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Machine learning techniques are increasingly used in intelligent assistants, that is, software targeted at and 
continuously adapting to assist end users with email, shopping, and other tasks. Examples include desktop 
SPAM filters, recommender systems, and handwriting recognition. Fixing such intelligent assistants when 
they learn incorrect behavior, however, has received only limited attention. To directly support end-user 
“debugging” of assistant behaviors learned via statistical machine learning, we present a Why-oriented 
approach which allows users to ask questions about how the assistant made its predictions, provides answers 
to these “why” questions, and allows users to interactively change these answers to debug the assistant’s 
current and future predictions. To understand the strengths and weaknesses of this approach, we then 
conducted an exploratory study to investigate barriers that participants could encounter when debugging an 
intelligent assistant using our approach, and the information those participants requested to overcome these 
barriers. To help ensure the inclusiveness of our approach, we also explored how gender differences played a 
role in understanding barriers and information needs. We then used these results to consider opportunities 
for Why-oriented approaches to address user barriers and information needs.
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1. INTRODUCTION

Machine learning is increasingly used to power intelligent assistants, that is, software 
that continuously tunes its behavior to match a specific end user’s interaction patterns, 
so as to assist the user in getting work done (helping organize email, recommending 
books relevant to the user’s interests, typing hand-written notes, and so on). When
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assistants adapt themselves in helpful ways, the benefits are obvious: SPAM filters
misclassify fewer emails, recommendation systems find items of interest quickly, and
handwriting-recognition tools do a good job typing up the user’s notes.

What should a user do, however, when the assistant adapts itself in unhelpful ways?
A straightforward answer might seem to be “provide more training examples,” but
gathering sufficient training examples can be unrealistically time-consuming for an
end user, and may not solve the particular misbehaviors the user cares most about. We
posit instead that, just as with regular software, when an intelligent assistant fails,
it should be possible to debug it directly. Further, since intelligent assistants do not
return to the hands of programming specialists, the only people in a position to debug
intelligent assistants are the end users themselves—they are the only ones using that
specific adaptation.

Enabling end users to debug their assistants is nontrivial: most users have little
knowledge of how systems based on machine learning operate. Prior work, however,
has shown that end users can learn how an intelligent assistant makes its decisions
[Tullio et al. 2007]. We therefore prototyped a new approach that aims to support end
users in guiding and correcting—that is, debugging—automated text classification. The
domain we chose to explore was classification of email messages into email folders, as
supported by the widely used naive Bayes algorithm.

Our work makes three primary contributions. First, we present a new Why-oriented
approach to allow end users to debug their intelligent assistants. The approach not
only focuses on answering end-user questions about why the assistant is behaving in
its current manner; it also provides interactive explanations that serve as a debugging
mechanism. Because end users are directly debugging the assistant (as opposed to
providing new training examples), our approach presents information that a program-
mer would expect when directly debugging other kinds of software: representations of
both the intelligent assistant’s logic (analogous to its source code) and runtime state.
The essence of the approach is simple: if the users do not like the explanations that
answer their “why” questions, they can change the explanations to direct the assistant
to behave more accurately.

Second, our work explores the difficulties experienced by end users attempting to
debug an assistant in this Why-oriented manner. We present an exploratory study that
identifies and categorizes the barriers users encountered while debugging using a pro-
totype based on our interactive approach. We also investigated both what information
needs end users expressed while debugging, and when they needed this information.
Finally, because of recent evidence of gender differences in debugging (e.g., Grigoreanu
et al. [2008] and Subrahmaniyan et al. [2008]), we investigated differences among the
barriers and information needs by gender to highlight design considerations that could
differently impact these subsets of end users. Our goal was to uncover barriers posing
obstacles to users of our why-oriented approach. Thus, our user study and result-
ing analysis focused on the barriers users encountered and information needs users
expressed, rather than an empirical evaluation of the prototype’s design. Third, we
consider how to progress further with Why-oriented debugging by identifying machine
learning solutions and open research questions as to how machine learning systems
can address the information needs and barriers of end users attempting to debug their
intelligent assistants.

2. RELATED WORK

As part of its support for debugging, our Why-oriented approach explains the logic
of an intelligent assistant to end users so that they can understand how to debug
it. There are thus two major classes of prior work: techniques that support end-user
debugging, and techniques that support communication between users and machine
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learning systems. We next discuss each, identifying the foundations that informed the
design of our own prototype.

2.1. End-User Debugging

Outside of machine learning, there are a number of debugging systems that help
end users find and understand the causes of faulty behavior. For example, in the
spreadsheet domain, WYSIWYT [Burnett et al. 2003] has a fault-localization device
that helps users reason about successful and unsuccessful “tests” to locate cells whose
formulas are likely to be faulty. Woodstein [Wagner and Lieberman 2004] helps users to
debug e-commerce problems by explaining events and transactions between services.

The Whyline [Ko 2008] pioneered a method (also outside the realm of machine learn-
ing) to debug certain types of programs in an explanation-centric way. Because the
Whyline informs our approach, we present it in some detail.

The original Whyline was explored in three contexts: event-based virtual worlds
written in the Alice programming system [Ko et al. 2004], Java programs [Ko et al.
2008], and the Crystal system for debugging unexpected behaviors in complex inter-
faces [Myers et al. 2006]. In each case, the tools help programmers understand the
causes of program output by allowing them to select an element of the program and
receive a list of why and why not questions and answers in response. These “Why?”
questions and answers are extracted automatically from a program execution history,
and “Why not” answers derive from a reachability analysis to identify decision points
in the program that could have led to the desired output. In the Crystal prototype,
rather than presenting answers as sequences of statement executions, answers are
presented in terms of the user-modifiable input that influenced code execution. In all
of these Whyline tools, the key design idea is that users select some output they want
to understand, and the system explains the underlying program logic that caused it.

Some researchers have focused on the problems and needs that end users encounter
when they debug. For example, Ko et al. explored learning barriers that novice program-
mers encountered when learning how to solve problems in a programming environment
[Ko et al. 2004]. Researchers from the WYSIWYT project have categorized the informa-
tion needs of end users in debugging spreadsheets [Kissinger et al. 2006], enumerating
the types of information that end users sought. These barriers and information needs
may also relate to nontraditional debugging, such as fixing intelligent assistants.

2.2. Communicating with Machine Learning Systems

Several recent studies have highlighted the need to explain a machine learning al-
gorithm’s reasoning to users. For example, Patel et al. examined obstacles faced by
developers familiar with machine learning who need to apply machine learning to
real-world problems [Patel et al. 2008]. Glass et al. investigated the types of questions
users familiar with intelligent agents would like to ask an adaptive agent in order to
increase their trust in the agent [Glass et al. 2008]. Similarly, Lim and Dey identified
the types of information end users wanted context-aware applications to provide when
explaining their current context, to increase both trust in and understanding of the
system [Lim and Dey 2009].

Much of the work in explaining probabilistic machine learning algorithms has fo-
cused on the naive Bayes classifier [Becker et al. 2001; Kononenko 1993] and, more
generally, on linear additive classifiers [Poulin et al. 2006]. Explanation of these algo-
rithms is relatively straightforward and computationally feasible on modern hardware.
Tullio et al. reported that, given some basic types of explanations, end users can under-
stand how machine learning systems operate [Tullio et al. 2007], with the caveat that
overcoming any preliminary faulty assumptions may be problematic. More sophisti-
cated, though computationally expensive, explanation algorithms have been developed
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for general Bayesian networks [Lacave and Diez 2002]. Finally, Lim et al. [2009] in-
vestigated the usefulness of the Whyline approach for explaining simple decision trees,
and found that the approach was viable for explaining this relatively understandable
form of machine learning.

Regarding allowing end users to actually influence behaviors in machine learning
settings, some Programming by Demonstration (PBD) systems learn programs
interactively, via machine learning techniques based on sequences of user actions
(see [Lieberman 2001] for a collection of such systems). When debugging these kinds
of programs, end-user corrections are limited to the addition or removal of training
data—unless the user reverts to a traditional programming language such as Lisp
(e.g., Vander Zanden and Myers [1995]). For example, Gamut allows users to “nudge”
the system when it makes a mistake, leading to the addition or deletion of training
examples [McDaniel and Myers 1999]. Recent work with PBD systems allows some
debugging of programs [Chen and Weld 2008], but their technique only allows the
user to retract actions in a demonstration, which results in adding missing values
to the training data rather than directly modifying the classifier’s logic. Still other
systems allow users to patch up specific mistakes by an intelligent assistant, but do
not take these corrections into account when the assistant makes future decisions.
For example, if CoScripter/Koala programs misidentify web page objects, the user can
specify the correct object for a particular page; the fix, however, will not affect how the
program identifies similar objects on different pages [Little et al. 2007].

Debugging, that is, directly changing the logic of intelligent assistants, has received
only limited attention. One such system, EnsembleMatrix [Talbot et al. 2009], pro-
vides both a visualization of a classifier’s accuracy and the means to adjust its logic.
EnsembleMatrix, however, is targeted at machine-learning experts developing com-
plex ensemble classifiers, rather than end users working with the resulting classifiers.
ManiMatrix [Kapoor et al. 2010] provides an interactive visualization of a classifier’s
accuracy, but user interactions are restricted to the modification of a classifier’s cost
matrix.

Our own prior research has begun to explore end-user interactions with intelligent
assistants, to understand how to effectively enable end users to debug such programs.
Using a paper prototype, we previously investigated three different types of explana-
tions (keyword-based, rule-based, and similarity-based) that machine learning systems
could provide to end users regarding why it was behaving in a particular manner, as
well as user reactions to these explanations [Stumpf et al. 2007]. This paper proto-
type was also used to elicit corrections to the logic from participants (e.g., adjusting
feature weights), allowing us to design an interactive prototype supporting the explana-
tions best understood by participants and the types of corrections they most requested
[Stumpf et al. 2008]. The interactive prototype permitted us to run offline experiments
studying the effects of the corrections provided by end users on prediction accuracy
versus traditional label-based corrections. The results suggest that even when very
simple corrections are incorporated into the assistant’s decision-making process, it has
the potential to increase the accuracy of the resulting predictions [Stumpf et al. 2008,
2009]. For some users, however, the quality of the assistant’s predictions decreased as
a result of their corrections; there were barriers that prevented them from successfully
debugging the assistant.

In summary, the ability of end users to interactively debug machine-learned logic has
been limited. Researchers have begun to investigate how such logic can be explained
to end users, but user corrections, if available at all, have been heavily restricted to
specific forms (e.g., addition of training data) or situations (e.g., the initial creation of a
new program via PBD). In addition to explaining the underlying logic, this article also
addresses supporting end users actually fixing the logic of an intelligent assistant.
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3. A WHY-ORIENTED APPROACH FOR DEBUGGING INTELLIGENT ASSISTANTS

Inspired by the success of the Whyline’s support for debugging [Ko 2008; Myers et al.
2006] and favorable user feedback regarding “why” and “why not”-style explanations
[Lim et al. 2009; Lim and Dey 2009], we have developed a Why-oriented approach for
end-user debugging of intelligent assistants. Our prototype of the approach allows end
users to debug an assistant’s predicted folder classifications of an email application.

Our approach is the first to combine the following elements.

(1) It allows end users to directly ask questions of statistical machine learning systems
(e.g., “why will this message be filed to ‘Systems’?”);

(2) The answers explain both the current logic and execution state (e.g., a visualization
that shows the importance of features/words to this folder, and how certain the
system is that it belongs in this folder);

(3) Users can change these explanations by direct manipulation to debug the system’s
logic. These changes result in real-time adjustments to the assistant’s logic and the
resulting predictions.

3.1. Design of Why Questions

Developing the set of why questions about the logic and execution state of the intelligent
assistant comprised two stages. In the Generate stage, we generated the set of all
possible questions that could be asked via the creation of a formal grammar. Then, in
the Filter stage, we filtered the set of questions generated by the grammar to remove
impossible questions, where impossible refers to situations that were not related to
or achievable by debugging an intelligent assistant. We chose this generate-and-filter
approach, as opposed to handcrafting the questions ourselves, to be sure we would not
miss any possible questions.

We began the Generate stage by inventorying the domain objects, such as messages
and folders, which inform the assistant’s logic. We also inventoried, at a more abstract
level, all logic (and corresponding run-time states) feeding into the predictions, such as
the importance of a word to a folder. Finally, we inventoried the types of feedback the
assistant could provide about its logic and execution state, such as its folder predictions
and its estimation of word importance. The first inventory (domain objects) is enumer-
ated in the Subjects section of Table I, and the latter two together are the Situations
section of Table I which generates a super-set of these types of question-word phrases.
Finally, we added the Modifiers section to allow generated questions to be more specific
(e.g., a question about recently changed predictions, rather than all changed predic-
tions). The Queries section of Table I describes how the various components may be
combined to form the universe of possible questions.

For example, our grammar defines a possible query as “[question] [verb] [subject]
[situation]”. Selecting the first listed production for [question], [verb], and [subject]
produces the production “Why will this message [situation]?” The first production for
the Situations component (current classification) can then be substituted for [situation],
resulting in the completed question, “Why will this message be filed to Enron News?”

In the Filter stage, we filtered the questions generated by the grammar in three
ways. First, we removed questions about subject/situation combinations that could not
be accomplished by the intelligent assistant. For example, a message (a Subject) can
change its current classification (a Situation), but words and folders (also Subjects)
cannot. We further refined our list of questions by removing any questions not relating
to debugging, such as “Why can important words be displayed?” Finally, we removed
rephrasings of similar questions; this explains why there are no questions beginning
with “How can. . . ”, since asking “How can I make something happen?” can usually be
answered by the same information provided by the “Why didn’t something happen?”
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Table I. Query Grammar to Generate Our Why Questions

Components Productions
Questions • Why . . .?

• How . . .?
Verbs • To be

• To do
• Can/Make

Modifiers • This
• All
• Many
• Recent
• Important

Subjects • Message
• Folder
• Word
• Change
• End user (i.e., “I”)

Situations • Current classification
• Change in classification
• Importance
• Availability (i.e., displayed in the UI)

Queries • [query] = [question] [verb] [subject] [situation] |
[question] [situation] [verb] [subject]

• [situation] = [situation] | [situation] [subject] |
[subject] [situation]

• [subject] = [subject] | [modifier] [subject]
• [modifier] = [modifier] | [modifier] [modifier]

Table II. Why Questions and Query Grammar Productions to Generate Them. (Superscript text is used to
map each component to the English phrase it generated (q = question, v = verb, m = modifier, su = subject,
si = situation). Underlined text represents a component consisting of multiple words, and text in <brackets>
is dynamically replaced with the word or folder the user has selected)

Why Questions Generating Production
Whyq willv thism messagesu be filed tosi

<Personal>su?
[question] [verb] [modifier] [subject] [situation]
[subject]

Whyq won’tv thism messagesu be filed tosi

<Bankruptcy>su?
[question] [verb] [modifier] [subject] [situation]
[subject]

Whyq didv thism messagesu turn redsi? [question] [verb] [modifier] [subject] [situation]
Whyq wasn’tv thism messagesu

affected bysi my recentm changessu?
[question] [verb] [modifier] [subject] [situation]
[modifier] [subject]

Whyq didv so manym messagessu turn redsi? [question] [verb] [modifier] [subject] [situation]
Whyq isv thism emailsu undecidedsi? [question] [verb] [modifier] [subject] [situation]
Whyq doesv <banking>su matter tosi

the <Bankruptcy> foldersu?
[question] [verb] [subject] [situation] [subject]

Whyq aren’tv all importantm wordssu shownsi? [question] [verb] [modifier] [subject] [situation]
Whyq can’t makev Isu thism messagesu go tosi

<Systems>su?1
[question] [verb] [subject] [modifier] [subject]
[situation] [subject]

questions. This decision is consistent with the results of Lim et al. [2009], who found
that participants were more successful in reasoning about intelligent assistants (in
the form of decision trees) when presented with answers to either “Why. . . ” or “Why
not. . . ” questions, than participants were when presented with answers to “How to. . . ”
questions.

The Filter stage resulted in the nine Why questions depicted in Table II. (While this
number may seem small, the original Whyline required only six types of questions
[Ko 2008] in the complex domain of Java programming.) Figure 1 shows how these
questions were presented in the prototype, including their context dependency (such
as the ability of the user to select questions relating to specific folders).
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Fig. 1. The Why questions as presented in our prototype.

3.2. Design of Interactive Why Answers

In the original Whyline, answers to “why” questions pointed to relevant places in the
source code, but in intelligent assistants, there is no source code that represents the
assistant’s learned logic for end users to look at or modify. The interactive answer
would have to represent the assistant’s logic by some device other than source code,
while still allowing end users to edit it effectively.

Thus, we designed the interactive answers according to four principles.

—Principle Representation-1. Representations of both the assistant’s logic and execu-
tion state should be available to and manipulable by end-user debuggers.

—Principle Representation-2. Explanations of the assistant’s logic and execution state
should not obscure or overly simplify the learning system’s actual reasoning.

—Principle ML-1. The intelligent assistant should be explainable to end users.
—Principle ML-2. The intelligent assistant should heed end users’ corrections.

Principle Representation-1 was inspired by the information content that traditional
debugging systems provide. Such systems provide a representation of the logic (source
code) that the programmer can edit. They also provide ways to inspect concrete data
about program execution states. For example, debuggers provide access to the values
of variables and the stack.

Principle Representation-2 boils down to being fully truthful with the user about
the assistant’s logic. Machine learning often uses complex statistical models, so there
is a temptation to hide complex details from the end user in an effort to make the
system easier to understand. For example, naive Bayes considers both the presence
and absence of features when classifying items; an explanation that only contains
information for features present in an item may be easier to understand, but it obscures
part of the learning system’s logic. Recent research [Tullio et al. 2007] has showed that
end users could understand the logic that machine learning systems use to make their
decisions, at least in a rule-based system. Further, obscuring this logic would break the
debugging “principle of immediacy” [Ungar et al. 1997] by creating an artificial division
between the logic that end users can view and interact with, and the underlying logic
actually responsible for the assistant’s output. Thus, abstracting away portions of the
assistant’s logic may hamper, rather than help, the user’s debugging efforts.

Principle ML-1 is almost a corollary to Principle Representation-2. We wanted to
support underlying learning algorithms more complex than the trivially explainable
decision trees, but not algorithms so complex that supporting Principle Representation-
2 would become impossible. Regarding Principle ML-2, we also require that the under-
lying learning algorithm must be responsive to the user’s interactive manipulations to
the logic representation. We expand upon both of these points in the next section.

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 2, Pub. date: October 2011.



2:8 T. Kulesza et al.

3.3. The Design Principles and the Underlying Machine Learning Engine

With these four design principles in mind, we chose the naive Bayes [Maron 1961;
Russell and Norvig 2003] algorithm for our prototype. Naive Bayes is a widely used
probabilistic algorithm for text classification. It is more complex than ordinary decision
trees, yet potentially explainable to end users (Principle ML-1).

The machine learning features in our email prediction application were the words
contained in actual email messages. Given our choice of naive Bayes as the learn-
ing algorithm, these features and their associated predictive value for a classification
are a complete representation of the assistant’s logic. The execution state of the as-
sistant is therefore the current set of predictions resulting from this logic, including
the assistant’s degree of certainty in each prediction. This application of Principle
Representation-1 thus results in user-manipulable logic (words and their associated
importance), changes to which affect the assistant’s execution state (its predictions and
their associated confidence).

Although our previous work [Stumpf et al. 2007] found that rule-based explanations
were the most easily understood type of explanation, Principle Representation-2 stip-
ulates that the explanation should accurately reflect the logic of the assistant. Thus,
given our use of naive Bayes, we chose keyword-based explanations consisting of words
and their weights. We refer to the weight of a word as the probability of the word being
present, given the item’s predicted class label. To implement Principle Representation-
2, the visualization is a truthful reflection of the logic of naive Bayes, and hence displays
the union of all words in all email messages. We allowed users to adjust the weights
of any word. Because naive Bayes classifiers use class distributions to inform their
predictions, the distribution of messages across folders is also displayed to the end
user. Hence, the visualization and manipulations allow the user to directly change the
logic the assistant should follow, based on an accurate representation of how the logic
works.

Principle ML-2 says that corrections end users give the system should be heeded. We
used a naive Bayes algorithm,1 but modified the implementation such that corrections
can be integrated in a straightforward manner and, when the user modifies the weight
of a word, the classifier can set the new value to be close to the value specified by the
user.

Being responsive to user corrections can be problematic because changing the weight
of one out of thousands of available features (e.g., changing the weight on one word
out of the approximately 6,000 different words contained in our email messages) could
have little noticeable impact on classification. To make the classifier more sensitive to
user feedback in the interactive setting, we treat the user-specified folder assignment
as a new training data point for the classifier.

3.4. End-User Debugging with Answers

From these design choices, the answers took the following form. Textual answers are
provided for all questions, giving high-level explanations about the logic of the assistant
and general suggestions about how to debug it, but three questions are also answered
through detailed visualizations of the assistant’s logic: these answers formed the de-
bugging mechanism for the end user.

1We had considered using user cotraining [Stumpf et al. 2009] as the underlying algorithm. When user
co-training receives new information from the user about a feature’s value to a folder, this technique assigns
a new weight, based on a combination of the user-assigned value and the classifier’s internal weight—which
could potentially be quite different from the user-assigned value. In our previous work with user cotraining
[Stumpf et al. 2008], we observed that this behavior was frustrating to users because it made the algorithm
appear to “disobey” the user’s corrections.
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Table III. Visual Explanations for Three Why Questions

These answer visualizations are shown in Table III. Similar to ExplainD [Poulin
et al. 2006], bars represent the importance of each feature to a given classification.
However, rather than using bar area to indicate a feature’s contribution toward the
learning system’s prediction, we indicated importance via bar location. By changing
a bar’s location, the feature’s weight can be adjusted in real-time. The choice of bars,
as opposed to points or some other representation, was made because their large tar-
get size makes mouse-based interaction and visual discrimination easy. To debug the
assistant’s faulty logic, users can change these answers by manipulating the bars
(which operate like sliders or faders), with the weight of evidence represented by
each bar being the midpoint of the bar. Because we were interested in exploring how
end users debug an assistant’s logic, as opposed to how they provide it with train-
ing data, the learning system did not train itself on messages that users’ classified
manually.

Providing the necessary interactive aspect for these bar visualizations required sup-
port from the underlying machine learning algorithm. Before explaining how these
visualizations were implemented, we formally define the following properties of the
naive Bayes algorithm. An email message is represented as a “bag of words”, that is,
a Boolean vector W = (W1, . . . , Wm) in which Wi takes the value true if the ith word of
a vocabulary of m words is present in the email message, and false otherwise. The vo-
cabulary in our experiment consists of the union of the words from the following parts
of all the emails: the message body, the subject line, and email addresses in the “To”,
“From,” and “CC” parts of the message header. Stop words, which are common words
with little predictive value (such as “a” and “the”) were not included in the vocabulary.

3.4.1. Answering: “Why will this message be filed in <Folder>?” and “Why does <Word> matter
to <Folder>?”. In previous work [Stumpf et al. 2007], we observed that end users un-
derstood how the presence of keywords influenced a message’s classification, but they
struggled with the concept of how the absence of words influenced the same classifica-
tion. We addressed this difficulty in a novel way by showing the weight associated with
each word in the vocabulary via a bar positioned between the two extremes of Required
and Forbidden, shown in the leftmost images of Table III. For folder f , the weight of a
word is the probability P(Wi = true | F = f ) where Wi is the random variable for the ith
word and F is the random variable for the folder. The closer the bar is to Required, the
more important the presence of the word is to the prediction. If the top of the bar is at its
highest position, then P(W = true | F = f ) = 1.0. If the top of the bar is on the black line
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Fig. 2. Screenshot of the prototype.

in the middle, then P(W = true | F = f ) = 0.0. Since P(Wi = false | F = f ) = 1.0-P(Wi =
true | F = f ), the position of the bottom of the bar can also be interpreted as the prob-
ability of the absence of the word. If the bottom of the bar is at its lowest position, (i.e.
closest to Forbidden), then P(W = true | F = f ) = 0.0. In reality, although the end user
is able to set the bars to its highest or lowest positions, the probability P(W | F = f ) is
never set to the extreme values of 1.0 or 0.0, due to the naive Bayes algorithm’s use
of Dirichlet priors to smooth the probabilities. As a result, the probabilities will be an
epsilon different from the extremes and the bar will be positioned slightly below/above
the respective Required/Forbidden level in the visualization.

Aside from the probability P(W | F), the naive Bayes classifier also uses the class
probability P(F). Although we show the number of messages in each folder, we do not
display P(F) as an interactive bar graph because the training set initially consisted
of an equal number of emails in each folder, and these numbers were displayed beside
each folder name.

3.4.2. Answering: “Why won’t this message be filed in <Folder>?”. The answer to this question
is in the form of a dual-bar view that allows the user to compare and contrast the
importance of words between the two folders, shown in the right image of Table III.
The bars show the respective weights for the currently predicted folder f , and the other
folder f ′ the user indicated, where the positions of the bars correspond to P(Wi = true
| F = f ) and P(Wi = true | F = f ′), respectively.

We can illustrate the degree that an email “belongs” to either folder f or f ′ using
the arrow, as shown at the top of Figure 3. The angle of the arrow between the folders
is based on the difference between P(F = f ′ | W1, . . . , Wm) and P( F = f | W1, . . . ,
Wm). This also serves to reveal the execution state to the end user. Since the bars
allow weights associated with the two folders f and f ′ to be manipulated, changes to
individual words by the end user that result in P(F = f ′ | W1, . . . , Wm) > P(F = f | W1,
. . . , Wm) will be shown by the arrow moving to point to folder f ′ instead.

3.5. Debugging Scenario Using the Prototype

Figure 2 shows how the debugging supports we have described are brought together
in our email prototype. The user’s view consists of familiar email client elements: a
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Fig. 3. Close-up of the visualization/debugging features. The user has just decreased the importance of
“please” to Systems by dragging the blue (light) bar downward, but the system still thinks the message
belongs in Resumes.

folder list (A), a list of headers in the current folder (B), and the current message (C).
In addition, it includes debugging panes that hold textual answers (D) and interactive
visualizations (E).

If at some point the user wants to know why the assistant is behaving in a par-
ticular way, she can ask Why questions either through the global menu bar or a
context-sensitive menu and receive an answer which supports debugging. Consider
the following scenario: A user notices that her intelligent assistant thinks a message
about Systems belongs in the Resumes folder. In Figure 3, this user has just asked why
the message is not filed under Systems. The keyword bar graph shows the system’s
opinion of the importance of each word to the Resumes folder (dark pink), which is the
current folder for this message, versus importance to the Systems folder (light blue).
While reviewing this explanation, the user quickly identifies a problem—her assistant
thinks the word “please” is equally important to both folders. The user disagrees; she
wants to tell her intelligent assistant that she rarely sees the word “please” in mes-
sages from the Systems group. Thus, she drags the light blue bar lower (second from
left); how much lower depends on her assessment of how important “please” should be
to the Systems folder. The dark blue bar indicates the original importance of “please,”
allowing the user to see her change and its magnitude.

User changes to each bar graph entry cause the system to immediately recalculate
its predictions for every message in the inbox, allowing users to instantly see the
impact of their manipulations. These changed folder predictions are shown through a
change in the direction of the arrow between the two folders for the currently viewed
message. They are also listed textually next to each message header in the inbox,
highlighting headers whose predictions have changed with a red background. For every
manipulation, the user immediately sees how both the assistant’s logic (in terms of the
importance of words), and the execution state (e.g., the resulting program’s predictions),
have changed.

4. ADDRESSING DEBUGGING BARRIERS AND INFORMATION
NEEDS USING THE WHY-ORIENTED APPROACH

To investigate obstacles end users might encounter while correcting an intelligent as-
sistant using our new approach, we conducted an exploratory study using the prototype
we have just described. Our purpose was not a summative evaluation of the prototype,
but rather to investigate three questions to understand how our approach could be ex-
tended to further support end-user debugging: when and where the end-user debuggers
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encounter problem areas (barriers); what could help users when they encounter these
problem areas (information needs); and how machine learning algorithms could help
address the barriers and information needs. Further, since researchers have recently
found evidence of gender differences in debugging, we investigated gender as an aspect
to highlight design considerations that could differently impact subsets of end users.

4.1. Exploratory Study Design

4.1.1. Study Design and Participants. The study used a dialogue-based think-aloud de-
sign, in which pairs of users talked to each other while collaborating on a task. The
pair design was to encourage “thinking aloud” by leveraging the social norms that
encourage people to voice their reasoning and justifications for actions when working
with a partner.

Six pairs of female and five pairs of male students participated. The pairs were
evenly distributed by gender across GPAs, years in university, and email experience.
All twenty-two participants were required to have previous email experience and no
computer science background. In order to eliminate a lack of familiarity with each
other as a potential difficulty, pairs were required to sign up together. Pairs also had to
be the same gender, so that we could clearly identify any gender differences that might
arise.

We ran the study one pair at a time. Each session started with the participants com-
pleting a questionnaire that asked for background information and gathered standard
presession self-efficacy data [Compeau and Higgins 1995]. We then familiarized the
pair with the software and examples of classification through a 20-minute hands-on
tutorial. An instructor read a scripted tutorial, teaching participants about the filing
and classification abilities of the prototype, how to ask the prototype questions, and
giving an overview of the prototype’s answers and how to change those answers. The
same instructor presented the tutorial to each participant pair.

For the study’s main task, participants were asked to imagine they were co-workers
in a corporate department at Enron. Their department included a shared email ac-
count to provide easy access to communications that affected all of them. The premise
was that new email software, featuring the ability to learn from the users and auto-
matically classify messages into a set of existing folders, had recently been installed;
their supervisor then asked them to get messages from the inbox into the appropriate
folders as quickly as possible, doing so in a way that would help improve later clas-
sifications. Because the prototype’s classifier did not train on (and thus, did not learn
from) messages that the participants manually dragged to folders, the task encouraged
participants to debug the system via the interactive explanations.

We used the publicly available Enron email data set in our study. To simulate a shared
mailbox, we combined messages that three users (farmer-d, kaminski-v, and lokay-m)
had originally filed into five folders (Bankruptcy, Enron News, Personal, Resumes, and
Systems). At the start of the session, each folder held 20 messages that were used to
initially train the classifier. Participants were given five minutes prior to the main task
to familiarize themselves with the existing categorization scheme (with the 20 training
messages in each folder available as examples), so that they would have an idea of how
new messages could be filed. They were told that there was no “correct” classification;
they should file the messages in a way that made sense to them. The inbox contained
50 additional messages for the participants to file. The amount of training data was
small so as to simulate real-world situations, in which users have not invested the time
to label hundreds of training examples.

Each pair worked on the main task for 40 minutes, with participants switching
control of the mouse half way through the session. We used Morae software to capture
video and audio of each user session, synchronized with their screen activity. Our

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 2, Pub. date: October 2011.



Why-Oriented End-User Debugging 2:13

prototype also logged each user action. After completing the main task, participants
individually filled out a questionnaire, gathering feedback about the prototype and
their postsession self-efficacy.

4.1.2. Analysis Methodology. To analyze the participants’ verbal protocol during our
study, we developed two code sets to capture barriers and debugging activities. Ko
et al. identified six types of learning barriers experienced by novice programmers
using a new programming environment [Ko et al. 2004]; these barriers informed our
investigation because our participants, like theirs, were problem-solving about how
to make programs work correctly and were inexperienced with the facilities provided
for debugging. Because our debugging environment is substantially different from the
traditional textual programming environments studied in Ko et al. [2004], we adjusted
the definitions of Ko’s barriers to map the high-level problems each barrier describes
to the problems participants faced while debugging with our prototype (examples are
from actual participant transcripts).

—Ko’s Design barriers are situations in which the user does not know exactly what
he or she wants the computer to do. When debugging an intelligent assistant, this
means the user doesn’t have a clear idea of how to go about fixing the assistant. For
example, “Can we just click File It?”

—Ko’s Selection barriers occur when the user knows what he or she wants the com-
puter to do, but does not know which programming tools to select to accomplish the
goal. Our why-oriented debugging tool has the ability to adjust the assistant’s logic
via feature modification, so we mapped selection barriers to end-user difficulties in
selecting which feature to adjust. For example, “What kind of words should tell the
computer to [file this] to Systems?”

—Ko’s Coordination barriers occur when the user knows the programming tools he
or she wants to use, but does not know how to make them work together. With our
debugging tool’s affordance to modify the features the assistant uses to classify items,
such modifications may alter multiple classifications. Thus, coordination barriers in
this domain reflect the difficulty of coordinating how independent changes to the
assistant’s logic have resulted in the current set of predictions. For example, “OK, I
don’t know why it [changed classification].”

—Ko’s Use barriers are situations where the end user knows which programming
tools he or she wants to use, but does not know how to use them properly. The UI
affordance in our approach for feature modification is to drag a slider up (to increase
the importance of a feature’s presence) or down (to increase the importance of a
feature’s absence). Trouble deciding in which direction or to what extent to adjust this
slider is our version of use barriers. For example, “So is [this word] ‘unimportant’?”

—Ko’s Understanding barriers occur when end users thought they knew what to do,
but the results of their actions were surprising. This barrier mapped directly to
situations in which users were surprised by the assistant’s feedback. For example,
“Why is ‘web’ more forbidden for [the] Systems [folder]?”

We did not use Ko et al.’s sixth barrier (searching for external validation), because
problem-solving in our study was based on facts internal to our environment. Regarding
debugging activities, previous research [Davies 1996; Ko 2008] identified six common
actions in fixing bugs in programming environments. We applied the two not involving
data structuring or writing new source code, and also introduced a fault detection code.

—Fault detection denotes participants detecting an incorrect prediction by the system.
For example, “It’s going to [the] Systems folder; we do not want Systems.”

—Diagnosing occurs when participants believe they have diagnosed the specific cause
of a detected fault. For example, “Well, [the importance of] ‘email’ needs to be higher.”
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Table IV. Example of our Code Set Applied to a Participant Transcript

Minute Participant Utterance Code
21 P1 Why everything is going to Personal? Coordination
21 P2 Can we just drag or do we have to make

system learn?
Design

21 P1 We’d have to drag every one. Hypothesizing
23 P2 I think we should file email via chart to adjust

more easily.
Hypothesizing

24 P2 Should we try ‘chairman’? [receive message
from gtalk asking to switch places] [clicks
on different message: ‘eol outage Saturday
january 20th’]

Selection

24 P2 Then you want to adjust something. Hypothesizing
24 P1 See ‘eol’ should be Systems not Personal. Fault Detection

—Hypothesizing represents times when participants hypothesized a general, rather
than a specific, solution to detected faults. For example, “Let’s move something else,
and then maybe it’ll move [the message] to Systems.”

We applied the codes to “turns”. A turn consists of sentences spoken by a participant
until his or her partner next spoke. Speech by one participant that contained a signifi-
cant pause was segmented into two turns. If the same barrier spanned multiple turns
(for example, if one person was interrupted by the other), only the first occurrence of
the barrier was coded. Only one code could be applied per turn.

Working iteratively, two researchers independently coded a randomly selected five-
minute section of a transcript. We determined similarity of coding by calculating the
Jaccard index, dividing the size of the intersection of codes by the size of the union
for each turn, and then averaging over all turns. Disagreements led to refinements
in coding rules that were tested in the next coding iteration. Agreement eventually
reached 82% for a five-minute transcript section, followed by an agreement of 81%
for a complete 40-minute transcript. Given this acceptable level of reliability, the two
researchers divided the coding of the remaining transcripts between themselves. A
three-minute section of a coded transcript is included in Table IV to illustrate the
application of our final code set.

4.2. Results: Debugging Barriers (When and Where)

4.2.1. Barriers Encountered. Our participants’ attempts to debug ran into numerous
barriers, encountering an average of 29 barriers during the 40-minute study (with a
range from 7 to 66). The number of barriers encountered was about double the number
of messages participants filed (mean = 16.1, SD = 8.3). Time did not matter: these
barriers were equally likely to be encountered at the beginning and end of the study.
Everyone hit barriers, but confidence mattered: participant self-efficacy (a specific form
of self-confidence [Bandura 1977]) was significantly predictive of the number of barriers
they encountered, normalized for the number of utterances each participant made
(linear regression, F(1,9) = 7.11, R2 = 0.44, beta = −0.005, p = .026).

As Figure 4 shows, the most frequent barriers our participants encountered were
Selection barriers (40% of all barriers), that is, selecting the right words or messages
to modify to fix the assistant. In Ko et al’s work [2004] on traditional programming
environments, Selection barriers did not play a large role, but they did play a large role
in our domain. This participant, for example, had trouble determining which features
are important for the Systems classification.

P712: “Then ‘news’? Well, they like team players. Contributions? That would be more that you’d use for
News than Systems.”
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Fig. 4. Sum of barriers encountered in all transcripts.

Coordination barriers also occured frequently (28% of all barriers). Participants often
wondered how the corrections they were about to make would change the system’s other
predictions, as well as how to coordinate the systems response (or failure to respond)
when they adjusted the assistant’s logic.

P732: “Resume? [user finds word, makes ‘resume’ required] Why didn’t it change it?”

Further evidence that Selection and Coordination barriers were especially problematic
comes from the participants’ responses to a questionnaire where 16 of 22 respondents
(72%) mentioned difficulty in determining which words were important when fixing
misclassified mail.

Our results highlight that the kinds of barriers encountered while debugging intel-
ligent assistants may be rather different than those seen in traditional programming
environments, and hence require their own specialized support. Ko’s top two barriers in
the more traditional programming environment were Use and Understanding [Ko et al.
2004]; but these two categories were fairly low for our participants (Use: 12%, Under-
standing: 3%); instead, Selection and Coordination barriers were our participants’ top
two obstacles. The differences among the Use, Understanding, and Selection barriers
that our participants encountered and those faced by Ko’s participants may be related
to differences in the logical structure of traditional source code versus sets of features
and predictions. In traditional source code, a user must select from among only a small
number of constructs, each with different purposes and semantics, providing sizeable
territory for use or understanding questions. In contrast, our Why-oriented approach
had only one simple construct (a feature bar), which participants had no trouble us-
ing or understanding—but the participants had to select from a very large number of
instances of that construct, providing plenty of potential for selection questions.

Regarding Coordination barriers, the statistical logic of machine learning systems
may have further contributed to confusion when multiple predictions changed as a re-
sult of a single feature modification. Even if participants did expect such wide-ranging
changes, it was sometimes difficult to coordinate which and how many predictions
changed in response to each user modification, making it hard to judge whether the
results are acceptable.

While Design and Use barriers should not be neglected, the predominance of Selection
and Coordination barriers in this domain suggests that end users may have less trouble
deciding on a strategy for how to give feedback (Design and Use), than on where to give
feedback (Selection and Coordination).
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Fig. 5. Average number of barriers per session encountered by males (dark blue bars) and females (light
pink bars).

4.2.2. Gender Differences in Barrier Encounters. Are barriers different for male and female
end-user debuggers, and will overcoming them require different kinds of support?
Interestingly, males and females did not appear to experience the same number of
barriers: females encountered an average of 33.3 per session, versus the male average
of 24.4 per session. This difference was despite the fact that males talked more (and
thus had more opportunities to verbalize barriers) than females, averaging 354 turns
per session, compared to 288 for females.

Figure 5 shows the average barrier count per session (the same differences are
also present in comparing the average barrier counts per turn). Females experienced
more barriers in almost every category; the only exceptions were Coordination and
Understanding. Selection barriers, the most common barrier type, had a large dif-
ference: females averaged 14 per session, about 1.5 times as many as the male av-
erage of nine. This difference was statistically significant despite the small size of
our sample population (Wilcoxon Rank-Sum Test: Z = 2.1044, p < 0.05). Design bar-
riers, too, exhibited a strong contrast, with females averaging 5.3 per session ver-
sus males averaging 2.8. The differences in both the total number of barriers and
Design barriers encountered were not statistically significant; but this may be a re-
sult of our small sample size (totaling six female and five male pairs). A statisti-
cally oriented experiment with a larger sample is needed to provide more conclusive
evidence.

One reason for the apparent differences may be that females expected more prob-
lems due to lower self-efficacy (a form of self-confidence specific to the expectation of
succeeding at an upcoming task [Bandura 1977]). As mentioned earlier, there was a
significant, inverse relationship between self-efficacy and the number of barriers a par-
ticipant encountered. Females came into the study with lower self-efficacy (measured
via a self-efficacy questionnaire [Compeau and Higgins 1995]) than males, scoring an
average of 38 out of a possible 50, compared to 42 for males (Wilcoxon Rank-Sum Test:
Z = −2.64, p < .01). This is consistent with similar self-efficacy differences for end
users engaging in other complex computer tasks [Beckwith et al. 2005, Grigoreanu
et al. 2008; Subrahmaniyan et al. 2008]. As we show in the next section, our results
about differences in barriers are consistent with prior research in another aspect as
well: these prior works showed gender differences in both features used and the strate-
gies end users employed to find and fix errors in spreadsheets.

Another possible cause for the observed disparities may be gender differences in
information processing. For example, work on the selectivity theory of information
processing [Meyers-Levy 1989] has shown a number of differences in how males and
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females process information. According to this theory, females are more likely to work
with information comprehensively, whereas males are likely to pursue information
more selectively. The following quotes illustrate the tendency our female pairs showed
toward examining several words from a message before moving on, versus the males’
propensity for advancing to the next message as quickly as possible.

Female Pair

P1131: “So that [word is] really important. And then, um, probably ‘updates’ would be important. And
then, um... [the word] ‘virus’?”
P1132: “Yeah. And then, uh, [the word] ‘login’.”

Male Pair

P1211: “Its [classification is] correct. It’s learned something, eh.”
P1212: “Um hmm.”
P1211: “Lets go to the next message.”

The selectivity theory is also consistent with our frequency data: females worked with
a larger set of words than males did (106 unique words for females vs. 62 for males),
perhaps to perfect the algorithm’s performance. Males, conversely, may have been more
inclined to move on to the next message as soon as they obtained the desired effect.
Supporting this hypothesis is the average number of messages each group filed—
male pairs averaged 19.8 messages filed in each 40-minute session, while female pairs
averaged 13.0. This suggests that in order to successfully support a wide range of end
users, debugging features should be designed so that both comprehensive and selective
strategies can lead to success.

4.2.3. Barrier Transitions and Gender Differences. When a participant encountered a bar-
rier, what happened next? Were there different patterns of what male and female
participants did after encountering a barrier? Understanding how barriers were en-
countered and resolved (or not) can provide insight into their severity and impact, and
highlight when additional support may be most necessary.

To answer these questions, we investigated the sequence of barriers encountered
and looked for differences between male and female participants. The barriers and de-
bugging activities coded in the participants’ verbalizations are simply states between
which they can transition. To calculate the probability of each state (barrier or activ-
ity) following an initial barrier, we divided the number of occurrences of a particular
subsequent state by the total number of states that followed the initial barrier. For
example, if Selection followed Design once and Diagnosing followed Design twice, then
the probability of Selection following Design was computed as 1/(1 + 2) = 0.33, or 33%,
and the probability of Diagnosing following Design was computed as 2/(1 + 2) = 0.66,
or 66%. We use these probabilities for clarity only; our graphs (Figures 6, 7, 8, and 9)
show the exact number of instances for completeness.

Initially, we hypothesized that there would be a commonly followed path through the
barriers, which could allow us to support debugging by providing the right information
at just the right time. For example, perhaps most users would flip between Design and
Understanding barriers at the beginning of the task. Once those early hurdles were
overcome, they might cycle through Selection, Coordination, and Use barriers until
they understood the assistant’s logic, after which the barriers would be encountered
with considerably less frequency. When examining our participants’ data, however, we
saw no discernible tendency for users to encounter barriers in specific orders or at
consistent times during their debugging session. Nor did barrier frequency change in
any significant way over time; users were just as likely to encounter Design barriers in
the first five minutes of the study as they were in the final five minutes. This suggests
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Figs. 6, 7, 8, and 9 (from top to bottom). Number of transitions from barriers to other barriers or debugging
activities. Light squares indicate one instance by a female pair; dark squares indicate one instance by a male
pair. Barrier nodes are colored light purple; debugging activity nodes are dark blue.
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Fig. 10. An example participant pair’s path through the debugging barriers. The width of the arrows indicate
the percentage of transitions: thinnest = 6%, thickest = 20%. Transitions accounting for 5% or less of total
are not shown.

that an approach aiming to support end-user debuggers in overcoming barriers must
support finer-grained patterns of barriers as they are encountered, instead of basing
its explanations on an expected common path.

Both male and female end users exhibited finer-grained patterns for many of the
individual barriers. Although no single barrier stood out as a frequent transition from
Design (Figure 6), when we examined gender differences, we found that males reacted
to Design barriers with some form of debugging activity on average 70% of the time,
versus 46% for females. Thus, it appears that Design barriers proved less of a problem
to males than females, since they were able to move on to a debugging activity instead of
encountering another barrier. Since Design barriers relate to a user lacking a debugging
strategy, an implication of this gender difference is that our approach’s explanations
for overcoming these barriers should be certain to include strategies other researchers
have identified as frequently employed by female end-user debuggers [Subrahmaniyan
et al. 2008].

Figure 7 shows that the most common action following a Selection barrier was the
debugging activity Diagnosing, which occurred after 40% of Selection barriers. The next
most prevalent code was a second Selection barrier (19%), suggesting that Selection
barriers were either quickly overcome, leading to Diagnosing, or they cascaded, stalling
participants’ debugging progress. This implies that once users had trouble deciding
where to give feedback, they became less and less able to do so. Figure 10 illustrates
the problem by graphing all of the barrier transitions for one of our participant pairs
(P701 and P702). The high number of incoming edges to the Selection box was typical,
as is the loop from Selection back to itself. We already discussed the high number of
Selection barriers overall, but Figure 7 points to those barriers specifically stalling
participants; an initial Selection barrier was often followed by a second. Further, our
participants were paid for their time and worked in teams; we hypothesize that in
real-world applications, two or three sequential Selection barriers (which prevented
participants from making visible progress) may be enough to dissuade individual end
users from investing time and effort in improving their intelligent assistants. This
suggests the need for our approach to point out the words or features that would be
most likely to change the program’s behavior; we discuss how this might be done in
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Section 4.4.1. These participants, for example, could have benefited from the following
of help.

P732: “And what about ‘interview’? Oh, we just did that, so no. ‘Working’, maybe?”
[finds word]

P731: “Well, no because ‘working’ could be used for anything really.”
P732: “True.”
P731: “‘Work’, no.”
P732: “What about... [scrolls left] ‘scheduling’. No, that could be News.”
P731: “That could be News, too.”
P732: “What about ‘scientist’?”
P731: “That could be Personal.”

What about those users who did not stall on Selection barriers? Males had a higher
tendency for Hypothesizing following a Selection barrier than females, 26% to 11%.
Recall that Hypothesizing was coded when the pair discussed a possible fix but didn’t
include a specific word, whereas Diagnosing indicates that the pair specified the word
they intended to modify. Thus, males were more likely to follow a Selection barrier
with a general solution, while females tended to first agree on a word to alter. Why this
difference? We know our female participants came into the study with lower self-efficacy
than our male participants, and prior research [Beckwith 2007] has revealed female
end users to be more risk averse, in general, than male end users. Both low self-efficacy
and risk-aversion may have been alleviated by the pair coming to agreement about the
best way to proceed; a participant’s self-efficacy could be boosted by discovering that
her partner agrees with her idea, and this improved confidence may in turn lower the
perceived risk of the proposed debugging fix. Our approach could use the same solution
proposed to help users overcome Selection barriers (directing end users toward words
that will have the strongest effect on message reclassification) to help low self-efficacy
users as well, by reducing the choice of words to modify down to a more manageable,
less intimidating, subset.

Like Selection barriers, Coordination barriers often led to Diagnosing (30%)
(Figure 8). Taken together with the other two debugging actions, Fault Detection (14%)
and Hypothesizing (20%), this barrier was followed by a debugging action 65% of the
time. Males, however, tended to follow Coordination barriers with more Diagnosing
than females (47% vs. 18%, respectively), whereas females followed them with more
Hypothesizing than males (29% vs. 8%). One interpretation of these results is that fol-
lowing the confusion regarding the impact of their changes, female participants were
more likely to step back and attempt to coordinate how their changes will impact the
entire system, whereas males tended to stay focused on a specific failure. This would be
yet another indication of the comprehensive problem-solving strategy associated with
females [Meyers-Levy 1989], providing further evidence for the need to support both
comprehensive and noncomprehensive problem-solving strategies in end-user debug-
ging environments.

Finally, Use barriers (Figure 9) were strongly tied with a transition to Diagnosing
(44%); all other transitions were below 15%. It seems that when a Use barrier was
encountered, our participants’ response was to adjust their specific solution, rather
than move to a different problem or generalize a solution. This was equally true for
males and females. It appears that participants can frequently overcome this barrier
by themselves and only need additional help in a few instances.

Thus, the patterns of barrier transitions are consistent with the Selectivity Hypoth-
esis information processing strategies discussed earlier, adding additional emphasis to
the need for intelligent assistant debugging approaches to support both selective and
compressive information processing strategies.
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4.3. Results: Information Needs (What Could Help, and When)

4.3.1. Barrier Transitions and Gender Differences. What information would have helped our
participants overcome these debugging barriers? To explore this, we compiled a list of
every question participants asked during the course of the study, and two researchers
worked together to group the questions based on the type of information being re-
quested. This grouping resulted in the seven knowledge bases described in Table V.
The information needs were nearly always in transcript segments that also contained
a barrier (as coded in Section 4.1.2). Thus we were able to calculate how often they
wanted each kind of information when encountering each barrier. Table V summarizes
the results: each graph illustrates the percentage of barriers in which participants
explicitly requested a specific type of information to overcome the barrier. Figure 11
shows the frequency of each category.

As Figure 11 illustrates, the most frequent information requested by end users was
concrete advice about how to fix the machine’s logic. Users wanted to know specifically
which word weights they should be modifying to move a message into a specific folder;
how much they should be adjusting the word weights; and previews of what will
happen after adjusting the weights of particular words. This type of information alone
represented nearly half of the total information requests among participants (42% of all
requests), suggesting that even satisfying this information need alone may address a
large number of user difficulties. Our participants most frequently discussed the value
of this information after encountering either a Selection (71%) or Use (86%) barrier,
suggesting that satisfying these information needs via answers to our Why questions
could almost eliminate these two barriers.

The second largest set of user-requested information related to the intelligent assis-
tant’s current logic. This includes user questions about why the intelligent assistant is
behaving in a particular manner, such as “Why did this message turn red?” and “Why
won’t this message be filed to Systems?” Participants most frequently expressed a need
for this type of information after encountering a Coordination barrier (74%). This was
the primary set of questions we hoped to answer via our Why-oriented debugging ap-
proach. Note that, as with the information needs on how to fix the assistant’s logic,
users appeared to want concrete information–they mentioned specific messages and
folders, rather than general explanations on how the assistant makes predictions. This
desire for concrete solutions highlighted a nuance in our prototype: it coupled concrete
visual explanations of word weights with generalized textual explanations of the assis-
tant’s general algorithm for classifying messages. Participants frequently commented
that the generalized textual answers to their questions did not change with context
and were unhelpful. This is an example.

P1001: Ok go to the ‘why’ button. [clicks on the global why menu] Ask ‘why not Systems’. [asks ‘why
won’t this message be filed to..?’].
P1002: It says the same thing about word importance.

Thus, phrasing the explanation in the context of the message that a user is currently
working with may be a better way to present this particular type of information.

When participants encountered a Design barrier, they frequently believed they could
overcome it if they possessed more details about debugging strategies (61% of Design
barriers). These strategy questions fell into two categories: general, when the end user
appeared to be searching for a different, better strategy (e.g., “Do we have to teach the
system everything?”); and refinement, when the user had questions about particular
aspects of their current strategy (e.g., “Should we file it now?”). Note that participants
expressed more interest in information about debugging strategies than about the user
interface features of our Why-oriented prototype. Prior research [Kissinger et al. 2006]

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 2, Pub. date: October 2011.



2:22 T. Kulesza et al.

Table V. Participants’ Information Needs when Encountering Barriers. (Graphs indicate the percentage
of Design (D), Selection (S), Coordination (C), Use (U), and Understanding (Un) barriers in which
participants explicitly mentioned needing the left column’s information to overcome each barrier.)
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Fig. 11. Number of times a participant implied a particular knowledge base would help overcome their
current debugging barrier.

regarding end users debugging spreadsheet formulas reported a similar difference, and
posits that this is part of the phenomenon of “active users” [Carroll and Rosson 1987]
who are primarily concerned with completing a task, rather than exploring “potentially
interesting” user interface features.

Participants expressed an interest in overviews of the existing dataset they worked
with, such as “How many messages are in each folder?” and “What other messages
are [some word] used in?”—a need we also observed in a previous study [Stumpf et al.
2008]. Although these only accounted for 7% of observed information needs, a data
overview was requested after 15% of Selection barriers, suggesting that explanations
providing these details may help alleviate the most egregious barrier we observed in
this domain. Further, every participant pair, save one, explicitly requested an overview
of the data at least once. Part of the reason may have been due to unfamiliarity with
the set of email messages our participants worked with, but even if they had such
familiarity, such an overview could be useful to gauge the importance of words and the
distribution of classifications quickly in large data sets.

The final two information needs, machine capabilities and user action history, were
rare, accounting only 5% of all information requests, combined. Even though their oc-
currence was low, they may have fundamental effects; clearly, a flawed understanding
of what the intelligent assistant is capable of parsing and using in its predictions would
seriously impair one’s ability to provide useful feedback to the assistant, and a clear
indication of the actions a user has performed over time may help end users understand
the long-term effects of their changes on the assistant’s predictions. The idea of dis-
playing the history of user actions is also consistent with the Whyline approach, since
each user-made change to the assistant’s logic can impact the classification of multiple
messages, and similarly, a single change in classification may be the result of a collec-
tion of multiple user adjustments. Explanations of why such a change in classification
occurred would be incomplete if they omitted the user modifications contributing to the
reclassification.

4.3.2. Gender Differences in Information Needs. Since there were gender differences in
the barriers encountered, we also investigated whether there were discernable gender
differences in participant information needs that could help overcome these difficulties.

Although our data was sparse, female participants tended to have more questions
about UI features than male participants (Figure 12). Previous research [Beckwith
et al. 2005] has investigated gender differences in the adoption of debugging features
for traditional programs. In that work, females were hesitant about adopting new
features; they adopted them less frequently and later in the process than familiar
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Fig. 12. Average number of information needs per session encountered by males (dark blue bars) and
females (light pink bars).

features; and this had repercussions on new bugs introduced through their debugging
activities. Our Why-oriented approach introduced a new set of features that are aimed
at debugging intelligent assistants. Thus, providing specific support to help understand
these features and entice females to use them may be warranted.

An interesting gender difference among our participants was their interest in strate-
gic and tactical information. Figure 12 shows that information about Debugging Strat-
egy and How to Fix the ML Program was requested twice as much by females as
males. Information regarding How to Fix the ML Program is particularly applicable for
overcoming Selection barriers (Table V), which females encountered almost twice as
frequently as males. Moreover, females tended to encounter further Selection barriers
after the initial Selection barrier; providing this information could reduce the risk of
females becoming stuck in these Selection barrier loops. Furthermore, providing How
to Fix the ML Program information could help females overcome Design barriers and
move on to debugging activities (e.g., diagnosing, hypothesizing, or fault detection).

Recent work has explored the possibility of using textual and video explanations
to present end users with debugging strategies [Subrahmaniyan et al. 2007]. Such
techniques may be especially applicable in this domain because of low user self-efficacy
regarding ability to debug an intelligent assistant, and to the inverse relationship
we observed between participant self-efficacy and the number of barriers participants
encountered. According to self-efficacy theory, watching similar people succeed at
the same type of task not only helps to guide users toward successful strategies, but
may also increase their confidence in being capable of completing the task themselves
[Bandura 1977].

In contrast, we did not see gender differences in understanding how the intelligent
assistant should operate. In our study, female participants requested an overview of
existing user data and the machine’s logic and capabilities at about the same frequency
as males, suggesting no gender difference in reasoning about how the classifications
should be made by the participants themselves.

In summary, it seems that any gender differences in information needs were more
strongly tied to needing explanations about how to strategically make changes than to
the specifics of the assistant’s logic. Fulfilling these targeted information needs may
help to remove the differences in barriers (particularly Design and Selection) that
affected females more than males.
4.4. How Machine Learning Algorithms Can Better Help Users (How)

If the user and her machine are to be partners, each has a role in helping the other
cope with difficulties. Our Why-oriented approach allows users to help improve the
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machine’s logic; but how can the machine further help users with their barriers and
information needs? We focus particularly on Selection and Coordination barriers, as
these accounted for over two-thirds (68%) of the total number of debugging barriers
participants encountered during the course of our study.

4.4.1. Helping with Selection Barriers. Selection barriers were the most frequently en-
countered type of barrier; in fact, many participants became stuck in loops of repeated
Selection barriers. Recall that this type of barrier reflects the difficulty of selecting
the right words or messages in order to debug the intelligent assistant. This difficulty
occurs because a text classifier often uses all words appearing in all emails as features,
amounting to thousands of features. The sheer number of features makes finding a par-
ticular word in the representation of the assistant’s logic time-consuming for a user.
User-interface affordances can only do so much to alleviate this problem. For example,
our bar graph was scrollable and allowed users to sort the features by weight or alpha-
betical order. Such interface tweaks are mere band-aids to the real problem—there are
simply too many features for end users to consider.

One way to address the Selection barrier is to reduce the number of words displayed
in the visualization by using a class of machine learning techniques known as feature
selection [Guyon and Elisseeff 2003]. Instead of using all words in all emails as the set
of features, we choose the top K most predictive words as the set of features. Feature
selection in our email setting would reduce the number of features from thousands of
words down to a few hundred. A particularly useful group of feature selection methods
are based on sensitivity analysis, which is a technique used in statistical modeling
to determine a model’s robustness to changes in its parameters [Chan and Darwiche
2002].

Methods for sensitivity analysis are important for addressing Selection barriers, as
they allow us to determine how much the weight of a word needs to be modified in order
to change the probability that the email belongs to a folder F. Chan and Darwiche
[2002] investigate the sensitivity of probabilistic queries on a Bayesian network in
response to changes to a single parameter in the network. The authors then develop
bounds on the effect of these changes to the query that allow the machine to determine
if a change to a parameter for a word (i.e., the probability P(Wi| F)) has little to no
effect on the predicted folder. These bounds can also be derived for the naive Bayes
classifier because it is a special case of a Bayesian network. By omitting words that
have little impact on the current prediction from the visualization would allow the
user to focus attention on only those word weights that, if changed for this message,
would alter the message’s classification. Unfortunately, this approach only captures
the effects of a single parameter change. Chan and Darwiche [2004] investigate the
effects of changes to multiple parameters; but in the most general case this incurs a
significant computational cost.

Although feature selection addresses some of the issues regarding selection barriers,
it also introduces other problems. First, reducing the number of words from thousands
to a few hundred still leaves the user with a fair number of features to sift through.
Second, feature selection determines the top predictive features using the training set.
If an email should be classified in a folder due to a distinct word that does not appear
frequently in the training set, that word is unlikely to be among the top K predictive
features. The end user would thus need to be able to add that word as a feature.
Allowing end users to create new features is a promising direction for future work.

Furthermore, in the case of sensitivity analysis, even if we can determine the ef-
fects of changing multiple parameters, there are still an infinite number of parameter
changes that can alter the current prediction to the desired folder. Sensitivity analysis
is only useful for determining how much a change to the parameters will affect the
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final prediction. It is not helpful in identifying which changes out of a set of candidates
would result in the most accurate classifier for future emails. The underlying issue to
support the identification of features to modify is that there are an infinite number
of combinations in which the weights on the words can be changed in order to cause
the machine learning algorithm to classify an email to the desired folder. Ideally, these
changes should improve the classification accuracy of the intelligent assistant not just
for the current email message, but also future, as-yet-unseen messages. The distribu-
tion of future emails is clearly impossible—nevertheless, a possible method for helping
with Selection barriers is to rely on the relationships between words in existing mes-
sages, in order to direct the end user’s attention to particularly important words. These
relationships would need to come from an external source, such as a commonsense
database [Liu et al. 2003]. For example, if a message was misclassified to the Finance
folder when it actually belongs in the Sports folder, a commonsense database could
be used to identify words in the message that relate to sports and suggest that the
user focus on these words. If, however, the end user’s folder assignments for emails are
obscure, ill, defined, or inconsistent, a commonsense database may be unable to help.
Hence, identifying good features to modify remains a difficult open problem.

Simplifying the visualization by reducing the number of features needs to be care-
fully balanced against the stated design principles of our Why-oriented approach. In
particular, we believe that the visualization should not obscure the logic of the intel-
ligent assistant and that the user needs to be able to modify this logic to debug the
assistant. Both of these principles are at risk if the visualization is overly simplified.

4.4.2. Helping with Coordination Barriers. Coordination barriers were the second most fre-
quently occurring type of debugging barrier during our user study. Recall that these
barriers concern the problem of how changing the assistant’s logic to fix one predic-
tion would influence the system’s other predictions (i.e., coordinating how the system
responds, or fails to respond, to the user’s debugging efforts).

The “popularity effect” was the primary source of Coordination barriers: the folder
with the largest number of filed emails dominated the classifier’s predictions for the
remaining messages in the inbox. This had the effect that a few participant changes
could (and sometimes did) incorrectly reclassify dozens of messages into the newly pop-
ular destination folder. Unfortunately, participants whose strategy was to concentrate
on fixing one folder at a time (making the folder of interest temporarily very popular)
experienced the popularity effect again and again.

From a machine learning perspective, this popularity effect is primarily caused by
the high dimensional nature of the data, the relatively sparse training data, and the
class imbalance of the email folders. These factors cause the classifier to overfit both
the training data and the participant feedback for the smaller folders. For example,
suppose an end user employs the “one folder at a time” filing strategy. He is focused
on putting messages into the Systems folder, which has keywords such as “Windows”
and “McAfee” that are easily identified. Once a large number of messages have been
filed to this dominant folder and the classifier learns from the newly acquired training
examples, the distribution for the dominant folder will be accurately learned. However,
the classifier is poorly trained on the nondominant folders. In fact, the classifier overfits
the training data for the nondominant folders. Even worse, if the user jumps in to try
to debug a nondominant folder by tweaking an email that belongs in it, the overfitting
may be exacerbated more: the overfitting makes all other emails seem unlikely to be
classified into the nondominant folders because they must match exactly the under-
smoothed distributions for these folders. The classifier then incorrectly files almost all
of the emails in the inbox under the dominant folder—the popularity effect thereby
causing the user’s valid correction to make the assistant worse.
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On the surface it might appear that the solution from a machine learning perspective
is simply to provide “sufficient” training data for all folders—but applying this solution
to email classification is problematic. Many real-world email folders do contain small
numbers of emails, resulting in sparse training data for email classifiers, and email is
known to be “bursty,” that is, emails from a small handful of folders dominate the inbox
at certain times. Due to the imbalance in the number of emails belonging to each folder,
explaining and addressing the popularity effect in domains such as these remains an
open problem.

A second major source of Coordination barriers was the unexpected adjustment of de-
cision boundaries resulting from participant feedback. ManiMatrix [Kapoor et al. 2010]
tackles this problem by allowing end users to specify which portions of the boundary
matter most to the user’s task; it then adjusts the learning system’s parameters to
maximize the accuracy of the classifications the user cares most about. This ability
could be beneficial for our Why-oriented approach as well; our prototype showed users
the effects of their changes, but did not give participants the choice of specifying the
effects they wished to see, and then adjusting the learning system’s parameters to
match the participant’s goals.

4.4.3. Supporting Answers to the Why Questions Beyond Naive Bayes. In our study, we illus-
trated how one particular machine learning algorithm (naive Bayes) could be used to
answer Why questions. Apart from naive Bayes, many other machine learning algo-
rithms have been used to classify email messages. A natural question to ask is whether
other machine learning algorithms can also provide easily understood answers to these
“Why” questions.

Answering the “Why won’t this message be filed in <Folder>?” question for folders f
and f ′ requires computing P( F = f | W1, . . . ,Wm) and P( F = f ′ | W1, . . . ,Wm). Many
machine learning algorithms can provide these probabilities. In fact, a large subclass
of machine learning algorithms, known as discriminative classifiers [Ng and Jordan
2002], explicitly model P( F | W1, . . . ,Wm), and are well-suited to answer this “Why”
question.

Some machine learning algorithms may be better than others at providing answers
to certain Why questions. As an example, Bayesian networks provide a sophisticated
mechanism for giving detailed explanations of how different pieces of evidence influence
the final prediction made by the algorithm [Lacave and Diez 2002]; but this is compu-
tationally expensive. A current challenge for machine learning is to develop answers
to Why questions of statistical machine learning algorithms that can be computed
efficiently.

5. DISCUSSION AND CONCLUSION

This article presented a Why-oriented approach to support end-user debugging of intel-
ligent assistants (in the context of a naive Bayes learning system for text classification),
and explored the barriers and information needs participants encountered while de-
bugging with a prototype instantiating our approach. Our contributions fall into three
categories.

First, our Why-oriented approach is the first to bring the successful Whyline de-
bugging approach to machine learning systems. Our approach is based on four un-
derlying principles: (Representation-1) representations of both the assistant’s logic
(source code) and execution state must be available and manipulable by end users;
(Representation-2) these representations must be faithful and transparent to the un-
derlying logic (rather than attempting to hide some aspects for simplification); (ML-1)
the explanations must be understandable to end users; and (ML-2) when the end user
makes a correction, the learning system is required to honor it.
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Using these principles, we developed an approach whose essence lies in allowing
users to pose Why-oriented questions, answering them, and allowing users to change
the answers, as follows.

—End users can ask why-questions of intelligent assistants (powered by statistical
machine learning systems) to clarify the assistant’s current behavior.

—The answers to these why-questions provide faithful explanations of the assistant’s
current logic and execution state.

—Users can debug their assistants interactively by modifying the answers to make
them more correct (from the user’s perspective), which immediately feeds adjust-
ments back to the assistant’s logic.

Discussion. The aspect of allowing users to change the answers (feature weights)
is at heart closely related to “feature labeling,” in which users specify logic by linking
important features to a particular category, rather than the more commonly used “train
more” route that amounts to providing multiple instances of additional training data.
Our work is the first to allow users to freely specify which features matter and by how
much—a direction we started in Stumpf [2007].

Measuring the effectiveness of such feature manipulation in our email study was
not possible in a strictly objective fashion—given the participants’ lack of history with
the background conversations and cultural context, they had to make highly subjec-
tive judgments about how a message related to a topic. Thus, the “gold standard” (the
folders assigned by the original authors of the messages’) was not expected to consis-
tently match our participants’ opinions. (Indeed, our study’s participants reported this
issue explicitly; for example, “[I had to look] at previously filed messages in order to
see what types of emails go where”). It was, however, possible to measure their sub-
jective opinions on effectiveness. The participants’ median response, when asked how
successful they were at their tasks, was three on a five-point Likert scale, and was
possibly affected by uncertainty as to whether their opinions of where emails should
be filed were the “right” choices. Thus, to further investigate the issue of success, we
recently ran a different study on a feature labeling mechanism in a less subjective
domain [Wong et al. 2011]. The results were that end users who debuged by labeling
features were significantly more accurate than users who labeled instances (i.e., the
traditional “train more” approach).

Our second category of contributions lies in lessons learned for the human aspects
of end users who debug intelligent assistants. Our exploratory study revealed that,
although participants were able to use and understand our prototype, every participant
encountered barriers while debugging their assistants. The two most common barrier
types were Selection barriers, in which participants had difficulty in selecting the right
features (words) or contexts (messages) to modify in order to correct the assistant; and
Coordination barriers, in which participants wondered how the feedback they were
about to give would change the assistant’s other predictions or had trouble coordinating
how the assistant responded (or failed to respond) to their modifications.

Discussion. The Selection barrier was particularly insidious, often leading to cyclical
barrier patterns, and disproportionately affecting female participants. Theories such
as the Selectivity Hypothesis [Meyers-Levy 1989] imply some broad-brush attributes
for solutions that may help users overcome these barriers, suggesting that debugging
tools should support both comprehensive and non-comprehensive debugging strategies,
and that interfaces should adequately support a wide range of self-efficacy levels and
attitudes toward risk.

Other, more specific, solutions to user barriers are suggested by the links our data
showed between participants’ barriers and the types of information they requested
to overcome these barriers. For example, they verbalized the need for strategy ideas
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when faced with a Design barrier, and verbalized the need for help in selecting feature
modifications that would cause particular classifications to change when faced with
Selection barriers. Participants also expressed a preference for concrete, contextual
explanations to overcome barriers; they behaved in a manner consistent with the idea of
“active users” [Carroll and Rosson 1987], wanting solutions to the current problem (e.g.,
a misclassified message) rather than expressing an interest in the system’s complete
functionality.

The third category of contributions is a pair of new open questions for the machine
learning aspects of supporting end-users in debugging their assistants: how exactly a
machine learning system can provide the information described above to overcome the
Selection barrier, and similarly, how can it provide the information to overcome the
Coordination barrier.

Discussion. Regarding the Selection barrier, our participants made clear the infor-
mation they wished they had—which words to concentrate on, how much to adjust
each word, and what will happen next. Feature selection, such as through sensitivity
analysis algorithms, may be a promising direction, but it raises as many issues as it
solves. These issues may be partly addressable by allowing users to create new features
and by incorporating knowledge of semantic relationships among words, for example,
via a commonsense database. But despite these promising directions, identifying good
features automatically for the user to modify remains a difficult open problem. Re-
garding helping the users to overcome Coordination barriers, many of which were tied
to the “popularity effect,” which arises in situations of class imbalance, as in email
classification. Explaining and addressing the popularity effect in domains such as this
one remains an open problem. Methods for allowing end users to specify the desired
class distributions may be an alternative solution to this barrier.

In conclusion, we believe that end-user debugging of intelligent assistants is not only
important, it is necessary—the end user is the only one with knowledge as to how his or
her own specific adaptation of an assistant should behave. Our Why-oriented approach
allows end users to debug such assistants by manipulating their underlying logic, not
just their predictions. Our empirical results, based upon a prototype of the approach,
identify barriers and information needs that end users encountered when debugging
intelligent assistants, and also suggest solutions and open research questions as how
to address these barriers and information needs. Ultimately, assisting end users to
effectively debug their intelligent assistants opens new opportunities to achieve better
and quicker adaptation on the part of the assistant, and thus better responsiveness to
end-user preferences.
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