materials used by guided participants.

4.6 Procedure

Prior to participating, participants completed the inclusion criteria assessment and those that
met the criteria were invited to participate. Study sessions were conducted with individual
participants both in-person (17) and remotely through screensharing (11). At the beginning of
the study session, participants completed a short demographic assessment. Participants then
worked through a series of short tutorials on the WebStorm IDE, debugging in Chrome, and
writing unit tests in the Jasmine testing framework and completed short exercises to apply their
knowledge. Participants in the experimental condition were then introduced to the idea of
programming strategies, the Roboto language, and the strategy tracker tool. The experimenter
demoed using a strategy for handling merge conflicts in Git, demonstrating following the
strategy using the strategy tracker. Participants then tried using a strategy themselves, solving a
Tower of Hanoi example using the tool and the strategy in Fig. 3. To minimize the disruption
of switching between the tool and the Tower of Hanoi, participants were instructed to arrange
each browser window side by side. Finally, participants were reminded that, to benefit from the
strategy, they need to practice self-regulation and follow the strategy as described.

All participants were then given the debugging task followed by the design task. Partici-
pants were given 30 minutes to complete each task. Participants in the self-guided condition
were asked to solve the task, and participants in the guided condition were asked to use the
strategy tracker to learn the strategy and apply it to the task. Guided participants were
instructed to place the tool side by side with the development environment. At the end of
the task, participants were interviewed about their strategy and their experience using the
strategy. Participants were then given the design task and interviewed again about their
experiences. Finally, participants in the experimental condition were debriefed about their
experiences with explicit strategies and the strategy tracker tool. Participants were compen-
sated with a $30 gift card. The study was approved by our institutions’ Institutional Review
Boards.

4.7 Results

Our formative evaluation sought to answer three questions, which we answer through the data
we gathered.

4.7.1 What strategies did guided and self-guided developers use?

One of the first and most critical aspects of developer work was what strategies they used. Self-
guided participants could choose any strategy, while guided participants had to decide whether
to follow our prompt to use the provided Roboto strategies, or deviate from them. We expected
to observe a diversity of strategies in both conditions.

There are no well-studied methods for identifying strategy from developer actions or verbal
data. As noted in Section 4.4, we used a method from research on mathematics problem
solving for eliciting strategies (Desoete et al. 2001), prompting developers to retrospectively
describe in words the strategies that they used to solve the problem, and, if they used the
provided strategy, to summarize it or refer to it directly.
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To categorize these retrospective descriptions of strategy, we individually analyzed the
strategy descriptions that developers provided for each task, using the transcripts of actions to
help interpret and contextualize their descriptions. Our goal in this first analysis was to
generate a set of distinct categories of strategies and a coding scheme for classifying them.
We then used this coding scheme to categorize the one or more strategies that developers
described using. To assess the reliability of the coding scheme, we had two of the authors
independently categorize strategy descriptions for both tasks. Disagreements on the first pass
were minimal and emerged from ambiguities in the coding scheme. After an additional pass,
both authors reached 100% agreement in which set of strategy codes to assign to each
participant.

Table 1 lists the categories of strategies that emerged from our qualitative analysis and
examples of how developers described them. To our surprise, the strategies that developers
used were not particularly diverse. For the design problem, the three strategies involved
different approaches to decomposition: reusing the decomposition in an existing example
program (template), analyzing the problem for ideas for decomposition (decompose), or using
tests to drive decomposition (TDD). For the debugging task, participants either modified the
program to understand its behavior (guess & check), searched forward from user input
(forward), or searched backward from faulty output (backward). The forward and backward
strategies are consistent with existing observations of debugging behavior (Böhme et al. 2017).

Table 1 also shows the frequency of use of each type of strategy by condition. Only 4
participants across both used more than one strategy while debugging. For the design task,
most self-guided participants used the decomposition strategy, with only a few following TDD
and template strategies. Most of the participants in the guided condition reported following the
TDD strategy we provided. The one who did not had trouble describing a strategy (and for two
others we were missing data because of corrupted audio files). None of the participants for
which we had data used more than one strategy during the design task. For the debugging task,
most self-guided participants used a forward strategy, while two also used a guess & check
strategy. All guided participants using the backwards strategy we provided, except for one for
which we had no data due to a corrupted audio file. A few interleaved a forward search
strategy into their process.

These results show that when developers retrospectively described their strategies for these
two tasks, 1) there was great regularity in the strategies they reported using, 2) that developers
given explicit strategies largely did not deviate from them, and 3) that, at least during 30-
minute tasks, developers tend not to use multiple strategies.

4.7.2 How did explicit strategies help and hinder developers’ problem solving?

Whereas the previous section described what developers did, here we analyze devel-
opers’ perceptions of how the strategies they used (theirs or the strategies we provided)
influenced their problem solving process. To perform this analysis, we used the answers
that developers provided to our post-task prompts of what “helped” and “hindered” their
progress on their task. We gave the same prompt to both guided and self-guided
participants, asking them to reflect on all of the strategies they employed during the
task. After transcribing their answers, we inductively developed a set of attitudes
expressed across the answers in both conditions. This resulted in a separate code book
of positive and negative attitudes for each task, including 18 distinct attitudes about the
debugging task, and 19 distinct attitudes about the design task.
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Common practice in qualitative software engineering research is often to quantify qualita-
tive data by coding, counting it, and measuring inter-rater reliability in these counts. However,
we took a different approach to qualitative coding recently advocated by Hammer and Berland,
and now widely adopted in the learning sciences (Hammer and Berland 2014). Their perspec-
tive on qualitative data argues that the richest meaning of qualitative data emerges from a
detailed analysis of the disagreements in a group of coders about what the data means and how

Table 1 Strategies developers described using in the two tasks and their frequency by condition

Design Description Self-guided Guided

Template Found and used example code as a template for
implementation. (“The first thing I did was to see the
code and a template. One of things I want to do is to
keep it simple. If I pick something too long or too
complex, it make[s] it hard for me to modify it. ”)

4/14 (29%) 0/14 (0%)

Decompose Analyzed functional requirements for sub-problems,
implementing each independently “First I tried to
determine what exactly the function is supposed to
do and the input variables that are involved in it and
what it is supposed to return just looking at the
method signature... Then I... tried getting started on
the function ... like creating any necessary objects
and arrays...”

9/14 (64%) 0/14 (0%)

TDD Translated functional requirements into test cases,
identifying sub-problems from test case require-
ments. “Once I’m implementing the tests for a sce-
nario... So you start by making a failing test which is
essentially just creating a stub. And then you sort of
fill out the stuff with the minimum amount of code
that would just get it to pass.”

2/14 (14%) 11/14 (79%)

Debugging
Guess & check Participants found suspicious lines of code, modifying

them and checking the effects of their modification.
“At some point I did some experimentation, which is
when I was looking for something different, I would
change a line, I would add a line, I would copy a line
and see what effects it would have. Just to help
further my understanding of the code.”

2/14 (14%) 0/12 (0%)

Forward search Participants identified where the program began
processing input, following its execution from there,
analyzing it for defects. “I started by reading, getting
an overview of the whole code in the IDE [to] see
where the functions were. Then I looked for some
functions that had to do with movement or input.
Then [I] tr[ied] to understand two functions that I
identified as problematic that would be causing the
problem, which were the ‘check-input’ and ‘move’.”

13/14 (93%) 3/14 (21%)

Backward search Participants identified faulty output and worked
backwards through control and data flow
dependencies to localize the statement(s) that caused
the failure (same as the explicit debugging strategy
provided to the guided group). “The approach I took
was to... look at each line that put a graphic output
on the screen. And then, run through each line really
systematically to see like what it did, if it was
working, if it was supposed to execute in the first
place.”

1/14 (7%) 13/14 (100%)
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it was classified according to a coding scheme. Therefore, rather than relying on inter-rater
reliability measures for validity, we instead analyzed our disagreements to assess validity. To
do this, our process for coding was to reach 100% agreement on the attitudes in each response,
and in the process, surface detail about our disagreements that revealed potential flaws in the
validity of our coding scheme. To achieve this, two authors independently assigned zero or
more help and hinder attitudes to the 108 transcribed responses (28 participants, two tasks
each, two questions each). After this process, the two authors disagreed on only 12 of the
responses. They discussed each of these 12 disagreements, some of which were attitudes that
were overlooked and therefore added to the coding scheme, and some of which were
disagreements about what counted as an “attitude”. The coders discussed all other agreed
upon codes and determined that their interpretations emerged from the same meaning of the
data.

Template strategies for the design task For the design task, the self-guided participants had
similar attitudes about their chosen strategies. The 4 that used the Template strategy (one of
which reported no experience with TDD), for example, all described the examples they found
as providing a clear starting point for their work, but that trying to comprehend the example
code was challenging, and that this comprehension took extra time. For example, one
participant said:

“At first, I thought it was kind of cheating. I don’t use library. At the beginning it makes
you spend some time but at the end when you get that done and you will be able to add
every case... For me trying to understand somebody else code is difficult...” The way
they named variables, the way they put the structure... it sometimes hindered progress.

Of the four developers using the template strategy, only one satisfied any requirements for the
task.

Decomposition strategies for design task Of the 9 participants (all self-guided) that reported
using a Decomposition strategy, 4 reported that it “organized” their work and another 4
reported that it gave them a “starting point” for their work. Of these 9, however, three reported
that they viewed decomposition as taking extra time and one noted that mistakes in decom-
position eventually required them to redesign their solution. One representative participant
said:

“[Decomposition] was helpful because initially when I read the problem I thought I
might be out of depth in this thing because I didn’t understand how will I proceed with
this problem, but after that, even I asked a few questions, I tried to understand the full
specification of the problem so I can break it down into more understandable, more
manageable problems... It helped me comprehend the problem a lot better and to
approach the problem in a better manner.”

All but one of these 9 participants using the decomposition strategy satisfied three or more of
the task requirements.

TDD strategies for the design task The 2 self-guided participants and the 11 guided
participants that reported using a test-driven development strategy reported that TDD helped
them “organize their work” (8 of 13), helped build “confidence” in the correctness of their
code (3 of 13), helped avoid extra work (2 of 13), and provided a “starting point” (2 of 13).
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Attitudes between the guided and self-guided TDD participants about how TDD helped were
indistinguishable, but sentiments about how it hindered differed: the two self-guided partici-
pants reported TDD taking extra time (2 of 2). Most guided participants reported no hin-
drances, except for some (2 of 11) reporting some uncertainty about how to interpret the
explicit strategy’s instructions and one reporting a fear of diverging from the strategy. One
guided participant captured these attitudes well:

“[Test-driven development] was really good at, don’t overwhelm yourself with the
details [you] don’t need quite yet. By starting very simple, just getting it so there’s...
return an empty array of that, I make a little bit of progress. And for me, TDD is always a
little bit like a game...”I always have a little incremental improvement that I could do on this task. That really
helped.

While all participants using TDD felt like their work was more systematic, only those reporting
experience with TDD made progress on implementing functional requirements. Those
reporting no experience with TDD reported investing more of their time learning to plan
and writing tests than writing code to satisfy tests.

Guess & check strategies for the debugging task The two participants who used the Guess
& check strategy (both in the self-guided condition and neither successful at the task),
mentioned that trying to debug by modifying the program caused them to focus too narrowly
in their search. Both of these participants quickly abandoned this strategy for the forward
search strategy.

Forward strategies for the debugging task The 13 self-guided and 3 guided participants that
used a Forward search strategy reported that there was little helpful about it, with the exception of
two participants that said it helped them gain some familiarity with the code. Many reported that it
caused them to have a long startup period (4 of 16), that it did not feel systematic (3 of 16), and that it
wasted time (2 of 16). These attitudes likely were influenced by most of these participants not
localizing the defect. This developer captured these attitudes well:

“[I] felt scattered sometimes. Like I would go to one thing, and I feel like I get a little off
track like ’what was I going here for?’... Or like once I eliminated that track, I had to like
think of what I was doing before I went down that path.”

Of these 16 participants who used a forward strategy, 7 reported before the task that they had
experience with working backwards, but none used the strategy in the task. Moreover, the
forward strategy was ultimately unhelpful, with only 3 finding the defect and none fixing it.

Backward strategies for the debugging task The 14 participants that used the Backward
search strategy (all in the guided condition, but only 3 reporting prior experience with a
backward search strategy) felt positive about the strategy and the explicit support for executing
it. Many said it provided them a helpful sequence of steps to localize the fault (5 of 14), helped
them be systematic in their process (2 of 14), provided them context for their fault localization
(3 of 14), and saved time (2 of 14). All participants reported that it was helpful, including the 5
who made no progress on finding or fixing the defect. The only hindrances that the guided
participants noted were that the explicit strategy occasionally had unclear instructions (2 of
14), and that they often felt there was not room to deviate using their instincts or experience (2
of 14). One participant described these trade-offs well:

Empirical Software Engineering



“I don’t typically do the due diligence of reading all of the variable names and function
names when I’m dealing with this sort of thing. And it seemed pretty clear to me that this
is maybe a really good idea. Because one thing I noticed was that my initial instinct was
to try to really close[ly] read the flow of the program. Then, when I remembered that the
task was actually just to read the variable names and function names, I was able to get
through it much much faster. I still had a pretty good idea of actually how it worked
without getting quite as in detail with the rest of the flow of the program...”

This same guided participant shared their thoughts on how the explicit strategy hindered them:

“I’m following these instructions, and I’m trying very hard to adhere to the instructions.
It can feel kind of confining... It made me kind of hesitant to trust my instinct on things...
I felt the need to really slow down, read the instructions multiple times, and to not do any
action that could sort of mess up my adherence to the instructions.”

In contrast, the one self-guided participant that attempted to use a backwards search strategy said:

“Since I wasn’t used to this code, at first it was a little overwhelming. I was like oh what
does all this mean... I couldn’t understand all of the key components interact with each
other and how each of these functions or variables were being used...”

The overarching trend in these attitudes was that participants tended not to choose TDD and
backward search when given a choice, even when they reported experience with them, but
when compelled to use them, appreciated how explicit strategies helped organize their work
and remember to take key steps in developing their understanding of a problem or program.

4.7.3 To what extent did explicit strategies improve progress on debugging and design
tasks?

Whereas the prior two result sections show that most participants did not choose the TDD or
backwards search strategies independently but found value when they used them, here we
examine if explicit strategies helped developers. To assess outcomes, we used a separate
definition of task progress for the design and debugging tasks.

For the design task, we defined two independent factors for measuring the amount of
progress. The first factor was how functionally correct a participants’ solution was with respect
to our prompt. To measure this, we enumerated the requirements provided in the task
description and developed a rubric for judging whether each of 5 requirements were satisfied
or not. Two authors analyzed the problem statement for requirements, discussed ways of
detecting having met these requirements in participants’ implementations, and agreed upon a
rubric that assigned a point per requirement, resulting in an ordinal 0-5 scale. One author
scored each submission using this scale. Figure 8a shows the number of participant on each
group of guided and self guided participants based on strategy familiarity and condition.

Our second measure of progress on the design task was the maturity of the solution’s
verification infrastructure, which both guided and self-guided participants wrote. We counted
each test that did not have syntax errors and that had a purpose related to a requirement,
independent of a corresponding implementation. This resulted in an ordinal scale ranging from
0 to an observed maximum of 5 tests. Figure 8b shows progress scores by condition and
strategy familiarity for the number of total participant on each group.
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For the debugging task, we defined three ordinal levels of progress: fixed if they identified
the location of the defect and proposed a correct fix, found if they found the defect but could
not fix it, and failed otherwise. Our ordinal scale ordered these from low to high as failed,
found, and fixed.

Figures 8 and 9 show the level of progress that participants reached on each of the tasks. To
examine if the explicit strategy manipulation or strategy familiarity had an effect on our three
ordinal progress scales, we used the Wilcoxon Rank Sum Test, a non-parametric test to
compare outcomes between two independent groups suitable for ordinal data (Hilton 1996).
Table 2 shows the results. Guided participants in the design task wrote significantly more tests,
but did not satisfy significantly more requirements in their implementation. In the debugging
task, guided participants made significantly more progress. Strategy familiarity with TDD was
not related to progress on the design task with tests or requirements, and strategy familiarity
with a backwards search debugging strategy was not related to progress on localizing the fault,
suggesting that it was the explicit support for the strategy that resulted in more tests and more
successful fault localization.

Fig. 8 Progress on the design task by condition and strategy familiarity. Each block counts the number of
participants that attained each level of progress
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To understand the impact of the explicit strategy manipulation and strategy familiarity
jointly, we built an ordinal logistic regression model, which controls for each factor. We chose
an ordinal logistic regression model as the dependent variable, progress, in both tasks was
ordinal. Table 3 lists the model parameters. The model shows that, accounting for the effects of
strategy familiarity on TDD, guided participants in the design task were 1.3 times as likely to
write more tests. In the debugging task, guided developers were 1.96 times as likely to make
more progress on localizing the fault. Notably, while choice of strategy was significantly
associated with more tests and successful debugging, strategy familiarity was not.

We also analyzed the effects of explicit strategies on task time. Overall, 23 out of 28
participants on the debugging task used the full task time and 22 out of 28 participants on the
design task used the full task time. Analyzing time by condition on the debugging task, 4 of the
5 participants who finished early were guided. On the design task, 5 of the 6 participants who
finished early were guided. We tested for an effect of the explicit strategy manipulation and
strategy familiarity on task time with a Wilcoxon Sum Rank Test. As the results in Table 4
show, the effects of strategy familiarity on task time was not significant for either task. The
effect of guidance on task time was not significant for the design task and approached
significance for the debugging task (p = 0.056).

5 Threats to validity

As with any empirical study, our study design had several types of threats to validity.

Table 2 Effects of guidance and strategy familiarity on task progress

Task Param Diff P-value

Design-Implementation Familiar 87.0 0.3021
Guided 82.5 0.2325

Design-Tests Familiar 72.0 0.1036
Guided 48.0 0.0076*

Debug Familiar 92.5 0.4779
Guided 39.5 0.0008*

Wilcoxon Rank Sum Test *=p<.05

Fig. 9 Progress on the debugging task by condition and strategy familiarity
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There were several issues in our study design related to construct validity. Because there are no
well-validated measures of prior knowledge in programming or specific strategies, our measures
were coarse, which means that our claims about the relationship between task expertise and task
performance are tentative. In measuring progress on the debugging and design tasks, we chose
measures that assessed how developers localized the defect for the debugging task and how many
requirements and tests of these requirements developers wrote for the design task. It is possible that
developers may havemade some progress in ways that were not measured, for example formulating
a correct hypothesis about the cause of a defect without a location or formulating a plan in their head
about how to implement a behavior without writing it down. To identify the strategy that each
participant used, we grouped similar strategies into clusters. As with any clustering approach,
strategies might have been further broken down into additional sub-clusters reflecting variants of
the higher-level strategies we focused on.

From a conclusion validity perspective, there were several issues. First and foremost, our
sample included diverse programming expertise, but this diversity inevitably led to significant
variation in task performance. This decreased our ability to see the effects of explicit strategies
experimentally. Additionally, calibrating task difficulty is always challenging, especially with
such diverse prior knowledge. This meant that both the TDD and debugging tasks had floor
effects, with many participants making no progress in the short amount of time we offered
them. This reduced the sensitivity of our measurements, reducing our ability to precisely assess
the effect size of our results. To ensure that incentives did not bias participants, all participants
were compensated the same amount, regardless of condition, task performance, or their
responses.

From an external validity perspective, our study design had many artificial qualities. Our
participants were unfamiliar with the concept of a programming strategy, and we provided
training materials as well as a demo by the experimenter. In practice, developers who were
already familiar with the concept of a strategy might not need as extensive training materials.
Conversely, training inexperienced developers might require more scalable training materials,
without the need of in-person training.

Table 3 Effects of guidance and strategy familiarity on progress

Task Param Odds ratio SE B Wald Pr > χ2

Design-Impl Familiar 0.60 0.682 0.204 0.651
Guided 0.73 0.691 0.487 0.485

Design-Tests Familiar 0.84 0.752 0.808 0.369
Guided 1.30 0.799 5.177 0.023*

Debug Familiar 1.40 1.296 2.807 0.094
Guided 1.96 1.562 8.398 0.004*

Ordinal logistic regressions for each task. *=p<.05

Table 4 Effects of guidance and strategy familiarity on task time

Task Param Diff P-value

Design Familiar 93.5 0.393
Guided 75.5 0.870

Debug Familiar 93.5 0.500
Guided 75 0.056

Wilcoxon Rank Sum Test *=p<.05
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In practice, we would expect developers to learn strategies over a much longer period of
time and eventually excel at applying them (perhaps even without the aid of the strategy
execution support we provided). In our experiment, however, we measured only the first
exposure to explicit strategies, with very little time for practice. While this is an important part
of strategy use to study—after all, any adopter of explicit programming strategies will go
through it, and this determines whether they are likely to use them again—it does not address
the potential of explicit strategies to shape programming practices over long periods of time in
professional contexts. Our sample may also have been biased, since the authors’ recruited
participants from their social networks. There may be unique demographics in these groups
that do not capture programming expertise in other social networks. The two tasks that we
chose, while representative of the broad categories of design and debugging tasks, are specific
tasks that do not represent the full range of task variation in software engineering. Investigating
the effect of explicit strategies on that range is necessarily left to future work. Finally, we chose
tasks for which developers could make progress within the time bounds of a lab study. We did
not observe developers working on longer and more complex debugging or design tasks.
These might raise additional challenges which might increase or decrease the benefits offered
by explicit strategies.

6 Discussion

Our formative evaluation illustrates some of the potential benefits of explicit programming
strategies. Developers guided by a strategy described their work as more organized, system-
atic, and predictable; they also performed objectively better on debugging and testing tasks.
Guided developers worked qualitatively differently than the ways in which unguided devel-
opers naturally worked, debugging through backwards rather than forwards search and
designing using test-driven development rather than simple decomposition. In this way,
developers were able to change the way they approached these problems and benefited from
the collective software engineering wisdom embodied in these strategies, unlike the unguided
developers, who had to rely on only their own strategic expertise.

Our initial results raise a variety of important questions in how developers might effectively
interact with a programming strategy. Future studiesmight includemultiple conditionswith different
strategies to compare their effectiveness, employ a longitudinal deployment of a strategy into an
organization to examine its use and adoption over time, or examine how developers might create
strategies by asking experienced developers to write down their own strategies.

The effectiveness of a developer employing a novel strategy depends on the context in
which it is used. In our study, we found that developer who adopted a backwards strategy were
more effective than those who used a forward strategy. But one might imagine a task for which
the opposite is true, if, for example, the defect is located closer to the input processing than the
output processing. Whether or not test-driven development results in overall productivity
benefits may also depend on context, as its benefits are not consistently visible (Shull et al.
2010). In this way, much more research is necessary to understand the fitness to purpose of
various software engineering strategies for the typical situations in which developers work.
Making strategies explicit and capturing strategies is an important first step, helping open up a
future space of research that examines how, when, and whether specific strategies are effective.
If the number of strategies available were to increase, helping developers choose an effective
strategy based on their context would also become a critical problem.
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While we believe Roboto is an interesting point in the design space of programming
strategy description languages, it is not the only possible design. For example, one trade off
of giving power over all control flow to the strategy is that when a developer has better
information than the strategy, or a better strategy altogether, a developer must effectively
abandon the explicit strategy altogether and go forward alone. Strategy languages that make
different choices from Roboto might better support reuse of persisted state and points of
deviation in a strategy flow. Prior work on organizational behavior also suggests that any
sufficiently complex goal requires open-ended adaption. Crowdsourcing researchers have
argued that this is an inherent limitation of workflows built into crowdsourcing systems,
suggesting that explicit strategies might be powerful for some forms of tasks but not neces-
sarily all tasks, and especially not for tasks involving entire teams and organizations. Retelny
et al. (2017). It might be possible to create alternative language designs that are more reactive,
where the developer has more control to change the plan they are following through mech-
anisms such as events or exceptions. However, our study participants found value in being
encouraged to be more systematic, suggesting it is important to understand how to effectively
balance adaptation with being systematic.

In addition to these language design considerations, the content of a strategy is likely
equally important. For example, Roboto only allows for the targeting of one level of expertise:
if a developer does not sufficiently understand how to execute an action or query, they may
have no way to proceed and will abandon the strategy. For expert developers, new strategies
may be harder to adopt, as past strategies used frequently over time become habitual,
automatic, and unconscious, much as tying a shoe. At the same time, developers who feel
they already have an effective strategy may be hard to motivate to change their strategy. In
contrast, novices with no strategies or who feel that their strategies are ineffective may be more
open to guidance. Alternative strategy description languages might offer affordances for
learning unfamiliar concepts and skills referred to in a strategy (e.g., a link to an outside
resource explaining a key concept), or for linking strategies with identical approaches but
different levels of scaffolding to guide behavior.

Another important question for future research to investigate is whether environments
which support developers in executing a strategy are beneficial only when initially learning
an unfamiliar strategy or are beneficial each time a developer returns to a strategy. Participants
found that the strategy execution environment pushed them to be more systematic, but it is
unclear to what degree the change might persist over time if support were removed. In fields
such as medicine and aviation where safety and reliability are paramount, the value of explicit
strategies comes in part from ensuring that practitioners are systematic, helping avoid poten-
tially costly errors that may be easily overlooked. In software engineering tasks, the cost of
missed steps may vary widely. When debugging a defect, a missed step might prevent a
developer from considering a potential location. In other cases, in the moment situated actions
based on expertise may lead to better performance. The cost may also vary by task and context,
where missed steps might add time to getting to the same ultimate answer or might result in
defects with important consequences. There may also be benefits of not being systematic, as
developers shortcut long sets of steps through new insights. Understanding the contextual
factors influencing the value of being systematic requires a more fine-grained understanding of
the moment-to-moment behavior which occurs throughout programming work.

In our study, we found that guided developers were generally able to understand and follow
the strategies. But achieving this required an extensive piloting process, in which we iterated
the strategy descriptions to carefully calibrate the level of detail for the specific expertise levels
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of our participants. In practice, it may be easier to write strategies at multiple levels of detail,
supporting participants with varying levels of familiarity of the concepts referenced by
strategies. In our current design, each statement is described with progressive disclosure at
two levels of detail, with a statement offering a one line high-level description and the
comment below clarifying details about what key concepts mean (e.g., defining what “graph-
ical output” is in Fig. 5c). But for complex concepts, it may be helpful to go further, offering
longer explanations and examples to effectively teach key concepts. Alternatively, complex
queries and actions might themselves be linked to additional sub-strategies and developers
given the option to decide that they know the substrategy and can execute it without assistance
or to use a strategy tracker to learn it in detail.

Building a repository of strategies also requires authoring the strategies. As strategies
ideally reflect the best known practices, one might imagine software engineering researchers
conducting empirical studies to identify various strategies and codifying these explicitly, as we
explicitly captured existing strategies in this work. Or developers themselves might play a
larger role, as strategy creation is crowdsourced much as sites such as Stack Overflow
crowdsource knowledge sharing today. This requires techniques for motivating contribution,
collaboratively identifying which strategies are most helpful and when. It may also be helpful
to involve users of strategies more directly, collecting feedback to help surface issues and
challenges with strategies, confusing or inadequate text, and opportunities for refinement,
which others might then address. Companies and organizations might also have a role, as they
might wish to establish best practices for their domain or to increase the use of strategies that
prioritize specific qualities (e.g., quality over speed, or speed over quality). We envision a rich
future ecosystem of strategies, where researchers and developers work together to create,
study, and improve strategies over time.

While our focus has been on explicit strategies for programming, the ideas might also be
relevant for knowledge intensive domains outside of programming. In domains where com-
puter and humans both have an important role in solving specific problems, documenting how
this collaboration is to take place may have value. Or in more traditional domains where
standard operating procedures are commonly used, it may be helpful to offer greater tool
support for complex and challenging strategies.

As we noted in the beginning of this paper, programmer productivity is not just a matter of
using the right tools, it’s also a matter of how they are used. Prior work, and the ideas and
evidence in this paper reinforce this view, suggesting that we need substantially more research
on strategy languages and tools like Roboto, and research on specific strategies. If we advance
our understanding of strategies, not only we we help developers better leverage the tools and
skills they have, but in doing so, improve software quality by improving developers’ decisions.

7 Conclusion

In this paper, we explored the potential for guiding developers through explicit programming
strategies which help to standardize and share steps for solving typical programming problems
much as engineering handbooks do in other disciplines. In Roboto, strategies are captured as
semi-formal procedures that distribute responsibility to both the developer and computer,
where the developer is responsible for reasoning and deciding and the computer helps structure
processes and persist information. Using a strategy tracker, developers perform the core
reasoning activities, as they are prompted to take action, to gather and process information

Empirical Software Engineering



through queries, and make judgments about their environment through conditions. In turn, the
computer helps carry out this reasoning and be more systematic in following the strategy by
displaying the current statement, recording variables, and advancing the program counter. In
this way, the computer and developer work together. We found that, compared to developers
who are free to choose their own strategies, developers given explicit strategies experienced
their work as more constrained but also as more organized and systematic. And using explicit
strategies enabled developers to be more successful in their work.

Future work should explore many dimensions of explicit programming strategies, including
how to support developers in writing them, how to represent strategies support varying levels
of expertise, and how to help developers choose strategies appropriate to their tasks. This work
could enable a world in which how to program well is not a mysterious, expert skill, hard won
only through practice, but something that can be shared widely, for the benefit of all
developers.
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