
Thirty Years of Software Problems in the News!

!
ABSTRACT
How have the consequences of software problems changed over
the past 30 years? To begin to answer this question, we analyzed
386,381 news articles reporting on software problems published
between 1980 and 2012, spanning widely circulated newspapers
to small trade magazines. Our results show that after an increase
in reporting just prior to Y2K, news on software problems has
declined in North America, but increased in the rest of the world.
Most articles only report minor consequences such as frustration,
confusion, anger, or at worst, having to delay some activity for a
few hours, usually due to service outages in government,
transportation, finance, and information services. However, about
once per month, the news reports at least one death, injury, or
threatened access to food or shelter due to software problems.
Reports of these severe consequences are also increasing, due
primarily to stories about transportation and government software.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public policy issues — abuse
and crime, human safety.

General Terms
Human Factors, Reliability.

Keywords
Software failures, news, news clustering.

1. INTRODUCTION
The ubiquity of software has transformed society in innumerable
ways, reshaping globalization [2], social relationships [29], work
[21], social identity [11,1,7], and countless other aspects of
society. With these changes, however, have also come a dramatic
shift in how the society works: behind much of our modern
infrastructure is now the automated digital logic of algorithms,
often supplementing or even replacing the slow subjectivity of
human decision making.

Such automation naturally has tradeoffs: it can greatly increase
productivity and lower costs, but it can also fail spectacularly [3].
Most water, gas, and electricity failures now involve software
failures [24], stock markets can now crash in a flash [27], race
conditions can leave millions without power [31], and usability
problems can cost lives [16]. From a productivity perspective,
software problems can also be quite expensive: one estimate of
the annual costs in lost time and labor due to software problems is
nearly $40 billion per year [26] and companies like Microsoft
regularly spend hundreds of millions of dollars removing defects
from a single release of Windows [20].

Studies show that software problems in particular industries are
also increasing in frequency and severity over time as the causes
of system failures have shifted from hardware to software [8].
Security breaches are now more prevalent and more costly than
ever before [7,10]; spreadsheet errors are leading to an increasing
number of financial calamities [23]; software infrastructure
failures rose between 1994 and 2005 [24]; and cars are recalled
more frequently than ever because of software defects [18].

While these studies teach us much about how the consequences of
software failure have changed in specific industries, they leave
open many questions about the broader impact of software
problems on human experience. Are software problems in
government, education, and other industries experiencing from
similar increases in software problems? Are other regions of the
world suffering from software problems in the same way that
North America has? What consequences, besides death and
financial loss, have software problems posed to society? Answers
to these questions are critical to guiding and prioritizing software
engineering research and practice. They are also important as a
record of the past 30 years of digitization of modern society.

No one study can hope to answer these questions definitely. In
this paper, we begin to understand answer them at the macro
scale, investigating the trends in software problems and their
consequences by mining archives of failures. Perhaps the most
extensive archive of software problems and their consequences is
news archives. News is probably the largest record of the acute
effects of software failure on society. Of course, news is
inevitably biased in many ways: it only reports on a small subset
of the software problems that occur in the world, it only covers
problems that journalists become aware of, and only then focusing
on problems that are “newsworthy” in some way. Journalists also
tend to speculate about the causes of software problems, reporting
little about technical and human causes underlying a failure [12].

With these caveats in mind, we present an analysis of 386,381
news articles, pulled from news sources both large and small in
circulation. We explore a broad notion of software problems that
encompasses both defects that led to failures, but also
requirements defects, and the fear of categories of defects that
might eventually lead to consequences (such as Y2K defects).
Through both quantitative and qualitative methods, we investigate
the problems reported, the consequences they have had on people
and society, and how the consequences reported in the news have
changed over the last 30 years.

2. METHOD
The focus of our analysis was on software problems, which we
define as one of two things: (1) events in which a software system
behaved in some problematic way or (2) defects that people
feared would eventually cause some problematic behavior. This
broad notion of software problems includes functional defects,
usability problems, security flaws, requirements defects, and any
other type of undesirable behavior of a software system. We use
the word “problem” instead of “failure” since software behavior
can be problematic even when it works as intended [4,13,14]. We

Amy J. Ko!
The Information School  

University of Washington, Seattle, USA!
ajko@uw.edu

Bryan Dosono!
School of Information Studies!

Syracuse University, USA!
bdosono@syr.edu

Neeraja Duriseti!
AT&T, USA!

nduriseti@yahoo.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee
CHASE'14, June 2 – June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2860-9/14/06... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CHASE’14, June 2 – June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2860-9/14/06...$15.00
http://dx.doi.org/10.1145/2593702.2593719

32 Most up-to-date version: 06/25/2021

explicitly do not use the words failure, fault and error, as they
refer to details that few journalists can observe.

We retrieved news from ProQuest, LexisNexis, and Factiva, the
three major news archives. Our focus was on English news, as
evidence shows that the majority of published news articles is
written in English [5], but we included all digitally available news
sources from around the globe reporting on events that occurred at
local, regional, national, and international levels. Using each of
these database’s metadata services, we determined that these
databases included full text articles for 25,181 news sources.
These databases included full text articles for 93 of the top 100
newspapers in the United States (based on data from the Audit
Bureau of Circulations, http://abcas3.accessabc.com/ecirc/,
retrieved March 31st, 2012). Of the 25 most circulated news
sources in the US, 23 were available in full text from 1995 and on,
and 14 from 1990 and on. The archives also included thousands of
trade magazines for specific domains (e.g., Aviation Safety,
Banking and Credit News, Health Data Management).

To retrieve articles about software problems, we began by
searching for words commonly referring to software problems,
specifically searching for bug, defect, error, fault, flaw,
malfunction, glitch and mistake. We selected a random sample of
search results for each of these terms to assess their viability,
randomly selecting one article per quarter, per database, per term,
from 1980 to 2012, for a total of 260 articles per term (2,080
articles overall). We then analyzed each article for whether it
referred to a software problem or some other type of problem. As
seen in Table 1, the only phrase that consistently referred to
software problems was glitch. Only 11% of articles with the word
bug and 9% of articles with the word malfunction referred to
software: across the sources we sampled, these terms typically
referred to insects, illness and mechanical failures.

The only phrase with a non-negligible number of articles with
uses referring to software was bug. To better understand how
excluding these articles would bias our analysis, we investigated
usage of the term, finding that 65% of the uses of bug described
the “Y2K bug” or “millennium bug”, that 30% of these articles
also used the word glitch, and that 96% of uses of the word “bug”
to refer to software problems occurred before 2000 (which, as we
show later, was less than 10% of our data). We therefore decided
to focus only on articles with the word glitch.

There were a total of 386,381 articles published between January
1980 and July 2012 containing the word glitch, including
duplicates. We manually grouped news sources titles that referred
to the same news source with small variations in formatting,
casing, and subsection titles. The resulting set included 6,882
unique news sources. This data set may represent one of the most
comprehensive samples of stories about software problems in
history, including the RISKS Forum (http://catless.ncl.ac.uk/
Risks/), which began archiving software problems in 1985.

2.1. Clustering Articles into Stories
Because our unit of analysis was software problems and not an
individual article, we needed to group articles according to the
problems on which they reported. While there are many news
clustering techniques, all were inappropriate for our analysis: k-
means clustering on a word vector space and Latent Dirichlet
Allocation, used both in automated news clustering approaches
[9,6,30] and studies of blogs [18], require a specific number of
topics to be selected a priori, but we had no basis for choosing
such a number. These techniques also ignore time: stories in the
1980s should not be clustered with problems from the 2000s just
because they share a topic.

We developed a new algorithm to overcome these issues (Figure
1). We converted each article’s words into a vector of tf-idf scores
[32] and then iterated through all articles in order of publication
date, comparing each article to all subsequent articles published
within a 7-day window. If the cosine similarity of any two
article’s tf-idf term vector was .25 or greater (representing a
modest similarity), then an edge was created between the two
articles, creating a graph of related articles. When a similar article
was found, the comparison window was then set to 7 days ahead
of the date of the new relevant article. This allowed articles to be
linked across weeks, months, and years, as long as at least one
similar article was published within a week. After comparisons for
each article were complete for a day, all disjoint graph
components of the article graph whose latest dated article was
more than 7 days before the current date were removed from the
graph and treated as a story cluster. We chose 7 days because of
the weekly news cycle.

“Briefings,” “Headlines,” and other composite articles that
reported on multiple events were problematic, as they contained
relevant words for multiple clusters, they created edges between
multiple distinct clusters that reported on different problems. We
therefore decided to exclude these composite articles, detecting
them with a set of text formatting patterns [6]. Our filters
excluded any story with multiple full caps headers, sequences of
bulleted paragraphs, recurring paragraph prefixes such as Twitter
usernames, time and date stamp paragraph prefixes that tended to
report on distinct stories, and long sequences of dashes or periods
that segmented distinct stories. The false positive rate of these
heuristics was less than 1%.

The application of our algorithm grouped the 386,381 articles into
58,577 story clusters. In the rest of this paper, article will refer to
a single news report from a single news organization, whereas
story will refer to the set of articles identified by our clustering
algorithm as reporting on the same software problem. To assess
the accuracy of clustering, the authors independently read all
articles in a random sample of 550 story clusters spanning 6,935
articles, judging each article as either relevant to the cluster or off-
topic. These relevance judgments had a Krippendorff’s alpha of
0.59, indicating that the clustering was moderately accurate: of
these coded stories, 80% contained 100% relevant articles; the
mean proportion of relevant articles was 92%.

Table 1. Terms considered for retrieving articles. Based on a
random sample of 260 articles for each term from 1980-2012.
Only ProQuest counts were included because it was the only
system that provided search result counts for large queries.

term % about
software

articles with
term

about
software

dominant topics

glitch 60% 49,537 ~30,000 software problems
bug 11% 182,150 ~20,000 insects, illness
malfunction 8% 24,154 ~2,000 mechanical problems
defect 3% 92,300 ~3,000 taxes, birth defects
flaw 3% 106,240 ~3,000 construction, decisions
error 2% 629,832 ~12,000 sports, news, medicine
mistake 1% 586,720 ~6,000 decision making
fault 1% 265,383 ~3,000 politics

Figure 1. We clustered news articles incrementally using
standard TF-IDF cosine similarity and a sliding 7-day window.

33

2.2. Story Measurements
We measured several aspects each story. To select a date to
represent when a story cluster’s problem occurred, we chose the
earliest published date of all articles in the set. We also measured
the attention a story was given by the press by computing
normalized article count, which was the number of articles in a
story cluster, excluding duplicates published in different sources,
divided by the number of news sources that were available in the
news databases in the year the story was published. This measured
how many news organizations committed effort to reporting on
the story, while controlling for the confounding factor of full text
availability over time.

To measure the geographical location from which a story was
reported, we began by assigning a world region, country, and state
(for US stories) to each news source that appeared more than 5
times in our data set. The world regions we used were North
America, Europe, Australia, Asia, India, Africa, Latin America,
the Middle East, South America, and Russia. To assign a region,
country, and state to a news source, we performed research on
each of the 6,882 source’s current editorial headquarters. If we
could not find the editorial headquarters of a news source, it was
labeled “unknown”; this was typically the case for blogs, print
magazines, obscure newsletters, and other exclusively online
news sources. Using the locations of news sources, we then
analyzed the frequency of all news sources’ locations in a story,
selecting the most frequent region, country, and state.

All other aspects of stories were qualitative measurements, which
we obtained by coding a sample of story clusters and their articles
using content analysis methods [22,25]. Our sample included the
subset of the 58,577 story clusters with 6 or more articles and a
random sample of stories with fewer articles, to focus our analysis
on the stories that received the most attention from the press. This
sample included 6,705 stories (11% of story clusters) spanning
130,189 of the retrieved articles (34% of all articles). Reading
these articles spanned about 1,000 person-hours across 2 months.

Table 2 shows the variables that we coded. We first coded whether
the story was about a problem with a software-based system or
something else (this was the same analysis we did to select search
terms, as in Table 1). We counted three types of stories as about
software problems: reports on 1) a problem that was or could have
been caused by a software or requirements defect, 2) an expected
software problem that did not happen, or 3) a defect that might
later cause a problem. All other stories were excluded.

We also measured the consequences reported in the story. There
are many aspects of consequences that might be measured about
software problems, especially their indirect effects, these are
difficult to measure using news articles, as articles rarely provide
information about the frequency or prevalence of a problem.
Instead, we focused on a categorical measurement of the
consequences of a problem to human needs leveraging
frameworks of universal human needs, such as Maslow’s
hierarchy [19] and its more modern counterparts [28]. As shown
in Table 2, we selected from these needs five major consequences
to code individually: death, physical harm, loss of access to food
or shelter, a permanent loss of property (physical goods, money,
or data), and forced delay in some activity. Our measurement
therefore says little about the cumulative consequences of defects,
but rather the qualitative kind of consequence that software
problem events imposed on people. We considered other
consequences to human needs, such social status, love,
achievement, and autonomy [28] and emotional consequences
such as fear and frustration, but these were either too rare, could
not be coded reliably, or were not reported reliably by journalists.

The last story variable that we coded was the industry in which
the software problem occurred. We derived this measurement
from the North American Industry Classification System (http://
www.census.gov/eos/www/naics/, retrieved May 1st, 2012),
maintained by the US Department of Commerce. Our adaptation
included the 12 industries in the last part of Table 2 and a
“multiple” category for problems that affected multiple industries.
Our rule for selecting an industry was to choose the industry that
the misbehaving software was intended to support. For example,
problems with federal tax return software was coded as
government and not finance because the software was intended to
support government tax activity and not finance activities such as
savings or investment.

To assess the reliability of each variable in Table 2, the authors
iteratively and redundantly coded random samples of 100 stories,
each time computing Krippendorff’s alpha [15] for each variable
and discussing disagreements. After three rounds of redundant
coding (covering 5% of all story clusters), we reached satisfactory
agreement on all variables. The authors then split this sample into
three sets and coded each story cluster independently, reading
each article in a cluster. For each cluster with more than 100
articles, we read a random sample of at least 10% of stories to
identify the dominant story topic.

Of the 6,705 stories that we coded, only 3,977 (59%) concerned
software problems. This suggests that only about 35,000 stories of
the original 58,577 concerned problematic software behavior.
However, since we do not know which of stories concerned
software problems and which did not, we used all 58,577 stories
for our quantitative measures, assuming the out of scope stories
were randomly distributed over time, country, and industry.

Table 2. Codes used to classify each story. Krippendorf’s
alphas were computed across three independent raters.

code description alpha
software true if a system failure occurred that was or could

have been caused by a software defect.
0.79

death true if an article indicated that one or more people lost
their lives due partly to a software problem.

1.00

harm true if an article indicated that one or more people
were physically harmed due partly to the software
problem.

1.00

basic true if an article indicated that one or more people lost
access to food or shelter because of the problem.

1.00

property true if an article indicated that one or more people
permanently lost material goods, money, or data
due partly to the problem.

0.87

delay true if an article indicated that one or more people had
to postpone an activity due partly to the software
problem.

0.69

industry information. Production and
distribution of information.!
transportation. Moving
people and things.!
natural resources.
Extracting materials from
Earth.!
sales. Exchanging money
for products.!
construction. Creating built
environment.!
manufacturing. Creating
products from materials!
utilities. Power, gas, steam,
water, and sewage services.

finance. Manipulating
and moving money for
profit.!
knowledge. Education,
research, and space
exploration.!
health. Healthcare,
health insurance, and
food industries.!
entertainment. Arts,
sports, hospitality,
tourism, etc.!
government. Politics,
defense, justice, taxes,
public services, etc.!
multiple. More than one
industry was affected.

0.79

34

3. RESULTS
In this section, we explore trends in the topics, and consequences
of software problems in the news. For statistical tests, α=.05. We
analyzed all categorical variables with non-parametric chi-squared
tests and logistic regressions, using Bonferroni corrections for all
post-hoc tests. We report odds ratios from logistic regressions of
categorical variables such as country, consequence and industry
against time (odds ratios are commonly used measures of effect
size, measuring the ratio between the odds of an event occurring
in one group to the odds of the same event occurring in a different
group. Odds ratios above 1 indicate an increase in the odds of a
problem over time and odds ratios below 1 indicate a decrease).

3.1. Notable Story Topics
Journalists have reported a variety of problems and consequences
in the past 30 years. English pensioners have been mistakenly
marked as dead, halting their benefits; defective breathalyzer
source code nearly sent a man to prison; sexual assault victims
have received automated calls mistakenly telling them that their
attackers had been released. Toddlers appeared on the US
Transportation Security Administration’s “no fly” lists;
firefighters went to the wrong houses because of defects in GPS
routing algorithms; Kaiser Permanente, a US health care provider,
mislabeled prescription drugs for months, threatening the lives of
thousands of patients. The US Army sent letters to the families of
dead soldiers with the salutation "Dear John Doe"; tens of
thousands of people were locked out of their Facebook accounts
for having "inauthentic" names; and 350 Rhode Island residents
were mistakenly arrested because of incorrect names on arrest
warrants. Stories like these illustrate that many of the most stories
reflected mismatches between reality and models of reality.

While the notable stories varied greatly in their consequences, the
top 100 stories receiving the most press (as measured by
normalized article count of each story) were quite homogenous
(Table 3 shows the top 10). The biggest story was by far the Y2K

millennium defects, an issue that afflicted software that only used
two digits to represent the year. Two clusters of Y2K stories
emerged: one including over 17,000 articles after January 1st,
2000, covering hundreds of industries that did and did not
experience problems. The second included 1,745 stories covering
the fears of Y2K problems and its many potential consequences,
including costs to fixing them and stock market anxiety about the
potential costs and consequences of Y2K failures. Another 13
stories covered fears and consequences of problems with e-voting
software, spanning the decade from 1998 to 2008: tallies were
delayed and incorrect, machines froze, digital voter registration
records were missing names, and votes were lost.

There were several other recurring problems in the top 100; 12
described software problems that delayed NASA shuttle launches,
Mir space station missions, and Mars robot missions. Another 10
stories reported problems with airport computer systems, leading
to delayed and canceled flights or damaged and lost luggage. Yet
another 10 covered stock market outages in the US, UK, Japan,
and Australia (including the recent Facebook IPO NASDAQ
problems recently dominating news). Other recurring topics
concerned phone and e-mail outages, the Olympics, problems on
the first day of school, and tax refund delays. Some stories
covered culturally significant problems such as a popular Formula
1 racer who lost because of a friction control system defect in
2001, and an accidental censorship of LGBT media at Amazon.

Most of the consequences reported in these top 100 stories were
delay and property loss: 66 stories involved people being forced
to wait to vote, launch, fly, trade, shop, etc.; according to the
reporters, most of these delays were hours long. In 16 stories, the
delay also led to property loss, such as extra costs, lost business,
or lost data. Only one story reported death and physical harm (the
Toyota acceleration defect) and only one reported a threat to basic
needs (a weeklong banking outage in Australia that left many of
its 11 million customers without access to cash). The Y2K defect
famously had few notable consequences. The most heavily
reported stories, therefore, were often more curious in their
consequences than they were consequential.

3.2. Reporting Frequency of Problems
Figure 2 shows the number of stories reported per month,
separated by region. As the plot shows, there were few problems
reported in the 1980s, with a rapid rise in the number of stories
approaching the year 2000. After the year 2000, however, the
frequency of reporting appears to have slowly declined overall. As
shown in the bottom of Figure 2, this trend does not appear to be
influenced by full text availability, which has only increased.

Table 3. Top 10 stories by normalized article count.
the software problem reported year # articles
The aftermath of the year 2000 millennium bug 2000 17,193
E-voting defects in the 2004 US elections 2004 2,509
Preparations for the year 2000 millennium bug 1998 1,745
Medicare drug eligibility defect 2006 1,983
Toyota Prius sudden acceleration bug 2010 3,782
Delayed e-voting tallies in the 2008 US elections 2008 1,796
Incorrect voting tallies from e-voting machines 2006 1,236
Incorrect New Mexico voting tally 2000 1,003
Atlanta Olympics results delivery to news delayed 1996 447
E-voting defects in the 2002 US mid-term elections 2002 636

Figure 2. Left: story count each month from Jan. 1980–June 2012, by region. Right: story count for each region over time and odds
ratios of significant logistic regressions for stories in a region by time. Bottom: stories available in the news archives over time.

35

Most of the stories in the data set were published in North
America (63% of stories), and that within the US, the most active
states included the New York (29% of articles), Pennsylvania
(7%), Florida (7%), California (6%), and DC (6%). Europe (13%)
and Australia (8%). The data did include stories from most
countries, except for several African and middle eastern countries.
Interestingly, however, as seen on the right of Figure 2, North
American stories are declining in frequency, (χ2(1,
N=58,576)=2260.8, p<.001, odds ratio=.916) from several
hundred per month to only about 100 per month. While North
American stories have declined, there have also been significant
increases in the likelihood of software problem stories in nearly
every other region of the world, especially Asia, India, and Africa.

In interpreting these trends, it is important to remember that
declines in stories in North America may represent declines in US
journalism budgets, as opposed to declines in software problem
frequency. To investigate this possibility, we considered the
2 , 1 8 2 u n i q u e n e w s sources represented in the stories and
found that just 190 sources were responsible for 80% of the
articles written. Of the top four of these based on circulation (The
Associated Press, The McClatchy Company, The Washington
Post, and The New York Times) all have declined in the number
of stories about software problems since 2000, except for
McClatchy, which has increased. This suggests that even the most
well-resourced news organizations in the world are still reporting
on fewer software problems now than in past decades.

As shown in Table 4, most of the stories reported on problems in
government, IT, finance, entertainment, transportation, and
knowledge industries (science and education). These trends are
changing, however: problems are now more likely to be reported
in transportation, entertainment, health, sales, and utilities.

3.3. The Consequences of Software Problems
Figure 3 shows the proportion of stories reporting each of the
consequences that we investigated and the proportion of stories
that reported none of these five. In this section, we discuss each of
these five consequences, as well as the stories that lacked these
consequences, presenting qualitative characterizations of when,
where, and why software problems were consequential.

3.3.1. Reports of Death
Death was rare. Among our coded sample, 47 stories (1.2%)
reported one or more deaths related to software. Extrapolating this
to the ~35,000 stories in our data, about 400 stories over 32 years
likely reported deaths (about 1 story per month worldwide). Of
these, 77% were reported in North America, with the others
reported in Europe, India, and Australia. As shown in Figure 4, the
minimum number of deaths reported in the stories ranged from 1
to 270, with a median of 8, though three of the stories did not
report death counts. This is a total of at least 1,691 deaths across
47 stories; extrapolated to all ~35,000 stories, the number of
reported deaths blamed partly on software since 1980 is likely
about 15,000 (or about 40 people per month).

A third of reported deaths were due to collisions in planes and
cars, with most plane crashes accounting for most death counts
above 50. On land, transit lines and railroads that used the same
signaling system have repeatedly failed to detect trains traveling
the wrong way. Toyota recalled its 2010 Hybrid Prius after
discovering a design flaw that required a software change to fix
the anti lock brake-system problem; the LA times reported in
March 2010 that 102 people had died from this and other
problems with sudden acceleration. In the air, plane crashes
stemmed from pilots receiving faulty readings on cockpit screens,
engines and thrusters being reversed mid-flight, and air traffic
controllers guiding dangerous landings.

Explosions occurred in approximately a tenth of the stories. For
example, a computer program that controlled a Russian nuclear
submarine’s fire suppression system had malfunctioned, killing 20
people in 2008. In 1991, a requirements problem in radar
detection led to the deaths of 28 US soldiers when an unexpected
scud missile struck an American base near Saudi Arabia.

There were some instances of death in health care and natural
disasters. In 1999, software failed to capture information about the
whereabouts of a missing Alzheimer's patient when the patient
crossed the state border and was not seen again. In 2010, one
hospital’s faulty bar-coding system deceived a nurse; she mistook
a bag of epidural painkiller for penicillin and hooked it up to an
IV line that pumped the painkiller into the bloodstream of a
patient who was in the middle of delivering a baby. The baby
survived, but the mother’s heart collapsed. Several stories
reported over-dependence on software-based early warning
systems. One was a 2005 software problem that disabled tornado
warning broadcasts in Paducah, Kentucky. The other was a 2012
malfunction with a warning system during the Colorado wildfires.
In both cases, residents had relied exclusively on the automated
phone calls to know when to evacuate, but did not receive them,
preventing them from evacuating.

Figure 5 shows that the proportion of stories reporting deaths has
risen since 1980, but not significantly (χ2(1, N=3,977)=2.1, p>.
05). Deaths were more likely in government (χ2(12,
N=3,977)=62.1, p<.0001), typically during disaster response, and
transportation. Deaths were also overrepresented in India and the
Middle East (χ2(9, N=3,977)=20.2, p<.05).

Table 4. Problem frequency by industry. Odds ratios are from
logistic regressions of whether a story was in a specific domain

versus year. Bold values are significant.

industry % of stories frequency by year odds ratio
government 22% 1.00
information 16% 0.97
finance 14% 1.00
entertainment 12% 1.03
transportation 11% 1.05
knowledge 10% 0.94
sales 4% 1.04
health 3% 1.06
utilities 3% 1.05
multiple industries 3% 0.85
manufacturing 2% 1.00
construction 1% 1.00
natural resources 1% 1.06

Figure 3. Proportion of stories reporting each consequence.

Figure 4. Death counts reported in 47 stories.

Figure 5. Frequency of stories reporting death.

36

3.3.2. Reports of Physical Harm
Injury was also rare. In our sample, 39 stories (1.0%) reported
physical harm, which suggests that around 350 stories of the
~35,000 reported harm (at a rate of about 1 story per month). Of
these, 77% were reported in North America, with the others
reported in Europe, Asia, and India. Fewer than half of the stories
reported the number injured; of those that did, the number of
injuries ranged from 1 to 270, with a median of 19 (as shown in
Figure 6), for a total of 1,064 injured across 17 stories.
Extrapolating this rate to all 35,000 stories, the number of injured
since 1980 is likely about 12,500 (or about 30 people per month).

Half of the stories reported injuries sustained on boats and ships
because of bumps and tilts. In 1997, autopilot problems led a
double-decker tourist sightseeing boat to ram into a bridge on the
Seine River in Paris, injuring 28 people. A similar problem with
the autopilot system on a Crown Princess cruise in 2006 caused
the month-old ship to tilt harshly to one side, harming 240
passengers. The tilt was so extreme that even the casino's slot
machines and the gymnasium's exercise equipment tipped over or
slid across the floor, causing serious injury to 20.

Some stories reported injuries in entertainment. In 1998,
authorities blamed software for an automated fireworks display
that fired all fireworks at once; two technicians were hospitalized
with burns. Other stories reported injuries in entertainment,
health, and manufacturing. On Broadway, a Spiderman stunt actor
was injured after plunging 30 feet due to a computer-controlled
harness failure. In 2008, a big television screen at the Piccadilly
Gardens fan zone failed to show a highly anticipated football
game as planned, resulting in thousands of fans violently rioting
against the police, leading to injuries in both parties.

Software related injuries in healthcare were rarely reported. A
problem in the government's new computerized finance system
between pharmaceutical clinics and the national health department
led to drug shortages in the Virgin Islands, affecting dozens of
people affected with HIV.

As seen in Figure 7, the likelihood of a story reporting harm has
increased over time (χ2(1, N=3,977)=6.7, p<.05, odds ratio 1.09).
Harm was also more likely in transportation and significantly less
l i k e l y i n f i n a n c e a n d i n f o r m a t i o n i n d u s t r i e s
(χ2(12,N=3,977)=71.0, p<.0001), but not more likely in any
particular region of the world (χ2(9, N=3,977)=5.4, p>.05).

3.3.3. Reports of Lost Access to Food and Shelter
Threats to food and shelter were even less common than death and
physical harm, appearing in only 28 of coded stories (.7%). This
suggests that about 250 stories across the 32 years involved a
threat to basic needs (at a rate of about 1 story every two months).
Of these, 54% were reported in North America, with the others
reported in Europe, Australia, and India. Of the 28 stories, 17
reported the number of people affected; as shown in Figure 8
counts, these counts ranged from 1 to 2 million, with a median of
55,000 and a total of 5,451,582 people across 17 stories.

Extrapolating this to all 35,000 stories, the number of people
reported to have lost access to food and/or shelter since 1980 is
likely to be about 80 million (30 per month).

A third of stories involved problems that resulted in the delay of
government aid to vulnerable populations. Some involved welfare
recipients that qualified for food stamps and students waiting for
financial aid that was incorrectly denied or backlogged. Five
stories reported on faulty natural disaster detection systems,
including overlooked tornado warnings, missed wildfire
notification dispatches, and 911 emergency calls that did not reach
an operator. Errors in these citywide emergency systems have
been reported periodically from 2003 to 2012. One other common
threat to basic needs was ATM and banking outages, preventing
people without credit cards from acquiring cash to buy food. Most
stories represented single points of failure.

As seen in Figure 9, the likelihood of a story reporting a threat to
basic needs has increased significantly over time (χ2(1, N=3,977)
=12.1, p<.001, odds ratio 1.16). There was again a relationship
between basic needs threats and industry, with basic needs were
more likely to be threatened in government (50% of stories
concerning basic needs) and utilities (25% of stories). Threats to
basic needs were related to region (χ2(9, N=3,977)=18.6, p<.05),
with basic needs losses overrepresented in the US.

3.3.4. Reports of Property Loss
The loss of money, data, and material goods was much more
common, reported in 498 of coded stories (12.5%), and therefore
about 4,400 stories over the 32 years. Of these, 68% were
reported in North America, with the others reported primarily in
Europe (17%) and Australia (9%).

There were three dominant types of property loss. About 20% of
stories reported data loss, often e-mails, court documents, or data
that NASA probes failed to transmit. For example, in 2001,
millions of White House e-mails could not be recovered from
backup tape due to an archiving defect, preventing investigation
of an obstruction to justice case. Another 20% were stories about
companies losing revenue because customers had problems with
the company’s software (e.g., a buy.com coupon led to accidental
discounts of a quarter million dollars). In other cases, airlines

Figure 7. Frequency of stories reporting physical harm.

Figure 6. Distribution of injury counts (in decreasing order). Figure 8. Number who lost access to food or shelter, based on
17 stories reporting head counts, on a logarithmic scale.

Figure 9. Frequency of threats to basic needs over time.

Figure 10. Money lost due to problems on a random sample of
28 stories, on a logarithmic scale (in decreasing order).

Figure 11. Frequency of property loss over time.

37

blamed outages for revenue losses. Another 20% reported the
costs of additional software testing; for example, a Pennsylvania
county invested in a 911 response system, but had to delay its
launch and pay for further testing. The other 40% of property
losses included incorrect charges that were never reimbursed,
regulatory fines due to software defects, stock market loss, and
security breaches.

While it was difficulty to quantify the loss of data and physical
goods, we were able to quantify loss money, as many articles
explicitly reported it. Of a random sample of 100 stories, 28
reported an amount lost due to the software problem. We
converted all of these amounts to USD using the average
exchange rate for the month the story was published. As seen in
Figure 10, the resulting range was from $625 to $7 billion, with a
median of $7.7 million lost.

As seen in Figure 11, property loss has not significantly changed
in likelihood over time (χ2(1, N=3,977)=0.1, p>.05). Property loss
was associated with industry (χ2(12, N=3,977)=97.6, p<.0001),
with health, manufacturing, sales, transportation, and utilities
industries significantly more likely to involve loss. Property loss
was significantly related to region (χ2(8, N=3,977)=21.1, p<.05),
with loss significantly overrepresented in Australia and Europe.

3.3.5. Reports of Delay
Delay was the most common consequence, mentioned in 40.4%
(14,160 stories). Classifying the topics in a sample of 160 of these
revealed several recurring delays. The most common were
outages in government services, forcing people to wait days
(13%). Software delays were common and typically reported on
widely publicized projects such as new government websites or
utility services (12%). Other common types of delays occurred
due to outages in stock market trading (11%), banks and ATMs
(9%), flights (9%), voting and elections (7%), NASA launches
(6%), phone service (6%), public transportation (4%), and web
sites (4%). The shortest delays concerned emergency responses to
fires, injuries, and other time-critical services, where a few
minutes of delay was a life and death matter.

People rarely waited long. In a random sample of 160 of these
stories, 134 stories explicitly indicated a time scale of delay.
Figure 12 shows this distribution, revealing a typical delay of
hours or days; the delays of months and years were largely
software release delays.

As seen in Figure 13, the likelihood of a story reporting delay has
not changed significantly since the late nineties (χ2(1,
N=3,977)=3.1, p>.05). There was a relationship between delay
and industry (χ2(12, N=3,977)=197.1, p<.0001), with the finance,
knowledge, natural resources and transportation industries
significantly more likely to suffer delay. Reporting on delays were
overrepresented in Asia, Europe, and Russia and underrepresented
in North America (χ2(9, N=3,977)=29.2, p<.001).

4. DISCUSSION AND CONCLUSION
We began this paper by observing that critical software problems
in security [7,10], financial calamities [23], software-based
infrastructure [24], and automotive recalls [18] are on the rise.
Our findings provide a broader picture for interpreting these
domain-specific trends:

• Worldwide, news stories on software problems increased
substantially in the 1990s, but reached a peak in 2000 and have
declined since. Most of this decline is due to reporting declines
in North America, with the rest of the world, particularly Asia,
India, and Africa, increasing reporting on software problems.

• The problems that have received the most attention by the news
tend to involve voting problems, NASA failures, stock market
outages, Y2K defects and a diverse array of culturally relevant,
but essentially minor defects that generally led to brief delays.

• About once per month on average, the news reports death,
physical harm, or threatened access to food or shelter due partly
to software problems, for an estimated 32 year cumulative total
of 15,000 reported deaths, 12,500 reported injuries, and 80
million people reported to have temporarily lost access to food
or shelter. The rate at which reports of physical harm and lost
access to food and shelter occurs is increasing slowly, primarily
due to failures in transportation and government software.

The central question in interpreting these results is whether news
is actually a representative sample of software problems. News,
after all, is an imperfect and inevitably skewed sample of the
software problems that occur in the world. It is likely not a
reliable indicator of the frequency and prevalence of problems
that occur. Our decision to focus only on news reports that contain
the word glitch may have overlooked problems with privacy or
security, as those stories tend to not use the world glitch. Our
focus on English news also limits our results’ generalizability.

There are some reasons to suspect, however, that the trends in our
data are to be believed. After all, software testing of all forms has
matured in the past 30 years, and our data show that news reports
of problems are increasing in every country in our data set except
for North America and Europe, two of a few regions where
software development practices are arguably most mature. Our
data also show that some of the most critical consequences—
physical harm and loss of basic needs—are on the rise, but
generally only in countries that are introducing new kinds of
software infrastructure. This interpretation of the data relies on the
assumption that it is the novelty of software systems to an
industry and the industries maturity in software engineering
practices that determines the frequency of critical failures.

Another interpretation of our data is that software problems are
just as or more frequent as they have ever been, but journalists
have lost interest in reporting them. Perhaps software problems
were surprising in the 1990s because fewer people had
experiences with how software fails, making any problem, no
matter how minor, a newsworthy story. Now that most people
have experience with computers, people (and journalists) may see
software problems as routine, making them less newsworthy. The
increases in reported problems in Asia, India, and Africa, may
therefore be the same novelty effect that North America
experienced in the 1990’s.

A different, but similarly pessimistic interpretation of our results
is that journalists are still interested in reporting on software
problems, but that they are simply less willing or able to report on
them. For example, the only way for journalists to know that a
problem occurred is for some person or organization to report it. It

Figure 12. Time lost due to software problems on a random
sample of 134 stories explicitly indicating a time scale of delay.

Figure 13. Frequency of delays over time.

38

may therefore be that the institutions who have an obligation for
transparency—government, publicly traded companies, etc.—are
the only ones visible to journalists, and that problems are
increasingly common inside of organizations who have no need to
announce them to the world. Private organizations may simply be
getting better at hiding the problems that occur from the press.

What do these results and interpretations mean for software
engineering research and practice? One implication is that,
because our results showed that it was typically new software
systems that were responsible for most of the news on software
problems, we should think critically about which industries and
which populations can safely take the risk of migrating to new
software systems. Consumer markets might be able to tolerate
constant device upgrades and continuous improvements to
websites, but as critical infrastructures begin to depend on these
consumer applications (e.g., the shift toward “bring your own
device policies” in organizations), we may risk bringing increased
failure rates into stable (if aging) information systems.

Our results also have many implications for society more broadly,
and specifically for society’s expectations and understanding of
software. For example, our results show that many of the
consequences reported in the news are not due directly to
software, but to the expectations of software. This suggests that
part of mitigating software risks is not only education for
engineers about better practices to prevent failure, but also better
education for society, calibrating expectations about software
reliability and correctness. For example, one could imagine
computing literacy courses that explain common ideas in risk
concepts such as single point of failure, so that people who create
processes that rely on software are more aware of the need to
anticipate and plan for failure.

Whatever the solution, our results show that software problems
will be part of modern society, and increasingly in the developing
world, for the foreseeable future. Research on how to design
software systems that avoid failure not just in technical ways, but
sociotechnical ways, has never been more important or timely.

5. REFERENCES
[1] Acquisti, A., Friedman, A., & Telang, R. (2006). Is There a Cost

To Privacy Breaches? An Event Study. Int’l Conf. on Info. Sys.
[2] Castells, M. (2009). The Information Age: Economy, Society,

and Culture. Wiley-Blackwell, 2nd edition.
[3] Charette, R.N. (2005). Why software fails. IEEE Spectrum.
[4] Chilana, P.K., Ko, A.J., & Wobbrock, J.O. (2010).

Understanding Expressions of Unwanted Behaviors in Open
Bug Reporting. IEEE VL/HCC, 203-206.

[5] Clausen, L. (2003). Global News Production. Copenhagen
Business School Press, 1st edition.

[6] Clifton, C. & Cooley, R. (2000). TopCat: Data Mining for
Topic Identification in a Text Corpus. IEEE KDE, 16(8), 1–33.

[7] Garrison, C.P. & Ncube, M. (2011). A Longitudinal Analysis
of Data Breaches. Information Management & Computer
Security, 19(4), 216-230.

[8] Gray, J. (1990). A Census of Tandem System Availability
Between 1985 and 1990. Tandem Technical Report 90.1.

[9] He, Q., Chang, K., Lim, E.P., & Banerjee, A. (2009). Keep It
Simple with Time: A Re-examination of Probabilistic Topic
Detect Models. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 32(10), 1795-1808.

[10] Im, G.P. & Baskerville, R.L. (2005). A Longitudinal Study of
Information System Threat Categories: The Enduring
Problem of Human Error. SIGMIS Database, 36(4), 68-79.

[11] Jakobsson, M. & Myers, S. (2006). Phishing and
Countermeasures: Understanding the Increasing Problem of
Electronic Identity Theft. Wiley-Interscience, 1st edition.

[12] Johnson, C.W. (2003). Newspaper and Online News
Reporting of Major Accidents: Concorde AFR 4590 in The
Times, The Sun and BBC Online. Univ. of Glasgow,
Technical Report.

[13] Ko, A.J. & Chilana, P. (2010). How Power Users Help and
Hinder Open Bug Reporting. ACM CHI, 1665-1674.

[14] Ko, A. J. and Chilana, P.K. (2011). Design, Discussion, and
Dissent in Open Bug Reports. iConference, 106-113.

[15] Krippendorff, K. (2004). Content Analysis: An Introduction
to Its Methodology. Sage, 2nd ed.

[16] Levinson, N.G. & Turner, C.S. (1993). An Investigation of
the Therac-25 Accidents. IEEE Computer, 26(7), 18-41.

[17] MacDuffie, J.P, & Fujimoto, T. (2010). Why Dinosaurs Will
Keep Ruling the Auto Industry. Harvard Business Review.

[18] Mark, G., Bagdouri, M., Palen, L., Martin, J., Al-Ani, B., &
Anderson, K. (2012). Blogs as a Collective War Diary. ACM
CSCW, 37-60.

[19] Maslow, A.H. (1943). A Theory of Human Motivation.
Psychological Review, 50(4), 370-96.

[20] Murphy, M. & Levidow, B. (2000). Windows 2000
Dependability. Microsoft Research Technical Report, MSR-
TR-2000-56.

[21] Olson, J.M. & Olson, J.S. (2008). The Human Computer
Interaction Handbook: Fundamentals, Evolving
Technologies, and Emerging Applications. Lawrence
Erlbaum Associates.

[22] Patton, M.Q. (2002). Qualitative Research and Evaluation
Methods. Sage, 3rd edition.

[23] Powell, S.G., Baker, K.R., Lawson, B. (2008). A Critical
Review of the Literature on Spreadsheet Errors. Decision
Support Systems, 46(1), 128-138.

[24] Rahman, H.A., Beznosov, K., & Martí, J.R. (2009).
Identification of Sources of Failures and Their Propagation in
Critical Infrastructures from 12 Years of Public Failure
Reports. Int’l J. of Critical Infrastructures, 5(3), 220-244.

[25] Speed, J.G. (1893). Do Newspapers Now Give the News?
The Forum, 15(1), 705-711.

[26] Tassey, G. (2002). The Economic Impacts of Inadequate
Infrastructure for Software Testing. National Institute for
Standards and Technology.

[27] Tamai, T. (2009). Social Impact of Information System
Failures. IEEE Computer, 42(6), 2-3.

[28] Tay, L. & Diener, E. (2011). Needs and Subjective Well-
Being Around the World. J. of Personality and Social
Psychology, 101(2), 354–365.

[29] Turkle, S. (2011). Alone Together: Why We Expect More from
Technology and Less from Each Other. Basic Books, 1st ed.

[30] Vadrevu, S., Teo, C.H., Rajan, S., Punera, K., Dom, B.,
Smola, A.J., Chang, Y., & Zheng, Z. (2011). Scalable
Clustering of News Search Results. ACM WSDM, 675–684.

[31] White, D., Roschelle, A., Peterson, P., Schlissel, D., Biewald,
B., & Steinhurst, W. (2003). The 2003 Blackout: Solutions
that Won’t Cost a Fortune. The Electricity Journal, 16(9),
43-53.

[32] Wu, H.C., Luk, R.W.P., Wong, K.F., & Kwok, K.L. (2008).
Interpreting TF-IDF Term Weights as Making Relevance
Decisions. ACM TIS, 26(3), Article 13.

39

