
Mining Whining in Support Forums
with Frictionary

Abstract
Millions of people request help with software in support
forums, creating a massive repository of user
experiences ripe for mining. We present Frictionary, a
tool for automatically extracting, aggregating, and
organizing problem described in support forums,
enabling timely problem frequency and prevalence
metrics. We applied it to 89,760 Firefox support
requests from 4 sources gathered over 10 months.
Interviews with the Firefox principal designer and
support lead suggest that Frictionary could be a useful
tool for prioritizing engineering efforts, but that the
extraction would need to be more precise to be useful.

Author Keywords
Software problems; bugs; topic extraction; support.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces - Evaluation/methodology

Introduction
Each day, millions of people struggle to make software
meet their needs, recovering from frustrating crashes,
disabling nag windows, and even just learning an
application’s basic features. As much as software
producers strive to prevent these negative experiences
through careful upfront design and rigorous testing,
there are often many unanticipated problems
discovered post-deployment [13].

Amy J. Ko
The Information School
University of Washington
ajko@uw.edu

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CHI’12, May 5–10, 2012, Austin, Texas, USA.

Copyright 2012 ACM 978-1-4503-1016-1/12/05...$10.00.

alt.chi CHI 2012, May 5–10, 2012, Austin, Texas, USA

191
Most up-to-date version: 06/25/2021

Unfortunately, discovering these problems is not always
straightforward [6]. Users rarely contact support, and
when they do, it is often only for the most critical and
idiosyncratic of problems [5]. Moreover, support staff
primarily report bugs to engineers, overlooking user
experience issues [6]. Instrumentation (e.g., [1]) can
overcome some of these limitations, providing large
scale data about user experiences, but such data
requires careful interpretation since it lacks user intent.
While these methods are all useful, new methods are
needed for discovering problems at a large scale.

With the rapid rise of social media, this is increasingly
feasible. Users can easily share their experiences in
discussion boards [19], support forums [6], Q&A sites,
other venues, describing software problems, expressing
frustration, and sometimes getting help. For any given
software product, users may write thousands of
requests like this every day, creating a massive
catalogue of user experience. How can software
producers automatically mine to learn what issues
users are commonly experiencing?

We contribute Frictionary, which extracts, aggregates,
and organizes problem topics in users’ requests.
Frictionary uses a natural language parser to perform
linguistic pattern matching, extracting problematic
software behaviors in a consistent grammatical form. It
then groups them, ranking them by frequency and
prevalence to reveal trending problems over time. This
work contributes: (1) a new pattern matcher that
distinguishes between software problems and other
topics in support requests; (2) a collection of
techniques for transforming problems into standardized
grammatical forms; (3) a faceted browsing interface
that reveals trends; and (5) evidence that a Mozilla
support lead and the Firefox principal designer believe
Frictionary could help prioritize engineering efforts, but
that it’s topic extraction would need to be more precise.

Related work
To our knowledge, there is no prior work that extracts
topics from support requests. There are, however,
several techniques for extracting topic from similar
data. Perhaps the most recent and related work is by
Fourney et al. [10], in which they describe a technique
for mining frequent queries about software from Google
Suggest, using a set of filtering templates such as “can
system __” and “how to ___ in system”. This is a
powerful approach, backed by a vast number of
searches. The authors identify several limitations,
however: queries do not necessarily indicate problems,
products with generic names may result in irrelevant
queries, and the timeliness of data is limited to an
estimated 20 day window, which may be too long for
the rapid release cycle of many software producers.

Researchers have also extracted topics from bug
reports, one form of support request. Work has varied
in the granularity of extraction. For example, some
have considered reports at the level of sentences, using
text summarization to select sentences that summarize
a bug report discussion for reading purposes [17].
Others have focused on document characterization,
most commonly by adapting tf-idf vector space models
and cosine similarity metrics to bug report text [19].
This approach, which is commonly used in information
retrieval problems, identifies words that are common in
a document, but rare in a corpus. Researchers have
also combined vector space models with program
execution information [9], both supervised and
unsupervised machine learning techniques [7], and
information entropy [20]. Other researchers have
focused on discriminating between certain classes of
problems, such as bugs and features [2].

Researchers have also adapted information extraction
techniques for other social media. For example,
Naaman et al. extracted trends from raw Twitter

alt.chi CHI 2012, May 5–10, 2012, Austin, Texas, USA

192

streams using a notion of bursts based on tf-idf metrics
[16]. Bernstein et al. used a similar approach,
extracting topics from both tweet text and text
retrieved by performing web searches on tweet words
[3]. Yatani et al., focused on product characterizations,
used part-of-speech taggers to extract adjective-noun
pairs in user reviews [21]. Chen et al. considered the
similar problem of identifying trending topics in news,
using time-based named entity recognition [4].

Support requests pose many unique extraction
challenges. Unlike bug reports, which tend to be limited
strictly to reproduction steps and unexpected output
[15], support requests have non-problem topics such
as user goals, attempted workarounds, and personal
consequences of a problem, and emotions [18], as well
as error codes, logs, and other non-word text, which
may be related to a problem, but not describe it [19].
Also, unlike in social media and news, where named
entities are more easily shared via hash tags and
headlines, support request authors tend to describe
software features with wildly different phrases [11],
even within the same request. This limits the
effectiveness of named entity recognition techniques.

Extracting topics from support requests
Frictionary leverages insights about the genre of
support requests, applying natural language parsing to
discriminate between software problems and other
topics. The core insight underlying this approach is that
support request authors generally identify two types of
problems: undesirable output (bugs, errors,
unexpected output, etc.) and desirable output (feature
requests, how to questions, etc.). Non-problem topics
in a support request generally describe the user’s
actions and state, such as workarounds the user has
tried, how they feel about the problem, or why the
problem matters to them. Frictionary operationalizes
these insights to extract problem topics.

To demonstrate and evaluate Frictionary, we used a
corpus of 89,760 support requests about the Firefox
web browser from 4 sites across a period of 10 months.
We chose Firefox because it is a widely used consumer
application with millions of users and has many distinct
online technical support communities. We focused on 4,
including 71,072 requests posted to http://
www.mozilla.org/support (provided by Mozilla), 9,783
Mozilla bug reports from http://bugzilla.mozilla.org
(downloaded as XML), 8,212 discussion threads from
four Firefox support forums at http://mozillaZine.org—
including the forums titled support (6,550), general
(1,019), bugs (323), and features (320)—and 693
questions posted at http://superuser.com and tagged
firefox (SuperUser is a Q&A support site).

All posts were written between Nov. 1st, 2009 and July
23rd, 2010, which was the time window of the Mozilla
support dataset. The data spanned 4 releases of Firefox
(versions 3.5.5, 3.5.6, 3.5.7, and 3.6) and contained a
total of 47,815 unique usernames.

Parsing and Filtering Sentences
Given a single support request (ignoring replies),
Frictionary starts with the whitespace-preserved text of
a request, including a title and body, as in Figure 1.1.
The text is then segmented into line break separated
paragraphs (not shown) and then into sentences and
word tokens using the Stanford sentence tokenizer
[12]. The sentences are then provided to the Stanford
probabilistic context free grammar parser [12]. The
resulting parse trees are tagged with parts and phrases
of speech, as in Figure 1.2.

In addition to English words, requests can also include
logs, error codes and other non-natural language text.
Frictionary uses two heuristics to exclude such text.
First, it excludes any sentences with more than 100
words, since most English sentences have fewer than

1) lost	 1	 bookmark
help!	 one	 of	 my	 bookmark	 folders	
disappeared,	 containing	 many	
bookmarks	 I	 use	 all	 the	 8me.	 What	 can	
I	 do??	 Thanks!

2) (S	 (NP	 (NP	 (CD	 one))	 (PP	 (IN	 of)	 (NP	 (PRP
$	 my)	 (NN	 bookmark)	 (NNS	 folders))))	
(VP	 (VBD	 disappeared)	 (,	 ,)	 (S	 (VP	 (VBG	
containing)	 (NP	 (NP	 (JJ	 many)	 (NNS	
bookmarks))	 (SBAR	 (S	 (NP	 (PRP	 I))	 (VP	
(VBP	 use)	 (NP	 (PDT	 all)	 (DT	 the)	 (NN	
8me)))))))))	 (.	 .))

3) 1) (S	 (NP	 (NP	 (CD	 one))	 (PP	 (IN	 of)	 (NP	
(PRP$	 my)	 (NN	 bookmark)	 (NNS	
folders))))	 (VP	 (VBD	 disappeared)))

2) (S	 (VP	 (VBG	 containing)	 (NP	 (NP	 (JJ	
many)	 (NNS	 bookmarks)))))

3) (S	 (NP	 (PRP	 I))	 (VP	 (VBP	 use)	 (NP	
(PDT	 all)	 (DT	 the)	 (NN	 8me))))

4) 1) subject=[bookmark,	 folders],	
verb=[disappeared],	 object=[]

2) subject=[],	 verb=[containing],	
object=[bookmarks]

3) subject=[I],	 verb=[use],	
object=[8me]

5) 1) feature=bookmark	 folder,	
acRon=disappearing

2) none
3) none

Figure 1. (1) an request’s 3rd
sentence as (2) a parse tree, (3)
clauses, (4) subject/verb/object
words, and (5) topics.

alt.chi CHI 2012, May 5–10, 2012, Austin, Texas, USA

193

50. Second, for each word in a sentence, Frictionary
determines whether each word is all letters with an
optional hyphen (e.g., pigeon-hole), all digits (e.g.,
6284), or a sequence of identical punctuation marks
(e.g., !!! or ???). If a word does not conform to one of
these three patterns, it is classified as a non-word. If a
sentence is more than 20% non-words, the sentence is
excluded from extraction. This allowed for sentences to
contain 1 or 2 non-words, such as quoted error codes.

Extracting Topics from Subject-Verb-Object Patterns
Once Frictionary filters sentences, it analyzes sentence
clauses (subject/verb/object sets). The goal of this part
of the analysis is to distinguish problem clauses from
non-problem clauses by looking for patterns in these
subjects, verbs, objects, and other clause attributes. To

begin, Frictionary identifies clauses by finding the S-
nodes in a clause’s parse tree. For example, the tree in
Figure 1.2 contains the three clauses in Figure 1.3, two
of which are children of the root clause. Frictionary also
splits any clause with a coordinating conjunction child
into two clauses (as in (S	 (NP	 (NP	 (NNP	 FF)	 (NNP	 freezes))	 (CC	 and)	
(NP	 (DT	 a)	 (JJ	 dialog)	 (NN	 box)))	 (VP	 (VBZ	 opens)))) since they may
share a subject, but have different verbs and objects.

Next, Frictionary extracts subject, verb, and object
words from each clause (ignoring descendent clauses,
since they are analyzed independently), as follows.
Subject words include all nouns and gerunds of the 1st
noun phrase preceding a verb (e.g., bookmark folders
in Figure 1.4.1). If there is no noun phrase (as in Figure
1.3.2), there is no subject. Verb words include (1) the
1st finite verb of the 1st verb phrase following a to (if
there is one) and preceded by a coordinating
conjunction, subordinate clause, or prepositional phrase
(if present), and (2) the word not, if modifying the
selected verb, to capture the polarity of the sentence.
In Figure 1.4, the verbs are disappeared, containing,
and use. Object words include all nouns, adjectives,
past participle verbs, and gerunds following the
selected verb and preceded by a coordinating
conjunction, subordinate clause, or prepositional
phrase. Figure 1.4 shows the object words extracted
from the example sentence.

Next, Frictionary uses the subject, verb, and object
words to compute the 8 clause attributes listed in the
rightmost columns of Table 1. The verb attribute is true
if the clause has a verb. Clauses with no verb are
unlikely to explicitly indicate a problem. For example,
the clause firefox tabs indicates a software feature, but
not an undesirable behavior or state. The animate
attribute is true if the subject of a clause is a personal
pronoun other than it (e.g., I, we, you, he, she, they,
etc.). This is a critical factor in determining whether a

kind problem example	 clauses verb animate copular past desire context able not
fragment ✕ firefox	 tabs ✕ -‐ -‐ -‐ -‐ -‐ -‐ -‐
user	 state ✕ I	 was	 angry;	 I	 am	 angry;	 I	 was	

not	 angry;	 I	 am	 not	 angry;	 I	
can	 be	 angry;	 a3er	 I	 was	
angry;	 I	 would	 be	 angry;	 etc.

✓ ✓ ✓ -‐ -‐ -‐ -‐ -‐

user	 workaround ✕ I	 tried	 clicking	 the	 x;	 I	 tried	
not	 clicking	 the	 x

✓ ✓ ✕ ✓ -‐ -‐ -‐ -‐

user	 behavior ✕ I	 close	 tabs	 a	 lot;	 I	 don’t	 close	
tabs;	 I	 won’t	 close	 tabs

✓ ✓ ✕ ✕ -‐ ✕ ✕ -‐

user	 ability ✕ I	 can	 open	 windows ✓ ✓ ✕ ✕ ✕ ✕ ✓ ✕

user	 consequence ✕ Once	 I	 can	 open	 a	 tab...;	
when	 I	 can't	 open	 a	 tab...

✓ ✓ ✕ ✕ ✕ ✓ ✓ -‐

non-‐gramma8cal ✕ I	 will	 could	 open	 a	 tab. ✓ ✓ ✕ ✕ ✓ -‐ ✓ -‐

user	 inability ✓ I	 cannot	 open	 windows ✓ ✓ ✕ ✕ ✕ ✕ ✓ ✓
user	 input ✓ a3er	 I	 open	 a	 tab;	 if	 I	 don't	

open	 a	 tab;	 a3er	 I	 would	
open	 a	 tab

✓ ✓ ✕ ✕ -‐ ✓ ✕ -‐

problema8c	 behavior ✓ firefox	 tabs	 will	 not	 close;	
firefox	 tabs	 should	 close

✓ ✕ ✕ -‐ -‐ -‐ -‐ -‐

problema8c	 state ✓ Firefox	 is	 slow;	 tabs	 are	 stuck. ✓ ✕ ✓ -‐ -‐ -‐ -‐ -‐

Table 1. A truth table defining Frictionary’s clause classification function, via 8 attributes (in
columns). A - indicates a “don’t care”. Frictionary extracts topics matching the last 4 rows.

alt.chi CHI 2012, May 5–10, 2012, Austin, Texas, USA

194

clause regards software or something else. The
copular attribute is true if the clause has an
exclusively copular verb, providing information about
the subject. This includes all conjugations of the verbs
be, seem, and become (e.g., is, am, are, was, were,
etc.). This does not include optionally copular verbs,
such as appears, because their role is often ambiguous.
The past attribute is true if if the clause has a past
tense verb. The desire attribute is true if the clause
has any of the English modal verbs will, would, shall, or
should, which tend to indicate desired states [14]. The
context attribute is true if the clause has a temporal
wh-adverbs (namely when, but also whence,
whereupon, and wherein) or a temporal preposition
(when, if, while, before, after, or until). These tend to
indicate the action the user input that preceded a
problem [14]. The able attribute is true if the clause
contains the modal verb can or could, which tend to
indicate the possibility of action. And finally, the not
attribute is true if not modifies the clause’s verb.

Frictionary uses these 8 boolean attributes to compute
the function defined by Table 1’s truth table. The
function identifies clauses that indicate (1) actions a
user took that caused a problem, (2) actions the user is
unable to take, (3) problematic software behaviors, and
(4) problematic software state. These are the last 4
rows of Table 1; all other clauses are excluded. For
example, of the three clauses in Figure 1.4, only the
first was kept (Figure 1.5). It is worth noting that none
of the patterns above attempt to address the word it
(resolving such pronominal anaphora is a long-standing
challenge in natural language processing).

Once Frictionary selects problem clauses, it applies one
last filter to ensure that the clauses regard the software
and not other software or inanimate objects. To do this,
Frictionary takes as input all of the English localization
files for an application of all versions of the software,

containing all user interface labels and error messages
that can be displayed in the application. Frictionary
then parses each user interface string, extracting nouns
and verbs, and stems them, storing them in application
terminology dictionary. With this dictionary, Frictionary
then excludes any problem clause whose subject, verb,
and object lack any known application noun or verb
(using the stemmed version of each word).

After this last filtering, Frictionary converts the subject,
verb, and object words (as in Figure 1.4) into into a
feature/action phrase. It first lemmatizes each word
with the Stanford stemmer [12] (e.g., closed into close)
and then converts verbs to gerund form (nouns ending
with -ing). This normalizes the topic’s words, ensuring
that topics with the same lemmatized word are
equivalent when compared as strings. Lastly, the topic
is created by adding to a list all subject words, in order,
then the object words, in order, creating the feature of
a topic. The gerund form of the verb then becomes the
topic’s action. Figure 1.5 shows examples of resulting
topics. Lastly, the topic extracted from a clause added
to the set of topics accumulated for a request; string
equivalent topics appear only once. The extraction
process is then repeated for all clauses of all sentences
of all support requests in the provided corpus.

Aggregating Problem Topics
After Frictionary extracts topics from the requests, it
groups topics by addressing differences in spelling,
spacing, hyphenation, phrasing, and word choice. First,
Frictionary uses the WordNet [8] database to find
synonyms of application terminology. WordNet is a
large graph of English nouns and verbs, connected by
various relationships, one of which is a synonym
relationship. Frictionary goes through each topic, and
for each word that is not a application term that also
has a single synonym that is an application term,
replaces the word with the synonymous application

alt.chi CHI 2012, May 5–10, 2012, Austin, Texas, USA

195

term. For instance, in the WordNet corpus, background
is the only synonym of wallpaper that appears in the
Firefox UI, and therefore, topics that use the word
wallpaper are rephrased with the word background.
Terms that are synonymous with multiple terms remain
unchanged, as they may have more nuanced meanings.

After synonym renaming, Frictionary standardizes
topics by performing the following pairwise topic
comparisons. If two topics’ features are equivalent after
stripping hyphens and plurals (e.g., plug-‐in vs plugins),
both topics’ features are relabeled without hyphens and
plurals (plugin). If two topics’ features are equivalent
after removing one or more spaces between two
feature words (e.g., fire	 bug	 plug	 in	 vs. firebug	 plugin), both
topic’s features are relabeled with the more frequent
topic in the corpus. If the Levenstein string distance
[16] between the two feature strings or verbs is 1 (e.g.,
forefox vs. firefox), the more frequent spelling in the
corpus is used. Finally, if any words appear in a custom
dictionary of application-specific synonyms, those
words are remapped to the standardized form. For
example, people may refer to Firefox also as FF; this
gives Frictionary users the ability to improve the
aggregation with terminology that may not appear in
the software’s user interface.

Once each topic in the corpus is standardized,
Frictionary creates string-equivalent topic groups. For
example, all topics with the phrase firefox	 crashing would
be combined into a single set. Frictionary then performs
one final aggregation to address differences in
phrasing, merging topics whose feature words are a
superstring of another topic’s feature words, but with
the same action words. For example, Frictionary adds
the topics matching firefox	 window	 crashing	 to the group
of topics matching firefox	 crashing, while preserving the
firefox	 window	 crashing group. This enables for some
variation in how features are phrased.

Faceted Browsing of Problem Topics
To help software producers make sense of software
support topics, Frictionary provides the topic browsing
interface in Figure 2. The interaction flows from the bar
chart at the top (Figure 2a), which visualizes the
number of requests in a 30 day period. The bar chart
also plots a vertical line for each release of the
software. Each bar is also divided into stacks
representing the request counts from each data source.
The sources are listed at Figure 2b; toggling them
includes and excludes their data from plots and tables.

Clicking on any bar in the frequency plot at Figure 2a
shows two tables: the topics table (Figure 2c) and the
features table (Figure 2d). The topics table contains all
of the topics in the selected time period, sorted by one
of the columns. For example, the screenshot shows that
in the period starting December 31st ’09, which
contained the release of Firefox 3.5.6, the most
common topics were firefox	 opening, firefox	 using, firefox	
crashing, tab	 opening, and so on. The features table
contains the top 1,000 most frequent topic features
(e.g., version, web, nothing, computer, error, etc.)

Clicking on a feature in the features table shows the
topics for that feature (Figure 2e). This table also
provides a bar chart plotting the proportion of requests
containing a topic with the selected feature in each
period. For example, the feature button appeared an
increasing proportion of requests over time. The button
above the chart (Figure 2f) toggles between plotting
the proportion and number of requests containing the
feature. Clicking this reveals that while the proportion
of requests containing the button increased, the
absolute count decreased after 3.5.6 but then increased
again a few months later.

Clicking on a topic, either in the topic table (Figure 2c)
or the actions table (Figure 2e), shows the topic view

alt.chi CHI 2012, May 5–10, 2012, Austin, Texas, USA

196

(Figure 2g). This view shows the same kind of plot as in
the actions view, but for the selected topic. Below the
plot, it shows the top 10 topics that also occur in
requests containing the selected topic (Figure 2h). For
example, one frequently co-occurring topic with button	
disappearing in this period was toolbar	 disappearing. This
allows Frictionary users to better interpret the meaning
and context of the selected topic.

The bottom of topic view also includes
all of the clauses containing the
selected topic (Figure 2i). Clicking on
one of these shows the request view
(Figure 2j), which includes the title of
the request, the request text, the
source, and the date it was written.
This view also lists all of the topics
extracted from the request and a list
of all of the other topics extracted
from requests by the same user.
These views are intended to give a
sense of whether the user is a
frequent requester and if so, for what
topics they often request help.

All tables have 5 sortable columns of
statistics. The 1st column (#) is the
absolute number of requests that
contain the feature or topic in the
selected period; by default, all tables
are sorted in decreasing order with
this metric. The 2nd column (%) is the
proportion of requests in this period
containing this topic. The 3rd column
(+/–) shows the change in number of
requests containing the feature or
topic relative to the previous period.
This enables Frictionary users to see
whether a feature or topic has

changed in frequency in the last 30 days. The 4th
column (☺) shows the number of unique users
mentioning this topic. For example, in Figure 2c, 277
requests mentioned tab	 opening, but these requests
were only written by 252 users, meaning that some
individuals wrote multiple requests mentioning the
same topic. (Of course, some people may have multiple
accounts on a site, so there is no guarantee that this
number actually represents the number of unique

Figure 2. The Frictionary user interface, enabling users to browse topics and sort them by frequency and prevalence metrics.

a
b

c

d

e

f

g

h

i

j

alt.chi CHI 2012, May 5–10, 2012, Austin, Texas, USA

197

individuals). This metric may help Frictionary users see
how prevalent an issue is: the fewer the number of
unique users mentioning a topic, the more the topic
might be the idiosyncratic concern of a vocal minority.

The last column (!!) represents a metric we call
vocality, which is intended to measure the extent to
which an issue is mentioned by “vocal” users. This is
operationalized by computing the median number of
requests written over all periods by the users
mentioning the selected topic. For example, the button	
clicking topic shown below Figure 2e has a vocality of
126, meaning that the median number of requests
written by the 68 users mentioning the topic was 126—
these are prolific help seekers. In contrast, button	
adding, further down the table, has a vocality of 2,
meaning that the users mentioning it were less prolific.

Evaluating Topic Extraction and Utility
From the 89,760 support requests in our corpus,
Frictionary extracted 77,349 unique feature phrases,
9,120 unique action phrases, and, combined, 259,521
unique topic phrases. Of all topics, 212,723 (82%) only
appeared once. There were also 7,879 requests (9%)
for which zero topics were extracted.

Although there are many reasons why Frictionary
excludes clauses, we wanted to identify the most
common ones. To do this, we randomly sampled and
analyzed 250 requests for which there were no topics.
The first noticeable cause was that requests with no
topics were short: the median number of sentence
clauses per request was 3, including the request titles,
which generally were sentence fragments and thus
excluded. Of the 1,044 rejected clauses in this sample
of 250 requests, the reasons for rejecting a clause
were, in deceasing order: the subject did not have an
application term (29%), the subject regarded the
author and not the software (26%, corresponding to

rows 2-7 of Table 1), there was no subject due to
parsing errors (20%), the subject was it (14%), there
was no verb due to parsing errors (6%), the verb was
copular but with a phrasal descriptor, rather than an
adjective (5%, as in tabs are the last thing on my
mind). Of these 250 requests, all but 8 identified real
problems, but typically in one or two incomplete
sentences (the other 8 were spam or not English).

These metrics and user interface ideas are simply one
sketch of a wide range of possible ways of browsing,
viewing, and analyzing Frictionary topics. This
particular form did, however, reveal a number of
unexpected trends. For example, as seen in Figure 2c,
the #8 topic was nothing	 happening, which could refer to
the general experience of Firefox ignoring user input.
Upon further investigation, we found that the most co-
occurring topics in this period and others following the
release of Firefox 3.6 were firefox	 opening, file	
downloading, link	 clicking, and button	 clicking, which
suggests that there were many unresolved issues with
missing feedback throughout the Firefox UI. We
browsed many of the requests containing this topic and
found many problems with missing feedback. We also
used the Frictionary UI to find the 717 bug reports
written since the release of Firefox 3.6 and containing
the topic nothing	 happens and identified them in Firefox
Bugzilla database at http://bugzilla.mozilla.org. Of
these, 72% are still flagged NEW or UNRESOLVED as of
August 31st, 2011, 18 months after being reported.

To further assess the utility of Frictionary to a software
organization, we solicited expert critiques from a
support lead who runs support.mozilla.org and is
responsible for gleaning user insights from support, and
the Firefox principal designer, who sets interactive and
visual design directions for Firefox. We contacted both
by e-mail, sending a document describing how
Frictionary works and providing a link to the Frictionary

alt.chi CHI 2012, May 5–10, 2012, Austin, Texas, USA

198

Firefox dataset corpus. We asked them to address the
following questions after exploring the prototype: (1)
Did you discover anything you didn't know about
Firefox users, Firefox use, or a particular Firefox
release? (2) If Frictionary had live data, what role do
you think the information would have in your own work
or in the larger Mozilla community? (3) Are there ways
you wish you could view or analyze the data that would
be more useful to your role at Mozilla? (4) Is there
information you would find more useful than the topic
data presented in Frictionary? We asked each expert to
provide honest judgments, even if harsh or negative.

The support lead felt that the tool was “quite
impressive” and that the “it could be useful to gather all
of the comments about Firefox from all over the web
into one place and the UI for slicing the data is cool.”
Ultimately, however, he felt that the topic extraction
was “good, but not good enough”:

A	 "message"	 could	 be	 an	 error	 message,	 an	 email	 message,	 a	 message	
box,	 an	 IM...	 all	 of	 which	 are	 distinct	 things	 to	 support...	 some	 people	 say	
"open"	 some	 say	 "load"...	 "open"	 could	 be	 dozens	 of	 different	 distinct	
behaviors	 from	 loading	 pages	 to	 starting	 the	 browser	 to	 opening	
downloaded	 files	 to	 downloading	 attachments	 from	 email.

The support lead struggled to find trends that he was
not already aware of, but admitted that he was unlikely
to, since the data was a year old. He explained that he
finds trends by just replying to dozens of support
requests every day: “I just have a sense for how many
lost bookmark threads (for example) to expect and
then when that suddenly increases or we see new
issues that I haven't seen before, I report it.”

The Firefox principal designer was more positive:
It	 was	 really	 interesting	 to	 see	 changes	 over	 time	 for	 the	 most	 critical	
features,	 like	 the	 application	 being	 able	 to	 install	 or	 update.	 	 Unlike	 crash	
reports,	 we	 currently	 don't	 have	 a	 good	 way	 of	 instrumenting	 and	
monitoring	 when	 an	 install	 or	 update	 failed,	 so	 visualizing	 quantitative	
data	 coming	 out	 of	 support	 requests	 for	 that	 feature	 is	 really	 valuable.

He also felt that Frictionary could help open source
volunteers better prioritize their efforts:

I	 think	 this	 would	 really	 help	 an	 open	 source	 community	 prioritize	 work	
on	 particular	 engineering	 challenges.	 Otherwise	 people	 in	 an	 open	
source	 community	 will	 naturally	 gravitate	 towards	 only	 working	 on	 the	
things	 that	 they	 personally	 find	 interesting...

He also described a chart that support creates manually
that plots frequency versus severity; he believed
Frictionary would be a useful way of automating the
creation of this chart, allowing Frictionary users to label
particular features and topics with severity ratings.

Discussion and Conclusions
Our evaluations show that most of Frictionary’s topics
were viewed as legitimate problems and that experts
see value in the information, but that the extraction
may need to be even more precise about specific
software features to be useful in practice. Also, while
natural language parsers are now quite accurate, their
inaccuracies were behind many of Frictionary’s invalid
topics. Future work will need to further adapt parsers to
technical, jargon-laden documents. Frictionary’s own
extraction also led to invalid topics. For instance, in the
Firefox data set, the word time appeared in the
application dictionary, but was commonly matched to
the phrase every time. Our evaluations also found that
despite Frictionary’s ability to extracted valid topics
from requests, the requests themselves have a
relatively low information density, and the extracted
topics have an even lower density.

Despite these limitations, Frictionary represents a first
step in what we hope to be a new era of user
experience information extraction. We hope future work
will continue to explore more powerful and more
accurate means of understanding not only support
requests, but the wide range of other content that
users create to describe their software use.

alt.chi CHI 2012, May 5–10, 2012, Austin, Texas, USA

199

Acknowledgements
This material is based upon work supported by the
National Science Foundation under Grant No.
CCF-0952733.

References
[1] Akers, D., Simpson, M., Jeffries, R., Winograd, T.

(2009). Undo and erase events as indicators of
usability problems. ACM CHI, 659-668.

[2] Antoniol, G., Ayari, K., Di Penta, M., Khomh, F.,
Guéhéneuc, Y. (2008). Is it a bug or an
enhancement? A text-based approach to classify
change requests. CASCON, article 23.

[3] Bernstein, M.S., Suh, B., Hong, L., Chen, J.,
Kairam, S., Chi, E.H. (2010). Eddi: interactive
topic-based browsing of social status streams. ACM
UIST, 303-312.

[4] Chen, K., Luesukprasert, L., Chou, S.T. (2007). Hot
topic extraction based on timeline analysis and
multidimensional sentence modeling. IEEE KDE,
19(8), 1016-1025.

[5] Chilana, P.K., Grossman,T., Fitzmaurice, G. (2011).
Modern software product support processes and
the usage of multimedia formats. ACM CHI,
3093-3102.

[6] Chilana, P.K., Ko, A.J., Wobbrock, J.O.,
Grossman,T., Fitzmaurice, G. (2011). Post-
deployment usability: A survey of current practices.
ACM CHI, 2243-2246.

[7] Di Lucca, D., Penta, D., Granada, S. (2002). An
approach to classify software maintenance
requests. ICSM, 93-102.

[8] Fellbaum, C. (1998). WordNet: An electronic lexical
database. Bradford Books.

[9] Francis, P., Leon, D., Minch, M. (2004). Tree-based
methods for classifying software failures. IEEE
ISSRE, 451-462.

[10] Fourney, A., Mann, R., Terry, M. (2011).
Characterizing the usability of interactive
applications through query log analysis. ACM CHI,
1817-1826.

[11] Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais,
S.T. (1987). The vocabulary problem in human-
system communication. CACM, 30(11), 964-971.

[12] Klein, D., Manning, C.D. (2003). Accurate
unlexicalized parsing. TACL, 423-430.

[13] Ko, A.J., Lee, M.J., Ferrari, V., Ip, S., Tran, C.
(2011). A case study of post-deployment user
feedback triage. IEEE CHASE, 1-8.

[14] Ko, A.J., Myers, B.A., Chau, D. H. (2006). A
linguistic analysis of how people describe software
problems in bug reports. IEEE VL/HCC, 127-134.

[15] Ko, A.J., Chilana P.K. (2010). How power users help
and hinder open bug reporting. ACM CHI,
1665-1674.

[16] Naaman, M., Becker, H. Gravano, L. (2011). Hip
and trendy: Characterizing emerging trends on
Twitter. JASIST, 62(5).

[17] Rastkar, S., Murphy, G.C., Murray, G. (2010).
Summarizing software artifacts: A case study of
bug reports. ACM/IEEE ICSE, 504-514.

[18] Singh, V., Twidale, M. (2008). The confusion of
crowds: non-dyadic help interactions. ACM CSCW,
699-702.

[19] Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.
(2008). An approach to detecting duplicate bug
reports using natural language and execution
information. ACM/IEEE ICSE, 461-470.

[20] Wu, Q., Wang, Q. (2010). Natural language
processing based detection of duplicate defect
patterns. IEEE COMPSACW, 220-225.

[21] Yatani, K., Novati, M., Trusty, A., Truong, K.N.
(2011). Review Spotlight: A user interface for
summarizing user-generated reviews using
adjective-noun word pairs. ACM CHI, 1541-1550.

alt.chi CHI 2012, May 5–10, 2012, Austin, Texas, USA

200

