
ABSTRACT

The program comprehension and mining software repository com-

munities are, in practice, two separate research endeavors. One

is concerned with what’s happening in a developer’s mind, while

the other is concerned with what’s happening in a team. And yet,

implicit in these fields is a common goal to make better software

and the common approach of influencing developer decisions. In

this keynote, I provide several examples of this overlap, suggesting

several grand challenges in comprehension and mining.

CCS CONCEPTS

• Human-centered computing; • Software and its engineer-

ing→ Software configurationmanagement and version con-

trol systems; Softwaremaintenance tools;Programming teams;

KEYWORDS

Mining software repositories, program comprehension

ACM Reference Format:
Amy J. Ko. 2018. Mining the Mind, Minding the Mine: Grand Challenges in
Comprehension and Mining. In MSR ’18: MSR ’18: 15th International
Conference on Mining Software Repositories , May 28–29, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, Article 4, 1 page. https://doi.org/10.1145/
3196398.3196477

1 OVERVIEW

Software engineering research is broadly concerned with inventing
ways to make better software, faster. In this pursuit, however, we
often take wildly different approaches to discovery. Some of us
make tools, some of us advance scienti c theories, and other build
robust theories of veri cation. This diversity of approaches is a
great strength of our eld: by exploring multiple ways of advancing
software engineering in parallel, we increase the speed of discovery.

However, this diversity of approaches also creates arti cial rifts
between ideas. Take, for example, two co-located ICSE conferences,
the International Conference on Program Comprehension and the
International Conference on Mining Software Repositories. On the
surface, these two communities appear to study different things.
Program comprehension researchers, for example, are interested in
what happens in developers’ minds, trying to build theories about

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro t or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196477

how developers reason about code, and build tools that leverage

these theories to make comprehension faster and more robust. This

"micro" view is powerful because it has direct implications for the

programming languages and tools we invent to engineer software.

The mining software repository community, however, is interested

in what can be known by studying repositories, which are traces

of entire teams working together to repair, enhance, and maintain

systems. This "macro" view is powerful because it promises teams

and communities of developers a global, temporal view of quality.

These are two distinct phenomena, studied at two different levels,

with few shared visions, methods, or tools.

There is, however, common ground between these two fields.

Both have the same goal of improving software quality. Both also

have the same approach to intervention by changing what develop-

ers believe about their code, and thus changing developer behavior

to result in better systems. By focusing on the problem of chang-

ing developer behavior, we can see many opportunities for each

community to leverage the other’s work.

Consider the problem of a developer understanding the architec-

ture of a large software system. While comprehension researchers

have long studied how to apply program analysis to this problem,

they have generally not applied the methods of software repository

mining. For example, in addition to understanding the current ar-

chitecture of the system, mining could help reveal the history of

changes, who made the changes, why they made the changes, and

even what changes might be made in the future, and by whom.

Repository mining can also leverage the ideas from compre-

hension. For example, consider the problem of improving a defect

prediction tool. Defects ultimately arise from developers having

an inadequate understanding of an algorithm, a component, a de-

pendency, or some other fact about an architecture. Measuring,

modeling, and controlling for the comprehensibility of these dif-

ferent elements—something program comprehension researchers

study explicitly—may explain much of the variance which compo-

nents contain defects.

These are just a few examples of the opportunities for collabo-

ration between these two fields. They also illustrate how seeking

the common ground between communities can lead innovation.

In this keynote, I discuss these ideas and more, sharing a range of

opportunities and grant challenges.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science

Foundation under Grants No. 1314399 and 1703304. Any opinions,

findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the

views of the National Science Foundation.

118

2018 ACM/IEEE 15th International Conference on Mining Software Repositories

Mining the Mind, Minding the Mine
Grand Challenges in Comprehension and Mining

Amy J. Ko
University of Washington

Seattle, Washington
ajko@uw.edu

Most up-to-date version: 06/25/2021

