
FeedLack Detects Missing Feedback in Web Applications
Amy J. Ko and Xing Zhang

The Information School | DUB Group | University of Washington
{ajko, xingz2}@uw.edu

ABSTRACT
While usability methods such as user studies and inspections
can reveal a wide range of problems, they do so for only a
subset of an application’s features and states. We present
FeedLack, a tool that explores the full range of web
applications’ behaviors for one class of usability problems,
namely that of missing feedback. It does this by enumerating
control flow paths originating from user input, identifying
paths that lack output-affecting code. FeedLack was applied
to 330 applications; of the 129 that contained input handlers
and did not contain syntax errors, 115 were successfully
analyzed, resulting in 647 warnings. Of these 36% were
missing crucial feedback; 34% were executable and missing
feedback, but followed conventions that made feedback
inessential; 18% were scenarios that did produce feedback;
12% could not be executed. We end with a discussion of the
viability of FeedLack as a usability testing tool.

Author Keywords
Feedback, program analysis, static analysis, JavaScript.

ACM Classification Keywords
H.5.2. Information interfaces and presentation.

General Terms
Human Factors, Algorithms

INTRODUCTION
Sometimes computers ignore us. We click save buttons, but
often do not know if our documents are saved; we click on
links in web pages, but are taken nowhere; we submit forms,
but do not know if the site is broken, or simply slow to
respond. Software that appears to ignore user input violates a
basic principle of effective user interface design: for every
user input, software should produce a corresponding output
that explains how the system responded to the input.
The importance of this principle is reflected in the methods
we use to detect feedback problems. For example, Nielsen’s
Heuristic Evaluation [16] focuses evaluators on feedback,
stating that “The system should continuously inform the user
about what it is doing and how it is interpreting the user’s
input.” Inspection techniques such as the Cognitive
Walkthrough [4] have evaluators confirm that the result of
taking some action results in visible feedback. Task-based
usability testing [16] can also reveal missing feedback in
prototypes of widely ranging fidelity.

While these empirical methods are quite effective at
detecting feedback issues, they often overlook problems in
outside the scope of the tasks selected by evaluators [14].
Moreover, because they require users, these methods operate
at a slower pace than other forms of software testing such as
unit and regression testing, which run on the order of minutes
and hours, not weeks. This disparity in scope and speed
means that feedback issues and other usability problems can
easily escape notice as code is readied to deploy.
To address this problem, we present FeedLack, a tool that
automatically detects missing feedback in web applications.
It does this by verifying that all paths originating from user
input produce some form of output. To illustrate, consider the
FeedLack warning in Figure 1. FeedLack has found that
when the user submits the form (lines 22 and 23) and its
comment is considered valid (line 10), the application
provides no feedback about success or failure. It found this
by enumerating all of the paths from form submission and
reporting the single path that lacked output-affecting code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

Figure 1. By analyzing paths from input, FeedLack found that
function post() does not produce feedback upon success.

CHI 2011 • Session: Website & Application Design May 7–12, 2011 • Vancouver, BC, Canada

2177 Most up-to-date version: 06/25/2021

In the rest of this paper, we describe FeedLack’s analysis in
detail. We then present an evaluation of FeedLack on a
corpus of 330 web applications ranging from small personal
web pages to sophisticated applications such as calendars,
visualizations, and games. Of the 129 that contained
JavaScript input handlers and did not contain syntax errors,
115 were successfully analyzed, resulting in 647 warnings;
36% of these were legitimate, reproducible scenarios that
needed feedback, while another 34% were missing feedback,
but would likely not be confusing because they followed user
interface conventions. We end with a discussion of
FeedLack’s limitations, its generalizability to other platforms,
and the viability of its role in user-centered software
engineering processes.

RELATED WORK
Feedback has been a central topic in HCI research and
practice for several decades. Ensuring that it is timely and
understandable is one of the major heuristics in Nielsen’s
Heuristic Evaluation [16], it is a foundational concept in
Norman’s gulf of evaluation [17], and it is much of the basis
for the cognitive account of direct manipulation [9].
Empirical methods for detecting missing or problematic
feedback come in several forms. One of the most common is
usability testing, in which evaluators devise tasks and engage
representative users to attempt them. Such testing can reveal
feedback issues in user interface prototypes of varying
fidelity. There have been several attempts to automate data
capture and analysis aspects of usability testing [10],
including remote usability testing [6] and logging techniques
[13]. For example, recent work by Akers et al. sought to
identify usability problems by analyzing logs of undo
commands from real use, revealing a number of actionable
usability problems [1].
Another approach to detecting missing feedback is using
inspection methods. For example, the Cognitive Walkthrough
[4] has evaluators ensure that each action is not only visible
and apparent, but that the result of user actions produces
visible feedback. These techniques are powerful in their
ability to assess both the quality and presence of feedback.
The approaches most closely related to FeedLack are
automated analyses of the user interface source code. For
example, basic HTML validators are capable of finding
feedback problems, in that malformed HTML may often not
render properly or at all. JSLint (http://jslint.com) also finds
common JavaScript defects that may cause silent failures in
web browsers. Other validation tools have been developed to
assess the accessibility of web sites against government
guidelines; for example, the Functional Accessibility
Evaluator (http://html.cita.illinois.edu/iitaa.php) checks web
sites against several hundred accessibility rules by inspecting
the structure and content of HTML. Similarly, Mahajan and
Shneiderman explored automated consistency checking tools,
evaluating the consistent use of vocabulary, capitalization,
type face, and color in user interfaces [15].
Considering program analysis more generally, there is a long
history of verification research focusing on software qualities
other than usability. For example, a recent system by Artzi et

al. [2] executes and analyzes PHP programs to find scenarios
that generate malformed HTML, based on a standard HTML
validator. Other recent program analysis and testing-based
approaches detect scenarios that may lead programs to crash
[8], hang [5], leak memory [18], or expose security
vulnerabilities [7]. Our work complements these approaches
by analyzing a program’s feedback.

DESIGN AND IMPLEMENTATION
The goal of FeedLack is to find control flow paths through
web applications that begin with some user input but fail to
produce any change to the web page’s appearance
(evaluating the quality of that feedback, for example, whether
it was timely, visible, or comprehensible, is out of scope). To
do this, FeedLack finds all functions that handle user input,
explores all paths through these functions, and identifies
which of these paths lack output-affecting code.
We divide our discussion of this analysis into ten steps:

1. Identifying and naming functions
2. Generating function control flow graphs (CFGs)
3. Propagating type information
4. Resolving function calls
5. Identifying output-affecting statements
6. Identifying input-handling functions
7. Enumerating paths through input handlers
8. Expanding paths through input handlers
9. Identifying output-lacking paths
10. Clustering output-lacking paths

A major decision underling these steps was whether to use
static analysis (analyzing code without executing it), dynamic
analysis (analyzing executions of code), or a combination of
the two. Static analyses have the benefit of verifying
properties of a program independent of its inputs, considering
the full breadth of a program’s behaviors. They can also be
much less precise, however, because they must make
assumptions about what inputs and program states are
actually possible or likely. Dynamic analyses avoid such
limitations by using real inputs, but in doing so, sacrifice
breadth. Some analyses combine static and dynamic
information [2]. We decided on a pure static analysis
FeedLack, primarily to complement the empirical nature of
usability methods. We chose not to use dynamic information
to avoid the need for complex testing configurations. For
example, by using only static information, FeedLack can
analyze the feedback of server transactions (e.g., creating
user accounts and changing passwords) without
communicating with a real server.
In the rest of this section, we describe the static analyses in
the 10 steps above in detail. We use the example in Figure 1
to illustrate these steps.

Step 1: Identifying and Naming Functions
FeedLack requires as input a folder containing all of the
JavaScript and HTML files necessary to run the client-side
user interface of the web application. It does not require
server-side code, even when such code is responsible for
generating feedback, since client-side scripts are the only
scripts capable of presenting feedback to users.

CHI 2011 • Session: Website & Application Design May 7–12, 2011 • Vancouver, BC, Canada

2178

The first step in FeedLack’s analysis is to find JavaScript
code. It looks in three places: (1) JavaScript source files
ending in “.js”, (2) <script> tags in HTML, and (3) attribute
values that compile as JavaScript without parsing errors (as
in <div	
 onclick="alert('error')>"). All code is parsed using
the Rhino JavaScript parser (http://www.mozilla.org/
rhino/), generating a set of abstract syntax trees (ASTs).
From the ASTs, FeedLack identifies nodes representing
JavaScript functions. Because the names of functions are
particularly important for exploring paths through JavaScript
functions, FeedLack makes extensive efforts to find the
names by which a function is referred by considering the
contexts of the function’s declaration and uses. JavaScript
allows developers to declare functions in a variety of
contexts, including standard declarations (function	
 open()	

{...}), inside object literals: ({	
 open:	
 function()	
 {...}}),
as local variables (var	
 open=function()	
 {...}), or as
arguments (enable(function()	
 {...})). In the first three
cases, the names can be extracted quite easily; in the last
case, no name is extracted. However, because functions can
be used as values, they can take on multiple names. For
example, the function open in the examples above might be
assigned to properties as in element.onclick	
 =	
 open,
enabling a developer to call it as element.onclick(). As
described in Step 3, FeedLack analyzes the assignments and
references to variables, detecting additional names by which
functions can be referred in the process.
As part of this naming process, FeedLack also classifies
functions as one of four kinds, to help later determine what
functions a call might invoke in Step 4. Functions that are
declared at the script level are classified as GLOBAL and are
presumed to be reachable from any function. Functions
declared in object literals or assigned to a property (as in
this.open=function()	
 {...}) are classified as OBJECT
functions and are presumed to be reachable only by calls on
objects. Functions declared inside of functions are classified
as LOCAL and are presumed to be reachable only from within
the function, unless FeedLack finds references to these
functions in function calls or return statements (meaning the
function can escape the local scope). In these cases, the local
function is given the type CALLBACK. All other functions are
given the type CALLBACK and are not considered in
determining what functions a call might invoke.
The above classifications exploit well-documented patterns
in how developers use JavaScript functions [19], but they do
not cover all possible uses. Our hope was that detecting these
patterns would be sufficient for detect missing feedback, with
the understanding that they would be one source of false
positives in FeedLack’s warnings.

Step 2: Generating Control Flow Graphs of Functions
The next step in FeedLack’s analysis is to convert each
function’s AST into a control flow graph (CFG), representing
the flow of execution through the function. FeedLack uses
these throughout its subsequent analyses.
To create a function’s CFG, FeedLack starts with the
function’s AST, which is made of nodes representing tokens

in the program. Each type of node is responsible for adding
outgoing edges from itself to its child nodes in a way that
represents the potential paths through the node. For example,
an addition (+) node, which has left and right operand nodes,
evaluates left to right; therefore, the + node adds an outgoing
edge from itself to the left operand and then an outgoing edge
from the left operand to the right operand. Similarly, an if
node adds an outgoing edge to its expression node, and then
two outgoing edges from the expression: one to the then path
and one to the else path. This is illustrated in Figure 2, which
shows the two paths through the conditional in post() from
Figure 1 (omitting literals, which do not affect control flow).
FeedLack handles the full range of JavaScript language
constructs in the same way. For example, FeedLack accounts
for some runtime errors, adding edges for possible divide by
zero errors on division nodes and null pointer and undefined
runtime errors on object property expressions. By the end of
CFG creation, FeedLack has constructed a directed acyclic
graph representing the potential paths through a function for
all functions in the provided source code (except for outgoing
paths from function calls, which are considered later).
One decision in constructing CFGs is how to handle loops,
since paths through loops can be infinite in length. FeedLack
treats loops as conditional blocks, assuming that loops
execute either zero or one times. This simplification was
applied because FeedLack’s analysis of feedback is
conservative: if there’s any way to produce output through
the loop, then it assumes that way is feasible. This is
nevertheless another source of false positives.

Step 3: Propagating Type Information
The next step is to propagate type information through each
function. FeedLack needs type information to increase
confidence in which functions a call might invoke (Step 4)
and to identify code that might affect output (Step 5). Of
course, because JavaScript is a dynamic and weakly typed
language, there are few guarantees about what functions and
properties are valid for any given expression at runtime (for
example, even if the expression element.innerHTML is known
to produce a string, the innerHTML property may have been
deleted at runtime or element may not point to an element).
FeedLack does several things to infer the possible types of
variables and properties despite the potential for imprecision.
FeedLack infers the types of expression ASTs, propagating
type information along data flow edges. For example, to infer
the type of the + node in var	
 msg="Hello"+subject, it inspects
the possible types of its two children and determines that it
may produce a string. The same type propagation on the
assignment in this expression would determine that the type
of msg is a string. FeedLack also documents all W3C DOM
API types, enabling it to determine, for example, that
document.getElementById(‘home’) returns an HTMLElement.

!"#!$ %&'()%*+, %-

./0!#+,

()!$#+,

!"*%- $!#1$"

#$1!

-()&!

Figure 2. The CFG for post() in Figure 1, omitting literals.

CHI 2011 • Session: Website & Application Design May 7–12, 2011 • Vancouver, BC, Canada

2179

To determine the possible types of variables and object
properties, FeedLack explores the paths through the
function’s CFG using a depth-first search, storing the type
information of expressions assigned to variables and
properties by name. When this search finds a reference to a
variable or property, it propagates the type information
previously assigned to the reference. (This process handles
local variables, but does not propagate type information for
function arguments or function returns; this occurs in Step 4).
To determine the possible types of object expressions (e.g,
the el in el.style), FeedLack gathers the names accessed on
each identical object expression and looks for DOM API
types and object literal declarations (from Step 1) that contain
at least two matching property names. For example, if a
function contained the expressions el.style, el.innerHTML,
and el.onclick, FeedLack would look for types that have the
names style, innerHTML, and onclick and find HTMLElement.
The type with the most matching names (and in the case of a
tie, the most widely used type in the program), is added to the
possible types of the object expressions.

Step 4: Resolving Function Calls
After type information is propagated through each function,
FeedLack’s next step is to resolve all function calls in the
program to the functions they might invoke. For each call, it
determines the name of the function called and first checks if
there are any LOCAL functions (as defined in Step 1) in the
scope of the call. If there are not, FeedLack checks the
calling context to determine whether the call is on an object
(e.g., object.run()) or not (e.g., run()). If the call is on an
object and object expression has type information, the
function search is limited to the known functions of the
expression’s possible types. If no functions are found or there
is no type information, FeedLack searches all OBJECT
functions for functions with matching names. If the call is not
on an object, FeedLack searches all GLOBAL functions for
matches. If there are no matching names, the failure is noted
so that this can be mentioned in FeedLack warning.
After resolving all calls, FeedLack uses the resolved
functions to further propagate type information. It propagates
the types of arguments sent to functions to each call’s
resolved function’s parameter locals. It also propagates the
types of return statements’ expressions to the call itself.
Lastly, FeedLack repeats Step 3 to further propagate this new
type information throughout the program.
FeedLack does not resolve calls to apply() and call() or
calls on arrays (e.g., object[getFunction()]()). While this is
a source of false positives, prior work has shown that 81% of
JavaScript calls only ever invoke one function and that less
than 3% have more than two targets [19].

Step 5: Identifying Output-Affecting Statements
With the type information from the previous steps,
FeedLack’s next step is to search all functions for statements
that affect output. FeedLack considers two kinds of
statements output. The first are assignments to W3C DOM
properties that affect the appearance of page, such as
className and id (which may change the appearance of an

element via CSS), innerHTML, which explicitly modifies the
HTML inside of an element, and a variety of other properties
such as style, textContent, and so on. Some assignments
also cause the browser to navigate to a new URL, including
assignments to document.location and window.location.
The second kind of statement considered output includes
W3C DOM calls that can affect the appearance of a page.
These include functions such as appendChild, setAttribute,
on HTMLElements and calls to global functions such as alert()
and open(). In addition to these native calls, FeedLack also
accounts for the jQuery and Prototype APIs, recognizing
calls such as $(‘#home’).hide().css(‘color’,	
 ‘blue’).
It should be noted that the statements above do not always
affect output. For instance, the statement el.style.color	
 =	

'blue' only has an effect if the element’s color was not
already 'blue'. Similarly, a call to removeChild() may fail if
the child provided is not found. Because FeedLack is a static
analysis, it cannot verify these side effects.

Step 6: Identifying Input Handling Functions
After identifying input, FeedLack’s next step finds functions
that handle user input. FeedLack considers the full range of
input events originating from mice and keyboards, including
click, mouse	
 down/up/over/move/enter/out/wheel, key	
 down/
up/press, cut, copy, paste, contextmenu, error, all seven
JavaScript drag events, and href attributes (which are
sometimes used to handle clicks on links). FeedLack ignores
events related to focus and element property change events,
under the assumption that feedback is not expected for these
events since they are not explicitly user invoked.
FeedLack looks for three kinds of input handling code. First,
it looks for any tag with input handling attribute values that
parse as JavaScript code without errors (as in
onclick="goHome()"). Each inline script is treated as an input
handling function. We include <input> tags with a type
attribute equal to submit, image, button, checkbox, or range
and <button> tags with a type attribute equal to submit or
button because users expect them to provide some feedback
beyond that provided by the control itself. However, we
exclude <input> tags with type password or radio as input,
assuming their intrinsic feedback is adequate. (We treat
checkboxes and radio buttons differently because radio
buttons explicitly label each possible mode, whereas the
meaning of a checkbox with a static label can be ambiguous).
FeedLack also looks for assignments to object properties that
represent input handling functions. For example, the
expression getElementById(‘home’).onclick=goHome; assigns
the function goHome to the onclick attribute of the element
returned by the getElementById() function.
FeedLack also looks for event binding calls that represent
input handlers, including the W3C and Internet Explorer
addEventListener() and attachEvent() calls as well as
jQuery and Prototype event binding APIs (as in $
(‘#home’).click(goHome) and $(‘#home’).observe(‘click’,	

goHome), respectively. Functions passed to these calls are also
treated as input handling functions.

CHI 2011 • Session: Website & Application Design May 7–12, 2011 • Vancouver, BC, Canada

2180

Step 7: Enumerating Paths Through Input Handlers
Having identified the program’s set of input handlers,
FeedLack’s next step is to find all paths through each
handler. FeedLack uses a depth-first search through each
function’s CFG, adding each visited node to a list. At each
node with multiple outgoing edges, FeedLack duplicates the
set of existing paths through the function and then
recursively explores each edge. Figure 3 shows the two paths
through function post(), derived from the CFG in Figure 2.
Because FeedLack’s analyses are memory intensive, it
represents paths as sequences of both nodes and other paths,
reusing path leading up to decision points.
To simplify FeedLack’s warnings, the above algorithm
includes two special cases. First, FeedLack only includes
calls, returns, and conditionals, and output-affecting
assignments. All other program events such as expressions
and non-output affecting assignments are excluded, limiting
paths to control flow events. Second, FeedLack only explores
output-affecting blocks; these are that contain at least one
output-affecting call or assignment, where all functions a call
might invoke are recursively inspected for output-affecting
code. For example, the first path in Figure 3 omits the code
within the true case of post()’s conditional because
FeedLack determined that $.get() does not affect output.
These special cases have two rationales. First, because
conditional blocks can double the number of paths through a
function, this simplification mitigates the growth of the
number of paths through a function. Second, and perhaps
more importantly, this limits FeedLack’s warnings to blocks
that could possibly affect output, assuming that any block
that cannot affect output is not one that the developer
intended to affect output, and therefore not of interest.

Step 8: Expanding Paths Through Input Handlers
After generating paths through each input handling function,
the next step is to replace the calls in these paths that might
affect output with all possible paths such calls may result in.
This process expands the scope of paths through a single
input handling function to the scope of the whole program.

We list the two algorithms that achieve this in Figure 4.
ExpandPaths iterates through each path through an individual
function, converting each individual path into multiple paths
with the function ExpandCalls. ExpandCalls iterates through
each node in its given path, resolving calls with the results
from Step 4. For each function resolved that contains an
output-affecting block (as defined in Step 7), ExpandCalls
creates new paths to represent all possible paths through all
possible functions called.	
 ExpandCalls does not expand calls
to jQuery and Prototype API functions recognized as output-
affecting, nor does it attempt to resolve functions passed to
call() or apply(); these latter calls are assumed to affect
output to avoid false positives.
An example of the result of ExpandPaths appears in Figure 5,
showing the paths through the onclick handler in Figure 1.
These paths show how the two paths through post() (in
Figure 3) and the two paths through isValid() result in four
paths through the onclick handler. Four identical paths (not
shown) are generated for the onsubmit handler in Figure 1.

!"#!$ %&'()%*+, $!#-$"

!"#!$ %&'()%*+, %. ()!$#+, $!#-$"
.()&!

%.
#$-!

Figure 3. The two paths through post() in Figure 1. The first
path skips the conditional’s true block since it lacks output

affecting assignments and calls.

function	
 ExpandPaths(function,	
 callstack)
	
 	
 if	
 callstack	
 contains	
 function,	
 return	
 {}
	
 	
 push	
 function	
 onto	
 callstack
	
 	
 let	
 expandedPaths	
 =	
 {}
	
 	
 let	
 paths	
 =	
 paths	
 through	
 function
	
 	
 for	
 each	
 path	
 p	
 in	
 paths
	
 	
 |	
 	
 add	
 ExpandCalls(p,	
 callstack)	
 to	
 expandedPaths
	
 	
 pop	
 callstack

function	
 ExpandCalls(path,	
 callstack)
	
 	
 let	
 expandedPaths	
 =	
 {[]}
	
 	
 for	
 each	
 node	
 n	
 in	
 path
	
 	
 |	
 	
 append	
 n	
 to	
 all	
 paths	
 in	
 expandedPaths
	
 	
 |	
 	
 if	
 n	
 is	
 a	
 call
	
 	
 |	
 	
 |	
 	
 let	
 newPaths	
 =	
 {}
	
 	
 |	
 	
 |	
 	
 let	
 functions	
 =	
 functions	
 call	
 could	
 invoke
	
 	
 |	
 	
 |	
 	
 for	
 each	
 function	
 f	
 in	
 functions
	
 	
 |	
 	
 |	
 	
 |	
 	
 if	
 f	
 contains	
 >	
 1	
 output-­‐affecting	
 statement
	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 let	
 paths	
 =	
 ExpandPaths(f,	
 callstack)
	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 if	
 |paths|	
 x	
 |expandedPaths|	
 <	
 1	
 million
	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 for	
 each	
 path	
 p	
 in	
 expandedPaths
	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 for	
 each	
 path	
 q	
 in	
 paths
	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 let	
 r	
 =	
 append	
 q	
 to	
 copy	
 of	
 p
	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 |	
 	
 add	
 r	
 to	
 newPaths
	
 	
 |	
 	
 |	
 	
 if	
 newPaths	
 !=	
 {},	
 expandedPaths	
 =	
 newPaths
	
 	
 return	
 expandedPaths

Figure 4. FeedLack uses ExpandPaths and ExpandCalls to
convert the paths through a function into all possible paths

from the function through the program, focusing only on calls
that can invoke functions containing output-affecting code.

Figure 5. The 4 paths through the onclick handler in Figure 1 (and 4 identical paths through onsubmit, not shown),
with successive calls in darker grey. The 3rd path is infeasible, since the comment cannot be both valid and invalid.

!"#!$ %&'()%*+, $!#-$"%. #!/#+,
#$-!

$!#-$"

!"#!$ %&'()%*+, %.
.()&!

$!#-$"

!"#!$ %&'()%*+, %. #!/#+,
#$-!

$!#-$"

!"#!$ %&'()%*+, %.
.()&!

$!#-$"

%. ()!$#+, $!#-$"
.()&!

%. ()!$#+, $!#-$"
.()&!

0"1)%12 30&#+, !"#!$

!"#!$

!"#!$

!"#!$0"1)%12 30&#+,

0"1)%12 30&#+,

0"1)%12 30&#+, $!#-$"

$!#-$"

$!#-$"

$!#-$"

$!#-$"

0"&-45%#

%.
#$-!

%.
#$-!

CHI 2011 • Session: Website & Application Design May 7–12, 2011 • Vancouver, BC, Canada

2181

Limiting call expansions to only those functions that could
possibly affect output is a critical part of minimizing “path
explosion,” or the phenomena of path analysis growing
exponentially. Also note that ExpandPaths and ExpandCalls	

maintain a call stack of functions visited. This allows the
algorithm to identify recursive calls, meaning that FeedLack
assumes each recursive call occurs once (a similar
assumption to that made for loops). Of course, there are cases
were neither of these measures are enough to avoid path
explosion. Therefore, we empirically derived a limit of one
million paths by testing FeedLack on several applications
with a Java process allocated 2 GB of RAM.
Finally, it is also important to note that ExpandPaths assumes
a single thread of execution. JavaScript does allow
developers to spawn threads with setInterval(), setTimeout
(), and AJAX calls, but FeedLack does not consider the
functions they call as output-affecting, requiring the input
handling thread to produce feedback itself. This is because
they introduce the potential for feedback delays: even if a
timeout is supposed to start immediately upon calling,
stutters in the network or operating system can cause delays.
For example, in addition to AJAX calls producing feedback
when they succeed or fail, threads invoking AJAX calls must
present feedback while the call is pending.

Step 9: Identifying Output-Lacking Paths
The result of the previous step is a set of paths through each
input handing function, some of which contain output-
affecting statements, some of which do not. FeedLack groups
these paths by the HTML tags and input events from which
they originate, eliminating groups of paths that contain at
least one handler that always produces output. This accounts
for tags that have multiple handlers for similar events, one of
which is responsible for output. FeedLack then iterates
through the remaining paths, selecting ones that do not
contain output-affecting statements. For example, in Figure
5, the only path lacking output-affecting code is the first one;
this results in the two paths from the onclick and onsubmit
handlers in Figure 6.

Step 10: Clustering Output-Lacking Paths
There are a number of reasons why presenting output-lacking
paths directly to FeedLack users would be unnecessarily
complex. For instance, some handlers reuse functions that are
responsible for providing feedback (as in the case of post()
in Figure 1); presenting separate handlers with intersecting
paths as distinct would be redundant. Moreover, intersecting
paths often share a critical sequence. For example, the two
paths at the top of Figure 6 hinge upon two particular
conditionals. This is an opportunity to highlight these
commonalities, rather than require users to notice them.
To identify these commonalities, FeedLack groups output-
lacking paths into path clusters. It starts with an empty set of
path clusters, Clusters. Then, for each output-lacking path P,
FeedLack considers each cluster in Clusters, and for each
path C in each cluster, computes the number of nodes that P
and C have in common. FeedLack remembers the smallest
intersection of each cluster, and chooses the cluster with the
largest minimum intersection. If there are no clusters,

FeedLack creates a new cluster and adds P. The result is a set
of path clusters, where all paths in each cluster have at least
one node in common. For example, the two paths at the top
of Figure 6 are clustered into one single path cluster.
Next, FeedLack identifies the longest sequence of nodes that
appears in all paths in a cluster; we call this the critical
sequence. FeedLack takes the first path in the cluster and
numbers each of its nodes from 1 to the number of nodes in
the path, also adding each node in the path to a list
representing the critical sequence. Then, it iterates through
the remaining paths in the cluster, removing all nodes from
the intersection list except those also contained in the
remaining path. It then takes the final intersection and orders
it using the numbers from the first path.
For the final step, FeedLack iterates through all paths in the
cluster and identify all paths leading to and from the critical
sequence. For example, the path cluster in Figure 6 has to
paths leading to the critical sequence and two paths from it.
FedLack then presents path clusters as these three parts.
Figure 1’s warning, for example, lists the two input handlers
and the critical sequence; the outgoing paths were omitted
since they only included function returns. More complicated
paths can have several outgoing paths; for example,
FeedLack will often select the conditional of a switch
statement as a critical sequence and then enumerate the
various cases the switch might select.

EVALUATION
There are many aspects of FeedLack to evaluate, ranging
from the feasibility and legitimacy of its warnings to the
understandability of its warnings to developers and usability
engineers. In this paper, we focus specifically on FeedLack’s
true and false positives (paths that FeedLack believes are
missing output). We do not assess its false negatives (paths
FeedLack believes provide output but do not), primarily
because of the sheer number of negative paths generated by
the analysis (there were generally two orders of magnitude
more negative paths than positive paths).

Sampling
In sampling web sites, we focused on sites with JavaScript
input handlers, avoiding those that used rich internet
application frameworks such as Flash or Silverlight. Our
sampling approach was stratified and opportunistic and
aimed at retrieving at least 300 applications with diverse
functionality. One class of applications we chose were highly
trafficked sites listed on http://www.alexa.com, including
sites used for photos, videos, and shopping. Another class of
applications included the smaller sites used frequently by the
2nd author, including those of schools, student organizations,

↓

!"#!$ %&'()%*+, %-
-()&!

$!#.$"!"#!$/"0)%01 2/&#+, $!#.$" $!#.$"%-
#$.!

!"#!$ %&'()%*+, %-
-()&!

$!#.$"!"#!$/"&.34%# 2/&#+, $!#.$" $!#.$"%-
#$.!

/"0)%01 2/&#+, $!#.$"

!"#!$ %&'()%*+, %-
-()&!

$!#.$"!"#!$

/"&.34%# 2/&#+,

$!#.$"

$!#.$"

%-
#$.!

Figure 6. The two output-lacking paths from Figure 5,
grouped into a path cluster with two routes to post().

CHI 2011 • Session: Website & Application Design May 7–12, 2011 • Vancouver, BC, Canada

2182

restaurants, churches, and government. We also searched the
web for “HTML 5 demo” and “HTML 5 application,”
resulting in several sites that used the <canvas> tag for output.
Finally, we sampled applications from projects on Google
Code (http://code.google.com/hosting/) with live demos.
To obtain the client-side source for these sites, we thoroughly
exercised all interactive elements in the page to ensure that
all source code for the page was downloaded and then used
Google Chrome’s page archiving feature to save the HTML
and JavaScript source. For the Google Code projects, we
downloaded the latest source for the project. The result of
this process was 330 web applications and their source code.

Applying FeedLack to the Sample
Next, we ran FeedLack on these 330 web applications. All
330 applications were analyzed in less than 1 minute on a 2
GHz MacBook Pro with a Java process given 2 GB of RAM.
Of the 330 applications, 89 had syntax errors that FeedLack’s
JavaScript parser could not overcome (including unsupported
unicode characters and missing semicolons). Of the
remaining, 112 lacked JavaScript input handlers. Of the
remaining 129, there were 14 that caused out of memory
exceptions. We found two underlying reasons for these
exceptions. In 12 applications, there was a function with
anywhere from 26 to 119 sequential output-affecting
conditionals, causing FeedLack to generate trillions of paths.
In the other two cases, FeedLack ran out of memory while
clustering tens of thousands of warnings.
In the remaining 115 applications, FeedLack identified 6,887
input handling sites, 6,362 (92%) of which FeedLack
believed successfully produced output on all paths. We did
not analyze these handlers for true negatives (paths that
FeedLack believed produce output but do not) because of the
sheer number of paths that would need to be tested manually.
Of the 115 applications, 33 resulted in no FeedLack
warnings, leaving 82 applications with at least one output-
lacking path to verify. Table 1 shows descriptive statistics
about these applications. The average app had 2 HTML files,
multiple JavaScript source files, dozens of input handlers,
and several hundred JavaScript functions. To get a sense of
the functionality in our sample, we categorized each as one
of the 7 categories from http://versiontracker.com. As shown
in Figure 7, most were games, productivity apps, design
tools, or developer tools, including interactive visualizations,
calculators, action games, calendars, educational lessons,
graphic design tools, photo management tools, social
networking apps, web storefronts, and note taking apps.

Applying FeedLack to the remaining 82 applications resulted
in 647 output-lacking paths. To evaluate each path, we began
by attempting to execute it through manual testing of the live
web site (we primarily used Firebug breakpoints, attempting
to execute each step the path). If the path was not executable,
we diagnosed the source of infeasibility in FeedLack’s
reasoning. If the path was feasible, we noted whether the path
provided feedback, and if so, diagnosed the cause of the false
positive. If it did not provide feedback, we described the
missing feedback in detail for later analysis. The 1st author
then classified each path as one of the following:
• infeasible paths, which could not be executed.
• output-producing paths, which did produce feedback.
• output-missing paths, which did not produce feedback,

but did not lead to confusion about application state.
• output-deserving paths, which did not produce feedback,

causing confusion about application state.
To choose between the last two categories the first author
applied widely-used conventions for GUI components to
make these decisions. For example, buttons that appeared
disabled and did not produce feedback were classified as
output-missing; buttons that appeared enabled but did not
produce feedback were classified as output-deserving.
Similar conventions were applied to other interactions.

Results
Frequencies of warning types appear in Table 2, separated by
input event. Of all paths, 12% were infeasible and 18%
produced feedback despite FeedLack’s warning; 34% did not
produce feedback but did not appear to need it; and finally,
36% of warned paths lacked feedback and needed it. There
was a significant relationship between the kind of input event
and warning category (χ2(n=647,df=42)=261,p<.001). For
example, click, href, and mousedown events were more likely
to be warned and were less likely to be false positives than
href, mouseover or mousewheel events.

min mean max
#	
 HTML	
 files 1 2 54

#	
 JS	
 files 0 5 20
#	
 HTML	
 handlers 0 20 278

#	
 JS	
 handlers 0 10 63
#	
 JS	
 functions 6 623 2,176

#	
 JS	
 statements 67 6,678 25,567

Table 1. Aggregate statistics
about file, input handler,

function and statement counts
in our sample of applications.

Figure 7. Distribution of
application types in our sample.

games
productivity

design
IT	
 &	
 network
development

home	
 &	
 education
audio/video

0% 10% 20% 30%

infeasibleinfeasible
output-­‐

producing
output-­‐

producing
output-­‐
missing
output-­‐
missing

output-­‐
deserving
output-­‐

deserving TOTALTOTAL
click 24 12% 31 16% 69 35% 76 38% 200 31%
href 2 4% 24 43% 3 5% 27 48% 56 9%
mousedown 5 9% 8 15% 30 57% 10 19% 53 8%
mousemove 2 4% 4 8% 22 46% 20 42% 48 7%
mouseup 0 0% 3 6% 13 27% 33 67% 49 8%
mouseenter 0 0% 1 100% 0 0% 0 0% 1 0%
mouseover 2 4% 20 43% 18 39% 6 13% 46 7%
mouseout 5 17% 3 10% 13 45% 8 28% 29 4%
mousewheel 5 71% 2 29% 0 0% 0 0% 7 1%
keypress 21 53% 0 0% 8 20% 11 28% 40 6%
keydown 3 7% 1 2% 19 42% 22 49% 45 7%
keyup 7 20% 0 0% 15 43% 13 37% 35 5%
cut/paste 0 0% 2 100% 0 0% 0 0% 2 0%
multiple 2 6% 15 42% 13 36% 6 17% 36 6%
TOTAL 78 12% 114 18% 223 34% 232 36% 647

Table 2. The frequency of warning categories by input event;
multiple represents paths invoked by multiple input event

types. Percentages represent the proportion of the cell to its
row; total percentages are relative to all warned paths.

CHI 2011 • Session: Website & Application Design May 7–12, 2011 • Vancouver, BC, Canada

2183

We show the distribution of each of these warning category
per application in both absolute counts (Figure 8) and as
proportions (Figure 9). Figure 8 shows that the number of
warnings in our data ranged anywhere from 1 to 55 and that
the number of output-deserving paths was rarely over 10 for
an individual application. Figure 9 shows that FeedLack
detected at least one output-deserving path for 50 of 115
applications. Therefore, if a team were considering testing a
deployed web app with FeedLack, there would be roughly a
43% chance that it would detect at least one problem, if not
more (the likelihood of detecting missing feedback on an app
in development may be higher, but this was not studied) .
In the rest of this section, we consider each warning category
individually. To begin, the 12% of infeasible arose from
several distinct sources, listed in Table 3. Most of these
stemmed from imprecision in FeedLack’s call graphs, its lack
of data flow analysis, and the impossibility of specific inputs.
However, some infeasible warnings revealed unhandled error
conditions that were impossible to reach in the current
version of the application.The 18% of output-producing
paths came from several distinct sources (see Table 4). Most
came from unresolvable calls, which were assumed to not
produce feedback. Many of these could have been due to
incomplete archiving of an application’s source code.
The 35% of output-missing paths were also false positives.
As seen in Table 5, they primarily concerned code that was
never intended to provide feedback. The most common
scenario identified were interactive situations in which users
would not expect feedback, such as auto-completing text
fields that showed no results when empty. Most of the other
handlers tracked mouse clicks for web analytics or time-
delayed interactions. Although we considered these
negligible, there may be some warnings that others might
assess differently. For example, a privacy-sensitive site might
actually want to tell users each time their clicks are tracked or
explain to users why buttons are disabled.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)*+*,-./0" 1.++./0" 2,3)45./0" ./6*7+.89*"

Figure 8. Warned paths per app by category, sorted by
decreasing per-app total (excluding apps with no warnings).

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

Figure 9. Proportions of warning types per app, sorted by
output-deserving warnings (excluding apps with no warnings).

descripJon
26 MulJple	
 condiJons	
 checked	
 in	
 separate	
 funcJons	
 that	
 could	
 not	
 be	

simultaneously	
 true.	
 For	
 example,	
 one	
 funcJon	
 in	
 a	
 calculator	
 had	
 a	

special	
 case	
 for	
 the	
 1/x	
 buOon;	
 FeedLack	
 reported	
 several	
 paths	

from	
 non-­‐1/x	
 buOons	
 through	
 the	
 1/x	
 condiJonal	
 block.

21 Infeasible	
 calls.	
 For	
 example,	
 one	
 applicaJon	
 had	
 several	
 calls	
 to	
 a	

funcJon	
 named	
 insert(),	
 but	
 FeedLack	
 mistakenly	
 resolved	
 these	

calls	
 to	
 funcJons	
 named	
 insert()	
 that	
 were	
 not	
 reachable	
 at	
 runJme.

11 Unreachable	
 handlers,	
 such	
 as	
 abandoned	
 or	
 unfinished	
 code	
 that	

was	
 never	
 aOached	
 to	
 HTML	
 elements.	
 One	
 common	
 source	
 was	

jQuery	
 expressions	
 that	
 returned	
 empty	
 sets.	

10 Impossible	
 values	
 in	
 sequences	
 of	
 condiJonals	
 that	
 checked	
 for	
 one	

of	
 from	
 a	
 set	
 of	
 values.	
 For	
 example,	
 one	
 funcJon	
 handled	
 the	

display	
 of	
 two	
 popup	
 dialogs;	
 if	
 the	
 id	
 argument	
 passed	
 by	
 the	
 caller	

was	
 not	
 one	
 of	
 these	
 two	
 id	
 strings,	
 no	
 output	
 would	
 occur,	
 but	

there	
 were	
 no	
 calls	
 that	
 passed	
 an	
 id	
 other	
 than	
 these	
 two	
 strings.

7 Hidden	
 controls,	
 where	
 the	
 input	
 that	
 would	
 have	
 led	
 to	
 no	
 feedback	

was	
 not	
 possible	
 because	
 the	
 control	
 was	
 not	
 visible.	
 For	
 example,	
 in	

one	
 warning,	
 a	
 cancel	
 buOon	
 had	
 no	
 effect	
 when	
 the	
 progress	
 dialog	

containing	
 it	
 was	
 hidden.

3 Unreachable	
 error	
 cases,	
 such	
 as	
 excepJons	
 and	
 errors	
 with	
 output-­‐
lacking	
 else	
 cases.	
 We	
 were	
 unable	
 to	
 cause	
 these	
 errors.

Table 3. Causes of infeasible warnings.

descripJon
54 Unresolved	
 calls,	
 where	
 FeedLack	
 could	
 not	
 find	
 matching	
 funcJons	

for	
 a	
 call	
 that	
 ulJmately	
 produced	
 output.	
 Some	
 of	
 these	
 funcJons	

may	
 not	
 have	
 been	
 archived	
 in	
 our	
 sampling.

20 Undetected	
 mulJple	
 handlers	
 on	
 the	
 same	
 HTML	
 element,	
 at	
 least	

one	
 of	
 which	
 always	
 produced	
 output.	
 For	
 example,	
 in	
 several	
 cases,	

an	
 onclick="return	
 false;"	
 aOribute	
 was	
 added	
 to	
 an	
 HTML	

element,	
 but	
 a	
 jQuery	
 handler	
 was	
 also	
 added.

12 Overlooked	
 naJve	
 output,	
 such	
 as	
 assigning	
 window.location.hash	

a	
 new	
 value	
 to	
 navigate	
 to	
 a	
 new	
 URL	
 and	
 jQuery	
 extensions.

8 Timers	
 with	
 impercepJble	
 delay.	
 Uses	
 of	
 setInterval(),	

setTimeout(),	
 and	
 clearInterval()	
 with	
 no	
 delay	
 were	
 effecJvely	

behaved	
 explicit	
 calls.

8 Output-­‐affecJng	
 state,	
 where	
 applicaJons	
 modified	
 state	
 that	
 was	

later	
 used	
 by	
 a	
 Jmer	
 to	
 affect	
 output.	
 For	
 example,	
 one	
 handler	

changed	
 the	
 value	
 of	
 a	
 paused	
 variable	
 which	
 was	
 inspected	
 in	
 an	

animaJon	
 loop	
 to	
 halt	
 feedback.

7 Inadequate	
 type	
 inference,	
 causing	
 FeedLack	
 to	
 overlook	
 output	

(e.g.,	
 FeedLack	
 overlooked	
 changes	
 to	
 text	
 area’s	
 value	
 property	

when	
 it	
 was	
 the	
 only	
 property	
 referred	
 to	
 on	
 an	
 object	
 expression).

Table 4. Causes of output-producing warnings.

descripJon

61 Negligible	
 modal	
 interacJon	
 states.	
 For	
 example,	
 many	
 popup	
 dialog	

handlers	
 would	
 hide	
 a	
 popup	
 when	
 clicking	
 on	
 a	
 page	
 body,	
 but	

would	
 have	
 produced	
 no	
 feedback	
 when	
 the	
 popup	
 was	
 already	

hidden.	
 These	
 were	
 scenarios	
 where	
 the	
 visual	
 state	
 of	
 the	
 page	

removed	
 an	
 expectaJon	
 of	
 feedback.

50 Web	
 analyJcs	
 handlers	
 only	
 intended	
 capture	
 click	
 informaJon.
46 Event	
 propagaJon	
 handlers,	
 coordinaJng	
 with	
 other	
 handlers	
 to	

track	
 mouse	
 buOon	
 states	
 and	
 keyboard	
 event	
 consumpJon.
32 Time-­‐delayed	
 behaviors,	
 such	
 as	
 custom	
 toolJp	
 and	
 link-­‐preloading	

funcJonality	
 intended	
 only	
 to	
 appear	
 a`er	
 a	
 mouse	
 dwell.
14 Ignored	
 keystrokes,	
 where	
 nothing	
 in	
 the	
 user	
 interfaces	
 suggested	

that	
 these	
 keys	
 would	
 provide	
 feedback.	
 These	
 were	
 o`en	

unhandled	
 else	
 cases	
 of	
 switch	
 statements	
 that	
 handled	
 a	
 limited	
 set	

of	
 keys.

14 Disabled	
 elements,	
 which	
 had	
 handlers,	
 but	
 provided	
 no	
 feedback	

when	
 styled	
 to	
 appear	
 disabled	
 or	
 inacJve.

5 InacJve	
 in-­‐progress	
 animaJons,	
 such	
 as	
 clicked	
 images	
 that	
 were	

inacJve	
 while	
 animaJng	
 to	
 full	
 screen,	
 but	
 acJve	
 before	
 and	
 a`er.

Table 5. Causes of output-missing warnings.

CHI 2011 • Session: Website & Application Design May 7–12, 2011 • Vancouver, BC, Canada

2184

The last 35% of output-deserving paths all lacked feedback
and violated the conventions of common GUI interactions.
As shown in Table 6, the most common warnings involved
modal behaviors in which input events only had an effect
when the application was in a particular state, but that state
was not visible. Other common problems included ignored
keystrokes, dead links, silent error conditions, and missing
selection feedback on items that appeared selectable.

DISCUSSION
The results of our evaluation show that FeedLack can detect
a variety of significant feedback problems while also
detecting several places in web application code potentially
in need of error handling code. In our discussion, we consider
FeedLack’s limitations and generalizability in detail.

Prospects for Reducing False Positives
While FeedLack’s false positive rates are high, they are
comparable to the 50% rates reported for the widely used
static analysis tool FindBugs [3]. Nevertheless, there may be
ways to eliminate some false positives. For example, many of
the sources of false positives were related to inadequate type
inference and call graph precision; this could be improved by
using more sophisticated type inference analyses (e.g., http://
doctorjs.org/). Similarly, there were many kinds of input
events with high false positive rates; mousedown, mouseover,
mouseout, and keypress events, and handlers invoked by
multiple input events, were least likely to require feedback.
Were these omitted from FeedLack’s analyses, most
warnings would have been output-deserving. Of course,
omitting these warnings would also omit some true positives;
this is a tradeoff inherent to any defect detection analysis.

Issues that FeedLack Cannot Detect
First and foremost, FeedLack cannot detect issues with the
quality of feedback. To be sure, many of the scenarios that
FeedLack identified as providing feedback were still
confusing. Output was often so far away from the source of
input, there was no perceptible change; detecting such
problems might require modeling of the location and
appearance of HTML elements on screen. Moreover, much
of the output produced had a weak conceptual connection to
the input that caused it (in one application, clicking a save
button caused a mysterious icon to appear, apparently
indicating success). Without further research on feedback
verifications like FeedLack, analyzing the semantic
correspondence between input and output still requires the
talent of experienced usability engineers.
FeedLack cannot find all missing feedback in web
applications. For example, there are many things that can
cause a JavaScript input handler to halt or stall, including
references to undefined properties, unresolvable functions,
memory errors, uncaught exceptions, infinite loops, slow
algorithms and a variety of other runtime issues. While these
are outside of FeedLack’s scope, there are complementary
approaches to detect these problems [2,11,18].
Another feedback issue that FeedLack cannot detect is the
absence of input handlers on any HTML element that might
appear to handle input but does not. For example, most web
site’s logos navigate to the site’s home page, but some site’s
logos do not have these links. There is no obvious way for a
machine to know which elements should have handlers
(moreover, verifying that elements have handlers at all is
complicated further by the flexibility of runtime binding).
FeedLack also overlooks situations where an application
assigns an output-affecting property a value that is equivalent
to its old value. For example, there are many cases where an
element might be assigned an equivalent class, meaning the
user would experience no visible change in the web page.
More generally, applications might redirect users to the same
page they were on already, or web servers might return
dynamically-generated but identical web pages, again leading
to situations where the application appears not to respond.

Making Sense of FeedLack Warnings
One major aspect of FeedLack we have yet to evaluate is to
what extent usability engineers and software developers can
actually understand FeedLack’s warnings. We were able to
comprehend the warnings (even the unfamiliar code of the 82
applications in our sample), but this does not mean that it
would be easy for users without significant knowledge of
FeedLack’s analyses. Given that FeedLack report paths
through code and not actions on a concrete user interface,
usability engineers may have challenges understanding and
triaging these issues. Future work might involve converting
FeedLack’s warned paths into concrete actions on the web
application UI, better enabling testers to assess the warnings.

Generalizing FeedLack to Other Platforms
Few of FeedLack’s algorithms are particular to the web; most
of the work necessary to adapt FeedLack to other platforms is
identifying input-handling and output-affecting statements,

descripJon

41 Hidden	
 modal	
 behaviors	
 including	
 buOons	
 and	
 other	
 controls	
 that	

only	
 produced	
 output	
 when	
 the	
 applicaJon	
 was	
 in	
 a	
 parJcular	
 state.	

For	
 example,	
 in	
 a	
 chess	
 game,	
 the	
 check	
 mate	
 game	
 over	
 state	

prevented	
 any	
 further	
 input,	
 but	
 there	
 was	
 no	
 message	
 to	
 indicate	

that	
 the	
 check	
 mate	
 state	
 had	
 been	
 reached.

36 InacJve	
 command	
 buVons	
 appearing	
 enabled,	
 including	
 copy,	

cancel,	
 load,	
 and	
 other	
 commands.	
 In	
 these	
 cases,	
 the	
 buOons	
 were	

disabled,	
 but	
 did	
 not	
 appear	
 so.

34 Ignored	
 keystrokes	
 in	
 keyboard-­‐driven	
 applicaJons.	
 For	
 example,	
 in	

one	
 game,	
 the	
 character	
 was	
 controlled	
 by	
 one	
 of	
 seven	
 leOer	
 keys;	
 if	

some	
 key	
 other	
 than	
 these	
 was	
 typed,	
 there	
 was	
 no	
 feedback	
 that	

the	
 key	
 was	
 not	
 accepted.	
 In	
 other	
 cases,	
 keys	
 that	
 had	
 some	

convenJonal	
 behavior	
 had	
 no	
 effect.	
 For	
 example,	
 on	
 a	
 library	
 search	

page,	
 the	
 enter	
 key	
 failed	
 to	
 submit	
 a	
 query.

32 Dead	
 links,	
 similar	
 to	
 those	
 found	
 by	
 web	
 site	
 validators.
31 Count-­‐limited	
 repeated	
 inputs,	
 where	
 acJons	
 that	
 were	
 invoked	

repeatedly	
 (e.g.,	
 firing	
 missiles	
 in	
 a	
 shooJng	
 game)	
 ceased	
 a`er	
 some	

number	
 of	
 clicks	
 without	
 explanaJon.

20 Silent	
 error	
 condiJons,	
 such	
 as	
 failed	
 checks	
 for	
 parJcular	
 browsers	

or	
 keyboard	
 layouts,	
 that	
 provided	
 no	
 feedback	
 on	
 failure.

19 Missing	
 hover	
 feedback	
 where	
 hovering	
 or	
 dragging	
 over	
 parJcular	

targets	
 would	
 provide	
 no	
 change	
 in	
 output.	
 For	
 example,	
 a	
 calendar	

applicaJon’s	
 event	
 resize	
 interacJon	
 supported	
 spanning	
 days	
 but	

did	
 not	
 visualize	
 the	
 days	
 spanned.

10 Delayed	
 feedback,	
 including	
 behaviors	
 that	
 took	
 some	
 acJon,	
 but	

provided	
 feedback	
 through	
 a	
 setTimeout()	
 or	
 AJAX	
 call,	
 pausing	
 or	

lagging	
 the	
 UI	
 for	
 several	
 seconds	
 without	
 intermediate	
 feedback.

9 Silent	
 state	
 changes,	
 including	
 controls	
 meant	
 to	
 change	
 state,	
 but	

when	
 clicked,	
 provided	
 no	
 feedback	
 about	
 the	
 success	
 of	
 the	
 change.	

One	
 app	
 had	
 a	
 save	
 link	
 that	
 did	
 not	
 indicate	
 success	
 or	
 failure.

Table 6. Causes of output-deserving warnings.

CHI 2011 • Session: Website & Application Design May 7–12, 2011 • Vancouver, BC, Canada

2185

and creating language-specific CFGs. One possible
challenge, however, comes from the extent to which user
interface event handling and output is declarative. It is
simple in JavaScript and HTML to detect UI controls and
changes to their behavior, because most APIs require users to
declare those changes explicitly. In many statically typed
imperative languages, however, creating a UI button requires
several lines of instantiation, configuration, and event
listening code, as do customizations to these controls.
Tracking these customizations, especially across procedures
and subclasses, could prove difficult, although prior work has
had some success on object-oriented UI toolkits [12].

CONCLUSIONS AND FUTURE WORK
We have presented FeedLack, an analysis for automatically
detecting missing feedback in web applications. We have
demonstrated that FeedLack can detect significant feedback
issues in real web applications, as well as presented an
analysis of its false positives and limitations. While
FeedLack is not a replacement for usability testing or
expertise, it may be an effective supplement to empirical
approaches to detecting feedback issues, much like HTML
validators and other software verification tools.
Our results also suggest several directions for future work.
We want to explore the utility of FeedLack alongside other
forms of software testing and verification by deploying it into
a real web development team. Part of this deployment could
involve tracking feedback issues over successive versions of
web application UIs, and adding explicit support for
suppressing known false positives. There may also be ways
to extend FeedLack to support accessibility analyses,
checking to see not only whether applications provide
feedback, but that the feedback it provides is compatible with
screen readers and other accessibility tools.
More generally, we would like to explore the automatic
detection of other usability problems beyond feedback, such
as issues with graphic design consistency, recognition vs.
recall problems, confusing error messages, and support for
cancel and undo. We believe that tools that tie usability
concerns to code are a key part of integrating the work of
usability engineers with the rest of a software team.

ACKNOWLEDGEMENTS
This material is based in part upon work supported by the
National Science Foundation under Grant Number
CCF-0952733. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
1. Akers, D., Simpson, M., Jeffries, R., & Winograd, T.

2009. Undo and erase events as indicators of usability
problems. ACM Conf. on Human Factors in Computing
(CHI), 659-668.

2. Artzi, S., Dolby, J., Tip, F., & Pistoia, M. 2010. Practical
fault localization for dynamic web applications. Int’l
Conf. on Software Engineering (ICSE), 265-274.

3. Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J., &
Zhou, Y. 2007. Evaluating static analysis defect

warnings on production software. ACM Workshop on
Program Analysis For Software Tools and Engr., 1-8.

4. Blackmon, M. H., Polson, P. G., Kitajima, M., & Lewis,
C. 2002. Cognitive walkthrough for the web. ACM
Conf. on Human Factors in Computing Systems (CHI),
463-470.

5. Bodden, E. & Havelund, K. 2008. Racer: effective race
detection using AspectJ. Int’l Symposium on Software
Testing and Analysis (ISSTA), 155-166.

6. Bruun, A., Gull, P., Hofmeister, L., & Stage, J. 2009. Let
your users do the testing: a comparison of three remote
asynchronous usability testing methods. ACM Conf. on
Human Factors in Computing Systems (CHI),
1619-1628.

7. Godefroid, P., Levin, M.Y., & Molnar, D.A. 2008.
Automated whitebox fuzz testing. Network Distributed
Security Symposium (NDSS).

8. Hovemeyer, D. & Pugh, W. 2004. Finding bugs is easy.
ACM Conf. on Object-Oriented Prog. Systems,
Languages, and Applications (OOPSLA), 132-136.

9. Hutchins, E. L., Hollan, J. D., & Norman, D. A. 1985.
Direct manipulation interfaces. Human-Computer
Interaction 1(4), December, 311-338.

10. Ivory, M. Y. & Hearst, M. A. 2001. The state of the art in
automating usability evaluation of user interfaces. ACM
Computing Surveys 33(4), December, 470-516.

11. Ko, A.J. & Wobbrock, J.O. 2010. Cleanroom: Edit-time
error detection with the uniqueness heuristic. IEEE
Symposium on Visual Languages and Human-Centric
Computing, to appear.

12. Ko, A.J. & Myers, B.A. 2008 Debugging reinvented:
asking and answering why and why not questions about
program behavior. Int’l Conference on Software
Engineering (ICSE), 301-310.

13. Lecerof, A. & Paterno F. 1998. Automatic support for
usability evaluation. IEEE Trans on Software
Engineering (TSE) 24(10), October, 863– 888.

14. Lindgaard, G. & Chattratichart, J. 2007. Usability
testing: what have we overlooked? ACM Conf. on
Human Factors in Computing Systems, 1415-1424.

15. Mahajan, R. & Shneiderman, B. 1997. Visual and
textual consistency checking tools for graphical user
interfaces. IEEE Trans. on Soft. Engr. 23(11), 722-735.

16. Nielsen, J. & Molich, R. 1990. Heuristic evaluation of
user interfaces. ACM Conf. on Human Factors in
Computing Systems, 249-256.

17. Norman, D.A. 1988. The design of everyday things.
New York: Doubleday.

18. Novark, G., Berger, E.D., & Zorn, B.G. 2009.
Efficiently and precisely locating memory leaks and
bloat. ACM Conf. on Programming Language Design
and Implementation (PLDI), 397–407.

19. Richards, G., Lebresne, S., Burg, B., & Vitek, J. 2010.
An analysis of the dynamic behavior of JavaScript
programs. SIGPLAN Notices 45(6), June, 1-12.

CHI 2011 • Session: Website & Application Design May 7–12, 2011 • Vancouver, BC, Canada

2186

