
A Case Study of Post-Deployment User Feedback Triage
Amy J. Ko, Michael J. Lee, Valentina Ferrari, Steven Ip, and Charlie Tran

The Information School | DUB Group | University of Washington
{ajko, mjslee, ferrariv, iperton, ctran7}@uw.edu

ABSTRACT
Many software requirements are identified only after a product is
deployed, once users have had a chance to try the software and
provide feedback. Unfortunately, addressing such feedback is not
always straightforward, even when a team is fully invested in user-
centered design. To investigate what constrains a teams evolution
decisions, we performed a 6-month field study of a team employing
iterative user-centered design methods to the design, deployment
and evolution of a web application for a university community.
Across interviews with the team, analyses of their bug reports, and
further interviews with both users and non-adopters of the
application, we found most of the constraints on addressing user
feedback emerged from conflicts between users heterogeneous use
of information and inflexible assumptions in the team’s software
architecture derived from earlier user research. These findings
highlight the need for new approaches to expressing and validating
assumptions from user research as software evolves.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Corrections, enhancements, extensibility.

General Terms
Human Factors, Design, Management.

Keywords
User feedback, bug reports, bug triage, software evolution.

1. INTRODUCTION
Designers rarely know everything about user needs before a product
ships. Stakeholders are overlooked [16], use cases are missed [20]
and above all else, the world changes, requiring software teams to
evolve applications to suit new needs. It is therefore inevitable that
much of the work to serve user needs through design happens after
software is deployed, in continuously changing contexts of use [24].
But as most practitioners in the software industry know, changing
software is not so simple. For example, software engineering
researchers have long studied notions of coupling and cohesion
[25], modularity, and cross-cutting concerns [9], analyzing the role
of technical dependencies in both constraining and facilitating
change. Moreover, there are several economic [2] and lifecycle [19]
factors that can limit software change, not to mention a variety of
cognitive [8] and social [18] challenges in simply understanding
complex software systems in order to change them.
One aspect of software evolution that has received little attention,
however, is the role of post-deployment user feedback such as

support requests and bug reports. With the rise of web-based
technical support and the ease with which users can contact small
software teams via e-mail and the web, what constrains a software
team’s ability to address user feedback with software changes, even
when a team is committed to user-centered, iterative design?
To investigate this question, we performed a 6-month field study of
a software team employing Agile methods and staffing several user
researchers and designers working directly with developers, testers,
and managers. We report on the history of one of the team’s
products, a grade book application for a university community. We
discuss the team’s user research, prototyping and post-deployment
iteration, analyzing the constraints they faced in addressing post-
deployment user feedback. We also analyzed over 1,200 bug reports
the team did and did not address and the reasons why; we also
interviewed a sample of both users and non-adopters of the team’s
application, revealing needs the system did not serve and what
constraints prevented the team from serving them.
Our findings make several contributions to knowledge about user-
centered design and software evolution. In particular, we found that
most of the constraints in addressing user feedback emerged from
conflicts between (1) heterogeneous perspectives on how grades
should be represented and (2) global assumptions in the team’s
software architecture and user interface design. When the team
attempted to address these conflicting user needs, the resulting
solutions were considered inadequate by both the team and the user
community, limiting changes to incremental modifications that
supported existing users. These findings highlight the need for new
approaches to expressing and validating assumptions from user
research as a team receives and triages user feedback.
In the rest of this paper, we discuss prior work on software
evolution and then detail the methods used to study the team. We
then discuss our observations and their implications on user
research, user-centered design and software evolution.

2. RELATED WORK
We know of know prior work that has explicitly investigated the
constraints that software teams face in addressing software change
requests. There is, however, considerable prior work on the factors
that can constrain software evolution in general, ranging from the
inflexibility of computer code, the time required to invest in change,
and the skills available to implement change, to more systemic
factors such as policy, market forces, and politics. In this section,
we discuss prior work on these various factors.
One major constraint on software change is complexity. For
example, Buxton argues that as systems grow in complexity, the
architecture, technologies and paradigms “create a straightjacket
that severely affects the cost of change.” [6]. Lehman provided one
of the first reports on this phenomenon [19], deriving several laws
of software evolution from a study of several long-lived
applications. Lehman argued that because of the ease with which
code can be reused, there is an incentive to implement changes with
existing code, rather than aggregate changes into new code.
These forms of reuse are captured in several concepts of code
complexity, such as coupling (the degree to which program
modules are mutually interdependent) [25] and cross-cutting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE '11, May 21-28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0576-1/11/05... $10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHASE’11, May 21, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0576-1/11/05 ...$10.00

1 Most up-to-date version: 06/25/2021

concerns [9] (the degree to which a software feature spans
modules). Measures of these concepts across successive versions of
software show that all tend to increase, causing each change to span
a larger subset of a program’s modules [21][7]. One way that teams
mitigate increases in complexity is through change impact analysis
[1], determining which parts of a program will be affected if a
proposed change is made. Recent studies have shown that when
developers cannot find enough information to assess the impact of a
change, the risk of the change introducing new defects, breaking an
existing use, or otherwise changing user experience, is assumed to
be prohibitively high [18].
Another constraint on software change can be the user community
itself. For example, Buxton argues that because users have made an
investment in learning the product; any significant changes to the
UI or workflow may threaten the loss of existing users and may not
lead to new adopters. After all, learning is a significant investment
[14] and some users may see no value in the new benefits offered
by a system relative to the new cost of learning the system [2].
Moreover, people often adopt new technologies not on the actual
cost, risks, and rewards, but perceived ones [5]. People are also
adept at appropriating software in unexpected and idiosyncratic
ways [15], leading them to depend on code in ways a team may not
have intended. Once these use dependencies are established,
modifying such code may mean breaking unplanned but widespread
uses, even if the code was viewed as provisional.
Teams also face infrastructural constraints. For example, Edwards
et al. [10] explain how infrastructure can preclude certain user
experiences, expose technical abstractions to users in undesirable
ways, and force users to interact directly with infrastructure to
accomplish their goals. Such infrastructural constraints can also be
a significant constraint for software teams’ ability to change
software, forcing them to select undesirable designs because they
are not free to change the infrastructure.
There may also be social and cognitive factors within a team that
constrain change. For example, teams may experience loss
aversion, strongly preferring avoiding losses to acquiring gains
[17]; with respect to software evolution, this may mean avoiding
losing a small number of existing users over gaining a large number
of new users, or avoiding an architectural change even though it
may enable significant improvement in user experience. Similarly,
teams may engage in irrational escalation [4], justifying increased
investment in a decision because of cumulative prior investment,
despite new evidence that the decision may be ineffective. Teams
may also experience confirmation bias [4], seeking or interpreting
information in a way that confirms preconceptions about how
software is used or what value users derive from it.

3. METHOD
The focus of our study was on understanding the role of user
feedback in addressing software change requests. In this section, we
describe the team we observed and how we analyzed their efforts.
In selecting a software team for study, we sought one that had an
explicit focus on user-centered design. We chose to study an in-
house software team at a university known as LST, consisting of 20
full time and 40 part time staff. While the team was local, making it
easy for us to observe the team, the primarily reason we selected the
team was their mission statement:

“We	 follow	 an	 itera.ve,	 user-‐centered	 design	 and	 development	 process	 that	
focuses	 on	 understanding	 the	 needs	 and	 experiences	 of	 our	 users.	 Whether	 we	
are	 crea.ng	 a	 new	 tool	 or	 upda.ng	 an	 older	 one,	 our	 design	 decisions	 are	 based	
on	 direct	 feedback,	 user	 research,	 and	 findings	 from	 usability	 studies.”

This dedication was reflected in their many awards, with the most
recent presented by the Center for Digital Government and
Education, and the ACM Special Interest Group on University and

College Computing Services. This was also reflected in their actual
work throughout our observations.
The focus of our study was on LST’s most recent tool, a cloud-
based web application called GradeBook, used by university
instructional staff to store, organize, and publish student grades. The
main screen of this application appears in Figure 1. The major
features of the application include a spreadsheet-like interface for
storing scores on assignments, categories for representing groups of
assignments, automatic final grade calculation, and online grade
submission. The application also imports and exports Excel files.
We discuss the rationale behind several of GradeBook’s features
later in our discussion of the team’s initial user research.
The GradeBook design team included six individuals across two
teams: one focused on the grade book application itself and another
focused on online grade submission. Of these 6 individuals, 2 were
developers (and participated on both teams), 3 were designers (one
of which participated on both teams), and 1 was the program
manager for both teams. One of the designers focused on client-side
user interface design, writing HTML, CSS, and JavaScript for the
front end. The two developers were responsible for the majority of
the engineering work behind all versions of the application.
To learn about the project history, we performed two semi-
structured interviews with the 4 of the 6 team members. We
interviewed them in pairs to help reveal conflicting and confirming
memories about the project history, also asking the same questions
in different ways to cross-validate responses. Our questions focused
on several aspects of GradeBook’s history: we asked about the
rationale for the project’s inception, what user research was
performed to inform the design, and about the results of the user
research. We asked about the rationale for the major features of the
GradeBook application and their relation to the user research. We
also asked what aspects of GradeBook had evolved in response to
user feedback, and which aspects the team wanted to evolve, but
could not and why. Interviews were recorded and transcribed.
In addition to interviewing the team, we also analyzed the team’s
technical support and bug report repositories. The team used
Bugzilla to track issues and classified resolved bugs into FIXED,
WONTFIX, LATER, DUPLICATE, NOTREPRODUCIBLE, MOVED, or REMIND.
Our analyses focused on the 1,046 FIXED and 144 WONTFIX closed
reports. In reading them, we focused on understanding what aspect
of GradeBook was identified and why the team decided to fix or not
fix the issue. It was common for reports to both indicate the
rationale for closing a report, a link to the code change in the
version repository (if there was one), and a link to support tickets
that prompted the project, if any.
To understand the user community’s use (and non-adoption) of
GradeBook, we also interviewed several instructional staff in
charge of teaching the large undergraduate population, particularly
those teaching introductory lower-division courses. We focused on

Figure 1. The GradeBook application designed by LST, as
originally released. Data in the spreadsheet is fictional.

2

departments with more than 100 students and on courses being
taught during the quarters of our observations. We contacted each of
the instructors and teaching assistants of these classes through
email, explaining our study and asking for participation. Of the 82
instructors and teaching assistants we contacted, 22 replied. Of
these replies, we successfully arranged interviews with staff of the
12 courses in Table 1. Of the 12 staff interviewed, 5 were the
official instructors of record, 6 were teaching assistants, and 1 was a
course coordinator, responsible for managing teaching assistants in
collaboration with the instructor. Of the 12, all used Excel to track
some form of student grades, 6 used GradeBook to store grades,
and 2 used other grade management software mandated by their
departments. All used GradeBook to submit grades online.
Our semi-structured interviews with these 12 instructional staff
involved a walkthrough of the syllabus and rationale, the kinds of
deliverables students submitted, how deliverables were submitted,
how they were graded, where grades were stored, how feedback
and scores were provided to students, the tools used for all of these
processes and the staffs’ views on these tools’ inadequacies for
grading. Each interview was audio-recorded and transcribed.

4. SOFTWARE DESIGN PROCESS
In this section, we describe the team’s user research and prototyping
for GradeBook, and the basic elements of the design they initially
deployed. We use [dev], [pm], and [des] to refer to quotes from
developers, the program manager, and designers, respectively.
Prior to working on GradeBook, the team had a 7 year history of
creating other web-based applications This influenced the design
philosophy behind GradeBook:

[pm]	 ...	 we	 started	 out	 in	 1998	 with	 WebQ	 [a	 quiz	 applica.on]	 as	 the	 first	 tool.	
And	 so	 we	 kind	 of	 grew	 the	 toolset	 over	 .me	 by	 building	 new	 things....	 And	 yet	
we	 knew	 all	 along	 that	 the	 Catalyst	 tools	 are	 valuable	 and	 useful	 in	 a	 way	 that	
courseware	 like	 Blackboard	 isn't,	 precisely	 because	 they	 are	 modular	 and	 a	
faculty	 member	 can	 ...	 use	 them	 in	 contexts	 and	 ways	 that	 aren't	 course-‐centric	
and	 locked	 down.	 So	 it	 has	 been	 organic,	 but	 also	 strategic.

In early 2007, the team began hearing from the community the need
to move beyond paper grade submission:

[dev]	 ...	 when	 I	 was	 first	 here	 in	 2005	 we	 said	 we	 weren't	 going	 to	 because	 it	
would	 be	 course-‐centric,	 then	 we	 kind	 of	 moved	 into	 this	 space	 where	 lots	 of	
people	 were	 saying,	 “why	 do	 I	 have	 to	 fill	 in	 this	 bubble	 sheet?,”	 and	 it	 just	 felt	
like,	 to	 us,	 that,	 our	 group	 had	 the	 right	 skill	 set	 to	 make	 a	 course	 tool	 like	
GradeBook	 ...	 there	 wasn't	 anything	 out	 there	 that	 was	 easily	 integratable	 with	
campus	 infrastructure...

In November 2007, the team began user research. While no user
research is entirely comprehensive, we found the team’s efforts
substantial, triangulating research from interviews, surveys, and
artifacts and collaboration with domain experts. In particular, a
major part of the research was working with others in the university
community who had experience developing custom grade
management software for particular departments, particularly the
computer science department:

[dev]	 ...we	 interviewed	 some	 of	 those	 CSE	 folks,	 and	 we	 worked	 with	
the	 developer,	 [name	 omiIed],	 ‘cause	 he	 had	 a	 lot	 of	 knowledge	 on	
what	 the	 requirements	 were	 for	 [the	 CS	 grade	 repository].

The team’s primary research efforts were 2 to 3 months of
interviews and surveys with instructional staff and students.

[dev]	 we	 did	 a	 survey	 of	 faculty,	 TAs,	 people	 who	 did	 on	 the	 administra.ve	 side,	
grading	 sort	 of	 stuff...	 I	 think	 we	 maybe	 interviewed	 7	 or	 8	 sort	 of	 faculty,	 people	
who	 were	 ac.vely	 teaching	 and	 recording	 grades.	 And	 then	 of	 course	 other	
people	 who	 were	 developers	 and	 administra.ve	 types.	 That's	 where	 most	 of	 our	
requirements	 came	 from.	

To recruit these individuals, the team used snowball sampling,
starting with existing contacts who taught online courses, as well as
members of the community who had previously volunteered for
surveys, interviews, focus groups, and usability tests.

In interviews, the team found that most faculty used Excel,
coordinating with TAs with e-mail attachments, so they gathered a
large collection of Excel spreadsheets from faculty, creating a
repository that was used to examine the range of ways that faculty
stored, organized, weighed, and ultimately computed final 4.0 grade
points. The team found that most teachers organized deliverables
into categories of assignments (for example, a course might consist
of multiple exams, quizzes, assignments, etc.). The team also found
it was common for each of these different categories to have
different grading scales; some would be pass/fail, others would be
based on percentages, and others still might be based on points.
While this did not account for all of the uses they observed in
spreadsheets, it covered most.
The team also surveyed the instructional staff in the community,
finding that the most important desired features were being able to
weigh assignments, coordinate grading work with TAs online,
adjust grades, and provide feedback about grades to students. The
team deployed a similar survey to the student body, who indicated
that the most important features were tracking their progress on
grades and understanding how their grade was calculated.
After several months of data collection and analysis, the team
completed the research in winter 2008 and began a six month phase
of design and implementation. They began by prototyping a simple
mockup in order to solicit feedback from instructional staff:

[dev]	 I	 think	 we	 spent	 a	 lot	 more	 .me	 than	 we	 normally	 do	 in	 our	 ini.al	 designs.	
So	 aXer	 we	 were	 done	 with	 all	 of	 our	 ini.al	 research,	 I	 think	 we	 had	 some	 ini.al	
screenshots,	 we	 did	 a	 rapid	 prototyping	 thing,	 it	 was	 one	 of	 the	 first	 .mes	 I	 think	
we'd	 really	 done	 that…	 Just	 to	 get	 something	 really	 quick	 and	 dirty	 for	 people	 to	
play	 with.

After recruiting staff to use the prototype in a range of usability and
feasibility tests, the team ultimately arrived at an idea for a cloud-
based spreadsheet, mimicking Google Spreadsheets, creating a
single data store for course grades that faculty and TAs could all
access from web browsers. They focused on designing a flexible
platform for addressing post-deployment user feedback:

[dev]	 ...	 for	 the	 ini.al	 release	 we	 just	 needed	 it	 to	 be	 very	 generic,	 so	 we	 could	 do	
lots	 of	 neat	 detailed	 stuff...	 The	 first	 goal	 was	 just	 to	 get	 it	 so	 that	 people	 could	
create	 assignments,	 add	 grades,	 publish	 those	 grades	 to	 their	 students...

As seen in Figure 1, the core feature was a grid of students and
assignments. Each row stored a student, notes about the student,
and a collection of assignment categories. Four assignment scoring
scales were supported, including a point, percentage, text and
custom scale (which allowed instructors to define a mapping from
ordinal text values to percentages). Assignment scores could also be
published to students online. Total grades could also be calculated
automatically, based on a weighted sum of each category’s
assignments (with the option to drop 1 or more assignments from a

course #	 contacted #	 replied who	 was	 interviewed

Japanese	 (JAPAN) 2 2 1	 instructor
Spanish	 (SPAN) 7 2 1	 teaching	 assistant
Chemistry	 (CHEM) 3 2 1	 teaching	 assistant
Biology	 (BIO) 2 2 1	 course	 coordinator
Mathema.cs	 (MATH) 7 2 1	 instructor
Computer	 Science	 (CSE) 1 1 1	 instructor
Electrical	 Engr.	 (EE) 1 1 1	 instructor
Mechanical	 Engr.	 (ME) 1 1 1	 instructor
Music	 (MUSIC) 2 2 1	 teaching	 assistant
Economics	 (ECON) 16 2 1	 teaching	 assistant
Accoun.ng	 (ACCNT) 4 2 1	 teaching	 assistant
Communica.ons	 (COM) 6 1 1	 teaching	 assistant

Table 1. The 12 courses for which interviews were conducted.
Columns indicate how many staff were contacted, how many

replied, and the role of the individual interviewed.

3

category). The GradeBook UI provided several ways of filtering the
spreadsheet view to specific assignments. It also provided a preview
mode for instructors to view students’ view of published grades.

5. FOUR TYPES OF SOFTWARE CHANGE
Our interactions with the team began approximately 1 year after the
team’s initial launch in September 2008 and continued for six
months. Our focus in analyzing the data was understanding what
factors best explained which change requests the team did and did
not address. We analyzed these changes by considering the team’s
rationale statements from the interviews and bug reports,
identifying each rationale statement and inductively arriving at a set
of constraining factors to which the team appealed in justifying
their triage decisions on software change requests.
While the team encountered many of the constraints discussed in
our prior work (competition with other grade book software,
campus politics, modularity challenges), there were two factors that
the team appealed to throughout both the interviews and bug
reports. One of these factors was how much code would have to be
changed to modify an assumption (Figure 2’s y-axis). Some
changes were local: for example, the team received requests to
validate assignment scores in ways that were explicitly
incompatible with the existing validation. Other assumptions were
more global: for example, most of GradeBook’s code assumed that
assignments have a single score and changing this assumption
would have required a major rewrite.
The other constraining factor affecting the team’s decisions was the
extent to which the user expectation motivating a proposed change
was believed to be shared by the larger user population (the x-axis
in Figure 2). The team rarely had enough data from user research to
estimate the extent to which such expectations were shared, often
resorting to using their instincts for such estimates or excluding
particular uses from scope to avoid needing to support it. Moreover,
many of the user expectations were ill-defined not only in the
team’s mind, but in the mind’s of the users’ they spoke to, meaning
that prototyping new features to support these expectations caused
expectations to shift, once users were able to work with a
computational version of what they had in their minds.
All but the Type 1 changes in Figure 2 were difficult for the team to
address. When the team pursued them anyway, they required
significant effort either in re-implementing features or fielding new
user feedback; moreover, these changes generally led to results that
were unsatisfactory to both the team and the user community. In the
rest of this section, we describe several examples of these changes,
illustrating how the two factors in Figure 2 interacted to constrain
how the team could respond to post-deployment user feedback.
In quoting from bug reports, we use [wontfix] and [fixed] to represent
reports. Underlined text is from the bug report description; other
text represents text from bug report comments. For interviews with
instructors, we use the disciplinary abbreviations that appear in
Table 1 (e.g., [CSE] represents a quote from the CSE instructor).

5.1. Majority Expectations, Local Assumptions
Type 1 changes concerned expectations that the team believed were
largely shared by the population and were highly localized in
GradeBook’s implementation. These issues are best characterized as
bugs: once reported, they were both straightforward to address and
desired by both users and the team. To analyze these, we focused on
the 1,046 FIXED bug reports that the team had filed between
GradeBook’s launch and the end of our observations, analyzing the
changes that modified a one or two files and had little to no
discussion in reports about how the change should be implemented.
We found that most of these changes were straightforward because
they changed the parameters of behaviors that were already
explicitly or easily parameterized. For example, most of these
changes modified labels, images, colors, links, and layout in the
user interface. These also included changes to interactive behaviors,
such as whether a dialog was modal. Existing behaviors were also
made conditional, for example, accounting for overlooked error
cases, excluding data that was already computed, or validating data
before accepting it. Although the team did not have explicit
evidence that these changes were desired by users, most changes
concerned violations of consistency and convention, and so the
team rarely discussed whether to make them.

5.2. Majority Expectations, Global Assumptions
Unlike the Type 1 changes in the previous section, the Type 2
changes emerging from post-deployment user feedback conflicted
directly with assumptions made in GradeBook’s implementation. In
this section, we present two such changes.
Equating Groups and Class Lists. A major source of feedback
early after GradeBook’s initial release regarded the confusing
workflow for giving privileges to other staff to view a GradeBook:

[dev]	 From	 the	 users	 perspec.ve,	 before	 you	 had	 to	 go	 in	 and	 say	 "I	 have	 a	 class	
list	 created	 for	 it,	 but	 I	 don't	 have	 a	 group.	 So	 I	 need	 to	 create	 a	 new	 group	 and	
from	 within	 the	 group	 I	 need	 to	 aiach	 the	 class	 list	 to	 the	 group	 and	 then	 go	 back	
to	 the	 tool	 and	 then	 aiach	 the	 group	 that	 has	 the	 class	 list."

The team’s research showed that most users viewed groups and
class lists as equivalent; this shared expectation, however, was in
conflict with the global assumption in all of team’s other
applications that a group was a different thing from a class list. The
team carefully considered whether the change was really necessary,
initially deciding to hide the group complexity behind the UI:

[dev]	 ...	 we	 didn’t	 want	 to	 change	 all	 of	 our	 backend...	 it	 was	 going	 to	 take	 too	
much	 .me	 and	 it	 was	 too	 hard...	 we're	 just	 going	 to	 do	 this	 half	 way...	

As this global assumption became more problematic in other
applications, the team eventually decided that groups and class lists
needed to be equated. The data migration efforts were substantial:

[dev]	 ...	 what	 we	 had	 to	 do	 was	 instead	 of	 just	 saying	 okay	 here's	 a	 new	 group	 ID,	
we	 had	 to	 remove	 the	 old	 one,	 and	 since	 group	 A	 might	 have	 contained	 two	
course	 groups	 as	 well	 as	 some	 people,	 it	 then	 became	 three	 groups,	 so	 then	 we	
had	 to	 say,	 okay	 GradeBook,	 you're	 actually	 now	 going	 to	 use	 three	 groups,	
instead	 of	 just	 one.	 That	 was	 a	 huge	 data	 migra.on	 process	 and	 it	 caused	 a	 lot	 of	
pain,	 and	 that	 was	 probably	 like	 3,	 4	 months	 of	 .me.

Moreover, once the migration was complete, the team needed to
undo the hacks that make GradeBook’s assumptions consistent with
the newly obsolete data model:

[dev]	 We	 ended	 up	 paying	 for	 it	 later	 on	 when	 we	 had	 to	 undo	 that	 work...	 when	
we	 made	 this	 group	 change,	 in	 addi.on	 to	 the	 migra.on,	 we	 had	 to	 go	 in	 in	
GradeBook	 and	 change	 all	 the	 code	 that	 was	 making	 that	 assump.on	 for	 us,	 and	
remove	 the	 ad	 hoc	 group	 from	 ever	 being	 created,	 because	 we	 didn't	 need	 it	
anymore,	 because	 you	 could	 just	 add	 the	 groups	 directly.

More than a year later, the developer was still discovering places in
the implementation that made the old assumptions:

[dev]	 Well,	 in	 this	 case,	 I	 mean	 I	 think	 I	 fixed	 a	 bug	 around	 this	 redo,	 two	 weeks	
ago	 s.ll?	 So,	 it's	 one	 of	 those	 things	 that	 tend	 to	 keep	 cropping	 up,	 because	 you	
have	 all	 this	 code	 that	 depends	 on	 these	 few	 assump.ons	 that	 you'd	 made	 and	
then	 you	 change	 it	 in	 90%	 of	 the	 places,	 and	 if	 you	 miss	 any	 of	 them,	 no	 maier	
how	 hard	 you	 look	 (I	 find	 that	 I	 always	 miss	 some),	 it	 always	 comes	 back.

the extent to which a user expectation
was believed to be shared

how much code would
have to be changed to
modify an assumption

majority minority

global assumption

local assumption

Type 3

Type 4

Type 2

Type 1

Figure 2. Two constraining factors that explained many of the
team’s software evolution decisions.

4

WebQ and CollectIt Integration. While the previous example
involved a change within GradeBook, the team also pursued
changes between applications. For example, the team often received
requests to integrate with other Catalyst tools, particularly WebQ
(which allowed faculty to create scored quizzes for classes) and
CollectIt (which allowed instructors to create digital drop boxes for
assignment submissions).
The team’s first integration was with WebQ; as with the change in
the previous section, the challenges stemmed from incompatibilities
in the GradeBook and WebQ data models:

[dev]	 ...	 because	 some	 of	 the	 flexibility	 that	 WebQ	 gives	 you	 in	 grading	 the	 quiz,	
you	 can	 allow	 students	 to	 take	 it	 twice,	 so	 you	 might	 have	 two	 different	 grades.	
GradeBook	 doesn't	 really	 account	 for	 that,	 it	 wasn't	 really	 made	 for	 that...	 And	
you	 can	 also	 have	 branching;	 ...	 its	 possible	 for	 some	 students	 to	 have	 a	 quiz	 out	
of	 40	 points	 and	 another	 student	 might	 have,	 which	 is	 the	 same	 quiz,	 out	 of	 20	
points,	 you	 know.	 GradeBook's	 not	 set	 up	 for	 that.

[pm]	 Import	 was	 really	 hard.	 ...	 They	 each	 have	 their	 own	 data	 stores	 and	 their	
own	 interface	 ...	 there	 are	 just	 all	 these	 liile	 things	 that	 have	 to	 be	 checked	 and	
user	 confirmed,	 so	 it's	 preiy	 awkward.

Therefore, while the team ultimately succeeded at implementing a
solution, the conflicts in the data models were necessarily exposed
in the GradeBook user interface. Any further changes the team
desired, particularly that of importing multiple values for a single
quiz, were constrained by decisions made in the initial version of
the import process. For example, the team considered supporting
multiple values for GradeBook assignments:

[dev]	 ...	 basically	 we'd	 have	 to	 do	 a	 data	 port,	 because	 you	 have	 all	 these	 data	
entries	 with	 one	 single	 value,	 you'd	 have	 to	 do	 something	 like	 enter,	 you	 know,	 a	
linker	 table	 that's	 poin.ng	 off	 to	 a	 series	 of	 values,	 or	 somehow	 change	 that	 so	
you	 could	 perceive	 mul.ple	 values...	 the	 real	 challenge	 there	 would	 be	 that	
you've	 already	 released	 this	 to	 the	 public,	 so	 you	 need	 to	 make	 sure	 that	 exis.ng	
things	 s.ll	 work	 when	 you	 change	 the	 data.

The WebQ integration experience made the team more hesitant to
move forward with CollectIt integration.

[pm]	 I	 mean	 we've	 been	 wan.ng	 to	 allow	 people	 to	 have	 CollectIt	 scores	 import.	
And	 the	 problem	 there	 is	 that	 CollectIt	 doesn't	 have	 any	 concept	 of	 a	 score.	 It	 has	
a,	 "let's	 have	 a	 conversa.on"	 feedback,	 there's	 no	 idea	 of	 giving	 a	 point	 or	 any	
kind	 of	 scale	 or	 anything	 there.	

The GradeBook developers explored several alternatives to these
data integration challenges, but faced a tradeoff between
simplifying import and supporting flexibility:

[des2]	 We	 actually	 worked	 on	 some	 whiteboarding	 sessions	 on	 integra.ng	
CollectIt	 with	 GradeBook,	 and	 we	 thought	 we	 had	 something	 that	 made	 sense...	
Even	 the	 thing	 that	 you	 and	 I	 came	 up	 with,	 which	 made	 a	 lot	 of	 sense	 to	 me,	 and	
took	 care	 of	 a	 lot	 of	 the	 edge	 casey	 type	 of	 stuff,	 we	 weren't	 really	 sure	 if	 that	
was	 sort	 of	 a	 model	 people	 would	 understand...	 Sort	 of	 that	 dial	 of	 easy	 versus	
advanced	 and	 flexibility	 versus	 rigidity.

Ultimately, the team felt that in all of these integration efforts
between the existing systems, they were limited in their ability to
offer straightforward, usable interactions. With WebQ, the import
process was necessarily complex because of the data scheme
differences, and with CollectIt, there would have been significant
changes to how GradeBook represents scores on assignments. In
both cases, the team felt the tradeoffs might not lead to a net
improvement in user experience. The program manager believed
that these tradeoffs were problematic enough that data integration
and rewrite was the only solution to simplifying the workflow:

[pm]	 We're	 going	 to	 have	 to	 go	 the	 other	 way	 and	 enable	 much	 more	 integra.on	
and	 make	 different	 kinds	 of	 data	 available	 at	 the	 surface...	 Its	 so	 deep	 down	 in	
the	 data	 store	 that	 its	 not	 even	 possible…

5.3. Minority Expectations, Global Assumptions
Like the Type 2 cases we described, the Type 3 changes conflicted
with expectations that spanned GradeBook’s implementation. In
contrast, however, Type 3 changes concerned user expectations that
the team perceived to be idiosyncratic, but severe enough to be
addressed. We present two such changes, each receiving some
attention from the team, but leading to changes that were ultimately
constrained by assumptions in GradeBook’s implementation.

Improving UI Performance for Large Grids. One of the major
assumptions the team made in their initial testing was about the
number of students and assignments each GradeBook would have
to maintain; the team tested courses with several dozens of students
and 10-20 assignments, because those were the ranges encountered
in earlier user research. In developing GradeBook, these
performance profile assumptions became quite global, reaching into
the user interface, the server interactions, and the event-handling
mechanisms that coordinated the two.
Post-deployment, however, the team quickly realized that some of
GradeBooks’ student and assignment counts far exceeded these
tested limits. For example, one problem was with initial loading,
requiring a significant rewrite:

[des2]	 ...performance	 kind	 of	 depended	 on	 the	 number	 of	 students	 that	 you	 had	
in	 your	 class.	 So	 people	 with	 really	 large	 classes,	 now	 we	 don't	 load	 everybody	 up	
right	 when	 you	 load	 the	 screen...	 its	 in	 a	 big	 table,	 it	 depends	 on	 the	 browser	
you're	 using.

While the team became increasingly aware of the performance
issues through its testing, their approach to reacting to user
feedback about Type 3 changes was passive, waiting for explicit
complaints from users. For example, one of the team’s testers
reported the problem in a bug report:

[wonoix]	 IE	 choppy	 when	 scrolling	 through	 large	 class	 lists	 in	 FGR	 —	 For	 a	 class	 of	
about	 200	 students	 IE7	 has	 a	 difficult	 .me	 handling	 the	 FGR.	 Using	 the	 scroll	
wheel	 or	 arrows	 is	 typically	 choppy...	

A developer on the project closed the report, arguing:
[wonoix]	 we	 went	 through	 spring	 quarter	 with	 zero	 complaints	 of	 choppiness...	
closing	 this	 bug.

Six months later, one of the instructors of the introductory computer
science courses wrote in:

[fixed]	 I	 just	 don't	 think	 Catalyst	 Gradebook	 is	 prac.cal	 to	 use	 as	 a	 web	 app	 for	
large	 courses...	 When	 I	 try	 to	 look	 at	 a	 student's	 grade,	 I	 scroll	 or	 page	 down	 the	
worksheet,	 and	 it	 seems	 to	 load	 the	 students	 5	 at	 a	 .me	 with	 Ajax...	 It	 can	
literally	 take	 2-‐3	 minutes	 just	 to	 find	 a	 student	 in	 the	 giant	 page	 while	 all	 the	 kids	
are	 loading.

The team responded in several ways with performance
improvements, even testing the changes on example GradeBooks
with 300-600 people and 10 assignments, tuning performance for
larger classes. Ultimately, the developers were not satisfied:

[dev]	 In	 my	 opinion	 there	 is	 no	 'good'	 fix	 for	 this.	 Either	 we	 slow	 down	 the	 ini.al	
page	 load,	 or	 we	 do	 scroll	 as	 you	 load	 and	 lose	 the	 context...

Another major performance problem was caused by the number of
assignments some teachers tracked in GradeBook:

[pm]	 ...	 if	 you	 look	 at	 some	 people's	 GradeBooks,	 they	 have	 so	 many	 columns	
because	 they're	 tracking	 daily	 par.cipa.on...	 that	 would	 be	 difficult	 to	 change	
because	 we	 decided	 to	 put	 a	 grid	 view.

To change the UI from a grid view fit to a browser’s width to a view
that could scroll was infeasible for a number of reasons. The grid
view was based on a 3rd-party library, which did not support such a
view; moreover, most of the application’s UI code was built on the
assumption that the grid was always the width of the window.
These performance problems were a critical concern in our
interviews with both users and non-users of GradeBook:

[CSE]	 Gradebook	 is	 not	 good	 at	 handling	 a	 course	 that	 has	 700	 students,	 at	 least	
the	 last	 .me	 that	 was	 the	 case.	 So	 when	 I	 do	 import	 everything	 at	 the	 end,	 just	
for	 that	 brief	 moment	 like	 we	 talked	 about,	 it's,	 I	 pray	 that	 nothing	 will	 be	
wrong...	 the	 en.re	 page	 becomes	 really	 choppy	 because	 there's	 so	 many	 people.

[EE]	 ...	 by	 the	 end	 of	 the	 quarter	 it's	 very	 slow,	 for	 some	 reason	 I	 enter	 a	 grade,	 I	
lose	 a	 lot	 of	 them	 and	 I	 have	 to	 go	 back	 and	 fix	 them	 later...	 it	 has	 added	 another	
layer	 of	 responsibility	 to	 instructors	 that	 already	 hurts	 a	 workload	 that's	 too	 high.

Although the users in our interviews viewed the performance
problems as critical, only the computer science instructor had
actually reported the problems to Catalyst. In fact, most
interviewees were excited that we had interviewed them, because
they expected us to report their feedback to the team. And yet,

5

because the team waited passively for feedback, they were not
aware of the significance of the performance problems until they it
was too late to address them. This, in the team’s view, greatly
affected GradeBook’s adoption:

[dev]	 Unfortunately,	 I	 think	 a	 tool	 gets	 released,	 they	 check	 it	 out,	 and	 then	 they	
go,	 oh,	 its	 too	 slow.	 Okay,	 well	 we	 hear	 that	 and	 we	 fix	 it,	 but	 if	 your	 first	
impression	 of	 the	 tool	 is	 that	 its	 too	 slow,	 its	 not	 a	 whole	 lot	 to	 bring	 you	 back	 the	
second	 and	 third	 .me.

Variations on Extra Credit. Another assumption underlying
GradeBook’s implementation was the weighted sum and dropped
scores approach to computing final grades. The team knew that
there were exceptions to this approach, particularly with respect to
extra credit, but they did not account for them in the initial design.
This became a frequent topic of user feedback:

[pm]	 We	 found	 in	 our	 user	 research	 that	 a	 lot	 of	 faculty	 use	 extra	 credit	 but	 there	
wasn't	 any	 consistent	 paiern.	 The	 one	 thing	 that	 we	 did	 to	 support	 that	 was	 you	
can	 add	 more	 points	 than	 are	 possible,	 so	 you	 can	 have	 an	 assignment	 worth	 a	
hundred	 points	 and	 give	 people	 a	 hundred	 five.	 But	 that	 doesn't	 work	 for	 a	 lot	 of	
people.	 What	 a	 lot	 of	 people	 want	 to	 do	 is	 have	 a	 whole	 extra	 credit	 assignment	
that	 gets	 added	 on	 as	 extra	 in	 the	 category	 weigh.ng...	 Its	 a	 big	 change	 and	 we	
hear	 that	 request	 a	 lot,	 and	 what	 we	 usually	 do	 is	 to	 help	 people	 download	 their	
scores	 and	 do	 the	 calcula.on	 in	 Excel...

The team proposed similar workarounds to users desiring other
alternatives to the weighted sum model. For example, many faculty
asked for explicit support for various types of class curves; in most
cases, the team suggested falling back to Excel. These workarounds
represented one way to escape the assumptions underlying
GradeBook, while still finding a way to support users’ alternative
practices, but the impact on users’ workflow was inevitable. Half of
the users we interviewed said that the lack of support for these
practices was a primary reason for using Excel instead.

5.4. Minority Expectations, Local Assumptions
In contrast to the previous three types of changes, Type 4 changes
were primarily constrained by the variation in user expectations
perceived by the team. The team did not see obvious ways to
express these heterogeneous and often conflicting expectations in a
way that would preserve GradeBook’s simplicity. In this section, we
present three such desired changes, showing how the team
ultimately defaulted to the assumptions already expressed in code.
Exceptional Meanings to Assignment Values. One class of post-
deployment feedback regarded how GradeBook handled the
assignment scores. Many of the assumptions built into score
validation were incompatible with some users’ practices,
particularly in computing final grades. These incompatibilities
forced the team to predict which of two user expectations—the
implemented one or the one reported in user feedback—was more
commonly desired. One example of this was in the meaning of
particular grades. For example, in one case a user pointed out that
“X” was a valid grade, but when importing an Excel spreadsheet
with an X grade, GradeBook marked it as invalid until the user
explicitly selects “X - No grade now” (the GradeBook equivalent).
The user wanted the conversion to be automatic, but the developer
argued that this was not a safe assumption:

[wonoix]	 I	 think	 this	 concern	 is	 bogus	 (to	 be	 pedan.c	 X	 -‐	 No	 grade	 now	 is	 not	
even	 a	 grade),	 and	 transforming	 a	 'X'	 to	 'X	 -‐	 No	 grade	 now'	 seems	 like	 a	 big	 leap	
to	 me...	 We	 want	 because	 we	 want	 to	 be	 sure	 he's	 gone	 through	 them	 and	
specifically	 assigned	 an	 "X"	 or	 an	 "I"	 and	 that	 it	 isn't	 some	 mistake.	 The	 other	
factor	 that	 is	 causing	 this	 is	 that	 he	 is	 not	 really	 a	 GradeBook	 user,	 but	 someone	
trying	 to	 import	 grades	 at	 the	 end	 of	 the	 quarter	 for	 the	 sole	 purpose	 of	
submitng...

The developer’s rationale for not making this change stemmed both
from a prediction that most users would rather know about data
entry errors than save time, and from a belief that the user was not
“not really a gradebook user.” The team’s reluctance to support
exceptional meanings of values was characterized well by the
team’s manager:

[pm]	 The	 mantra	 that	 we	 started	 using	 to	 help	 us	 decide	 what	 features	 are	 in,	
what	 features	 are	 out	 is,	 we're	 not	 Excel...	 we	 were	 trying	 to	 make	 an	 online	
GradeBook	 that	 was	 useful,	 but	 didn't	 go	 into	 a	 lot	 of	 calcula.on	 and	 fine	 tuning,	
especially	 around	 the	 issues	 where	 there	 was	 not	 wide	 agreement	 about	 how	
things	 were	 done.

The team found that this mantra was important in communicating to
users why different interpretations could not be supported:

[des1]	 I	 say	 it	 to	 users;	 "we	 can't	 rebuild	 Excel"	 and	 that	 resonates	 with	 them.	
They	 say,	 "Yeah,	 I	 guess	 that's	 true."

The 4.0 Assignment Grading Scale. In the previous case, users
identified needs that conflicted with assumptions made in
GradeBook’s implementation. In this next case, however, the needs
themselves, as expressed by instructors, were quite homogenous; it
was the reactions to the team’s expression of those needs in code
that varied. Originally, GradeBook supported a small set of basic
grading scales. However, post deployment, the team received
feedback about the desire for a scale that matched the 4.0 grade
point scale used in final course grades:

[dev]	 Ini.ally	 we	 said	 we're	 not	 going	 to	 do	 a	 grade	 point	 scale,	 we're	 going	 to	 do	
something	 more	 broadly	 usable.	 And	 that's	 when	 we	 came	 up	 with	 these	 custom	
labels	 that	 I	 was	 describing	 earlier.	 And	 people	 were	 like,	 I	 want	 my	 grade	 point	
scale,	 I	 want	 my	 grade	 point	 scale,	 and	 so	 we	 had	 to	 have	 a	 grade	 point	 scale.

According to the developers, actually implementing variations of
the 4.0 scale was straightforward:

[dev]	 ...	 it	 was	 an	 addi.ve	 change.	 We	 were	 already	 suppor.ng	 like	 3	 or	 4	 scales	
and	 so	 we	 added	 that	 one.	 And	 that	 was	 just	 a	 table	 addi.on.	 We	 didn't	 have	 to	
actually	 migrate	 any	 data	 or	 anything...	 the	 only	 work	 was	 some	 custom	
JavaScript	 and	 there	 was	 no,	 there	 was	 very	 liile	 back	 end	 changes	 that	 needed	
to	 happen.

The actual interpretation of what users meant by a 4.0 scale, was an
entirely different problem. As the program manager described, the
way that 4.0 scales actually being used by faculty were not
amenable to formalization:

[pm]	 We	 didn't	 ini.ally	 support	 4.0	 scale	 scores.	 And	 this	 has	 been,	 its	 really	 a	
pedagogical	 debate,	 in	 some	 ways...	 A	 lot	 of	 faculty	 want	 to	 use	 4.0	 scale	 grades	
for	 all	 assignments	 in	 their	 class	 and	 then	 do	 calcula.on	 on	 those.	 And	 the	
soXware	 says,	 "those	 aren't	 actually	 real	 numbers,	 those	 are	 more	 like	 a	 ranking,"	
because	 its	 not	 a	 literal	 scale	 from	 0	 to	 4.	 But	 trying	 to	 communicate	 to	 faculty	
who've	 been	 doing	 this	 for	 years	 in	 Excel	 and	 thinking	 there's	 absolutely	 nothing	
wrong	 with	 it	 is	 really	 difficult.

Their initial efforts to design a feature to fit the practices they
observed in user research were unworkable:

[pm]	 ...	 we	 kept	 saying,	 this	 doesn't	 make	 any	 sense,	 this	 doesn't	 make	 any	 sense,	
this	 is	 really	 hard	 to	 use	 compared	 to	 the	 class	 grade,	 and	 then	 we	 just	 sort	 of	
scrapped	 it	 all	 and	 started	 over	 a	 few	 months	 later...	 we	 got	 to	 the	 end	 where	 we	
sort	 of	 had	 a	 Frankenstein,	 where	 it	 was	 doing	 it	 one	 way	 here	 and	 another	 way	
there.	 We	 thought	 for	 a	 while	 and	 we	 said,	 wait	 a	 second,	 we	 can't	 release	 this.

The team ultimately arrived at a solution that represented a
compromise between many conflicting views on the meaning of
scale. However, this inevitably led to feedback from users whose
practices conflicted. For example, one staff member recounted an
instructor’s concern regarding defaults:

[wonoix]	 When	 you	 score	 assignments	 using	 the	 4.0	 scale,	 you	 are	 given	 the	 4.0,	
2.0,	 and	 0.0	 as	 prompts	 for	 entering	 in	 the	 desired	 percentages.	 However,	 since	
the	 client	 used	 percentages	 60%	 and	 up	 star.ng	 from	 1.0,	 and	 put	 in	 0%	 for	 0.0,	
all	 the	 percentages	 under	 1.0	 are	 dras.cally	 lower	 than	 he	 had	 intended—he	
recommends	 that	 we	 put	 in	 1.0,	 0.5,	 and	 so	 on	 forth	 to	 avoid	 this	 error.

One of the designers replied:
[wonoix]	 We	 are	 deliberately	 leaving	 the	 interpola.on	 open	 to	 the	 user's	
customiza.on.	 There	 are	 so	 many	 ways	 that	 people	 do	 grading	 on	 campus,	 and	
there's	 no	 standard	 across	 the	 university	 or	 even	 across	 departments...

Online Grade Submission. The last change we discuss is the
addition of an online grade submission feature to GradeBook,
which would take the grade points in the final grade column and
submit them to the registrar. As with the previous examples, the
team believed they were working with fairly common user
expectations; in this case, this was because the expectations were
fairly well defined policies dictated by the university registrar:

6

[dev]	 there	 were	 a	 lot	 of	 different	 policies	 and	 rules	 around	 what	 types	 of	 classes,	
or	 what	 types	 of	 grades	 specific	 students	 can	 get,	 the	 different	 types	 of	 classes	
that	 there	 are,	 I	 think	 there	 was	 just	 a	 lot	 of	 research	 we	 had	 to	 do	 to	 figure	 out	
what	 all	 of	 those	 rules	 were.

In addition to the relatively clear requirements, the developers also
found that integrating the feature was straightforward:

[dev]	 ...it	 was	 almost	 as	 simple	 as	 adding	 a	 link	 that	 would	 go	 to	 online	 grade	
submission,	 and	 then	 just	 making	 it	 aware	 of	 what	 classes	 were	 actually	 aiached	
to	 that	 GradeBook.

Where the true challenge came was in coordinating with the
“SDB,” the legacy database containing student grades:

[dev]	 the	 biggest	 road	 block	 in	 all	 this	 is	 that	 all	 the	 grades	 live	 in	 the	 student	
database.	 SDB.	 That's	 what	 they	 call	 it	 for	 short.	 And,	 we	 can't,	 we	 don't	 have	
access	 to	 those	 grades.	 Nobody	 has	 direct	 access	 really	 to	 the	 SDB...	 at	 the	 .me	
we	 partnered	 with	 those	 folks	 who	 had	 access	 to	 SDB,	 and	 they	 created	 a	 series	
of	 web	 services...

Moreover, the team working on the legacy database was focused
less on the user experience than desired:

[pm]	 I	 mean	 I'll	 tell	 you	 that	 whole	 process	 was	 extremely	 difficult...	 They're	
Cobol	 based	 mainframe	 structures,	 which	 are	 really	 difficult.	 And	 in	 that	 process,	
the	 student	 team	 in	 crea.ng	 the	 web	 service,	 really	 was	 thinking	 about	
represen.ng	 the	 data	 in	 a	 sort	 of	 honest,	 accurate	 way,	 and	 not	 about	 the	 end	
user	 need,	 what	 the	 system	 needs	 in	 order	 to	 make	 the	 experience	 usable	 for	 the	
end	 user.

Once deployed, however, variations in grade submission practices
emerged. For example, grade submission delegates, staff who could
submit grades for multiple classes, faced significant delays in
submitting grades:

[pm]	 ...	 its	 completely	 a	 performance	 nightmare	 because	 there	 is	 no	 index,	 so	 it	
has	 to	 do	 a	 loop	 over	 the	 tables	 in	 the	 mainframe	 in	 order	 to	 figure	 out	 what	
classes	 you	 have	 grading	 delegate	 access	 to...	 Some	 people	 will	 do	 a	 click	 and	 in	 a	
few	 seconds,	 it'll	 come	 up	 with	 a	 couple	 classes,	 but	 some	 people…	 there	 just	
going	 to	 sit	 there	 and	 it	 might	 even	 just	 .me	 out.	 And	 that	 was	 because	 there	
was	 no	 index	 to	 request	 a	 service	 change.	 Its	 just	 not	 going	 to	 happen.

Other feedback arose from the fact that the online grade submission
was codifying registrar grading policies that had previously been
less formal paper practices. For example, in one bug report, a
designer recounted an instructor’s need:

[wonoix]	 She	 needed	 to	 submit	 a	 final	 grade	 for	 one	 student	 within	 2	 hours,	
because	 the	 student's	 financial	 aid	 was	 depending	 on	 it.	 However,	 she	 had	 30	
other	 students	 that	 she	 wasn't	 ready	 to	 submit...	 This	 puts	 her	 in	 a	 very	 s.cky	
situa.on...	

While it would have been theoretically possible for GradeBook to
support such functionality, the team’s only recourse was to surface
the registrar’s policies in the UI:

[wonoix]	 The	 registrar	 does	 not	 let	 you	 do	 such	 a	 thing.	 That's	 why	 there's	 the	 X	
(No	 grade	 now).	 Unfortunately	 that	 is	 not	 much	 help	 to	 this	 instructor,	 but	 that's	
the	 way	 it	 is	 for	 now.	

GradeBook’s online grade submission feature was widely adopted,
with 90% of all class grades submitted online in the last academic
quarter of our observations. Unfortunately, GradeBook itself was
seen by most staff as just an extra step to online submission and the
registrar ultimately requested that GradeBook and online
submission be separated. Unfortunately, most of the features users
found useful for uploading grades (particularly Excel import), were
too closely tied to the GradeBook data model to be reused.

6. DISCUSSION
The goal our case study was understand what constrains a software
team’s ability to address post-deployment user feedback in the form
of the help requests and bug reports. We found that while feedback
was a significant source of knowledge about user practices,
translating this knowledge into changes to GradeBook’s
implementation was constrained by conflicts between
heterogeneous uses of grade information in the user community and
global assumptions made in the team’s initial implementation.
Ultimately, the information architecture inherent in the team’s data
schema was simply not expressive enough to support the diversity

of information uses. Therefore, while GradeBook was adopted by
many instructional staff, the team’s interests in evolving the
application to serve new adopters’ new needs was hampered by the
risk of breaking existing use cases, the costs of migrating existing
data, and the unlikelihood of changing other infrastructure and
processes over which the team had little control.
These results raise several questions about the role of user feedback
in the post-deployment life of software applications. For example,
would it have been possible for the team to somehow design the
application in a more flexible way to serve a larger subset of the
user community, without simply rewriting Excel? Is it possible, for
example, that there was a degree of flexibility somewhere between
Excel and the data schema the team designed initially that would
have been expressive enough? If so, the question then becomes
whether the team’s oversight of this design possibility was a failure
of the user research and requirements gathering. And yet, the team
had already invested six months in its user research, far more than
many commercial software projects; how much prototyping and
iterative evaluation would have been enough?
It is also possible that the team could have done a better of
identifying the assumptions they made in their initial user research
and using the stream of post-deployment user feedback to test and
validate these assumptions. Earlier detection of problems with these
assumptions may have made it easier for the team to have addressed
them, before the user community grew too large or the code grew
too complex. For example, perhaps if LST had been more explicit
about the limitations of their assumptions about the number of
assignments and students faculty would add to a GradeBook, they
could have designed testing procedures that may have revealed the
performance problems earlier, before the performance limitations
reached throughout the system’s implementation.
Existing research on software design suggests several theoretical
framings through which software processes might be devised to
account for assumptions. For example, Naur described
programming as building a theory of how a solution relates to the
world [22]; design theory perspectives view software designs as
value judgements [12], projecting “ideal” users [3] and expecting
users to conform to them. For example, Friedman et al. suggest that
systems ought to be free of bias by identifying it [12]. Similarly,
Fischer et al. argue for escaping the user/developer dichotomy and
empowering users to be their own designers [11]; but in doing so,
teams may prioritize users who want to be empowered, but not
those who want curated, pre-existing solutions. These perspectives
may be helpful in designing new software processes that formalize
and operationalize the identification of assumptions, helping
software teams to think more carefully not only about the
application’s design, but also how assumptions are manifested in
software architectures, testing plans, and triage processes.
While our case study primarily revealed evolution constraints
related to modularity and heterogeneity, our results also suggest that
the gathering of user feedback may itself constrain software
evolution. Our findings show that by letting user feedback drive
change, the GradeBook team mostly heard from existing users of
the application, and even then, they mostly heard from a vocal
minority which may not have been representative of the user
community. Moreover, when these vocal minorities did provide
feedback, change was usually denied, disincentivizing further
feedback. This had the effect of hardening the original design,
crystalizing it around existing uses, rather than future ones (in the
same way users’ workarounds can prevent software change [23]).
Our study therefore highlights the importance of treating user
feedback as less of a guide for what to change and more of a signal
for the need for further research. In particular, user feedback should
be a sign that users at or beyond the boundary of an application’s
idealized user [3] are struggling to adapt the software their needs.

7

Such signals should drive explicit studies of non-adopters of the
system. These recommendations reinforce arguments that the point
of data gathering is not to drive design, but inspire it [13].
Moreover, it also reinforces arguments that in some cases, the only
way to better serve user needs is to abandon software [6], as we do
with deteriorating physical systems.
One can also take a more positive view of the team’s responses to
user feedback: the team succeeded in anticipating many aspects of
their user communities’ homogeneous needs, implementing the
application in a way that ensured additional grading scales and
alternative workflows would either be easily added or supported by
the Excel import. While the team faced tradeoffs between designing
for flexibility and preserving simplicity, it may not have been
possible to design an application that served everyone in their
community; only serving some well, even if it means not serving
others, may be an inevitable part of software design.
The implications of these observations in our case study on the
larger concern of software evolution are many. For one, having a
clear notion of who software is intended for is not only important in
the design of software, but also in the architecting, testing, and
evolution of software. Software processes should focus on ways of
making the audience more explicit and finding ways of weaving the
assumptions inherent in a design throughout an application’s
implementation and throughout a team’s processes. Our study also
suggests that an inherent part of triaging post-deployment feedback
involves clarifying the values a team wants to uphold; without
clarity, there is little to decide whether a potential change is
important enough to risk the harm that changes might do through
new defects and broken uses cases to the existing user community.

7. LIMITATIONS
As with any case study, our results should be generalized with
caution. The team we studied did compete with other products, but
for users, not for money. This could have affected how much weight
was given to user concerns, relative to market concerns. The team
was also focused on serving a university community to which it was
directly affiliated with; this is in contrast to many other software
development contexts, where software teams serve a client or a
purchaser, rather than end-users directly. The team also followed an
Agile process with two week sprints; the length of sprint might
have influenced the size of changes that would be considered,
relative to a team that works in 6-month cycles.

8. ACKNOWLEDGEMENTS
We thank the University of Washington’s Learning and Scholarly
Technologies team for their support and participation, as well as the
University of Washington instructors and teaching assistants who
agreed to be interviewed.
This material is based in part upon work supported by the National
Science Foundation under Grant Number CCF-0952733. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

9. REFERENCES
1. Arnold, R.S. (1996). Software change impact analysis. IEEE

Computer Society Press.
2. Bagozzi, R. P. (2007). The legacy of the technology

acceptance model and a proposal for a paradigm shift. J. of the
Association for Info. Sys., 8(4): 244-254.

3. Bardzell, S. 2010. Feminist HCI: taking stock and outlining an
agenda for design. ACM Conf. on Human Factors in
Computing Systems (CHI), 1301-1310.

4. Baron, J. (2000). Thinking and deciding. New York:
Cambridge University Press.

5. Blackwell, A.F. (2002). First steps in programming: A
rationale for attention investment models. IEEE Symp. on
Human-Centric Computing Lang. and Env., 2-10.

6. Buxton, B. (2007). Sketching user experiences: getting the
design right and the right design. Morgan Kaufman.

7. Cartwright, M. and Shepperd, M. (2000). An empirical
investigation of an object-oriented software system. IEEE
Trans. on Soft. Engineering, 26(8): 786-796.

8. Corritore, C.L. and Wiedenbeck, S. (2001). An exploratory
study of program comprehension strategies of procedural and
object-oriented programmers. Int’l J. of Human-Computer
Studies, 54: 1-23.

9. Eaddy, M., Zimmermann, T., Sherwood, K.D, Garg, V.,
Murphy, G.C., Nagappan, N. and Aho, A.V. (2008). Do
crosscutting concerns cause defects? IEEE Trans. on Soft.
Engr., 497-515.

10. Edwards, W. K., Newman, M. W., and Poole, E. S. (2010).
The infrastructure problem in HCI. ACM Conf. on Human
Factors in Computing Systems, 423-432.

11. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., and
Mehandjiev, N. (2004). Meta-design: a manifesto for end-user
development. Comm. of the ACM 47(9): 33-37.

12. Friedman, B. and Nissenbaum, H. (1996). Bias in computer
systems. ACM Trans. on Information Systems 14(3): 330-347.

13. Gaver, B., Dunne, T., and Pacenti, E. 1999. Design: Cultural
probes. interactions 6(1): 21-29.

14. Grossman, T., Fitzmaurice, G., and Attar, R. (2009). A survey
of software learnability: metrics, methodologies and
guidelines. ACM Conf. on Human Factors in Computing
Systems, 649-658.

15. Hollan, J., Hutchins, E., and Kirsh, D. (2000). Distributed
cognition: toward a new foundation for human-computer
interaction research. ACM Trans. on Computer-Human
Interactions, 7(2): 174-196.

16. Janneck, M. (2010). Challenges of software
recontextualization: lessons learned. ACM Conf. on Human
Factors in Computing Systems, 4613-4628.

17. Kahneman, D.; Knetsch, J.L.; Thaler, R.H. (1991). Anomalies:
the endowment effect, loss aversion, and status quo bias", J. of
Economic Perspectives, 5(1): 193–206.

18. Ko, A. J. DeLine, R., Venolia, G. (2007). Information needs in
collocated software development teams. Int’l Conf. on Soft.
Engr., 344-353.

19. Lehman, M.M. (1980). Programs, life cycles, and laws of
software evolution. Proc. IEEE , 68(9): 1060-1076.

20. Lindgaard, G. and Chattratichart, J. (2007). Usability testing:
what have we overlooked? ACM Conf. on Human Factors in
Computing Systems, 1415-1424.

21. Nagappan N. and Ball B. (2005). Use of relative code churn
measures to predict system defect density. Int’l Conf. Soft.
Engr., 284-292.

22. Naur, P. (1984). Programming as theory building.
Microprocessing and Microprogramming, 15: 253-261.

23. Pollock, N. 2005. When is a work-around? Conflict and
negotiation in computer systems development. Science,
Technology & Human Values 30(4): 496-514.

24. Scott, K.M. (2009) Is usability obsolete? ACM Interactions,
16(3): 6-11.

25. Stevens, W., Myers, G., Constantine, L. (1974). Structured
design. IBM Systems Journal 13(2): 115-139.

8

