
Design, Discussion, and Dissent in Open Bug Reports
Amy J. Ko and Parmit K. Chilana
The Information School | DUB Group

University of Washington
{ajko, pchilana}@uw.edu

ABSTRACT
While studies have considered computer-mediated decision-making
in several domains, few have considered the unique challenges
posed in software design. To address this gap, a qualitative study of
100 contentious open source bug reports was performed. The
results suggest that the immeasurability of many software qualities
and conflicts between achieving original design intent and serving
changing user needs led to a high reliance on anecdote, speculation,
and generalization. The visual presentation of threaded discussions
aggravated these problems making it difficult to view design
proposals and comparative critiques. The results raise several new
questions about the interaction between authority and evidence in
online design discussions.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]

General Terms
Documentation, Design, Human Factors.

Keywords
Change requests, design rationale, open source, Bugzilla

1. INTRODUCTION
Millions of people benefit from open source software (OSS), and
yet the extent to which open source software satisfies peoples’
needs depends partly on the the design decisions made by small
teams of distributed developers. It is surprising then that we know
so little about how these design decisions are made in practice,
apart from general studies of computer-mediated discourse [14,24].
For example, how do developers cope with the fact that software is
generally formless, and thus difficult to discuss and describe in
conventional computer-mediated tools? Since software is often
designed to serve multiple distinct tasks, how do teams reach
consensus in the face of competing concerns, and in many cases,
anonymity? Furthermore, since small changes to software can have
large effects on its behavior, how do software teams assess and
evaluate the impact of a change?
To begin to answer these questions, we performed a detailed
qualitative analysis of design discussions in bug reports from the
Firefox, Linux kernel, and Facebook API projects. Bug reports in
these projects represent concrete, actionable issues with a software
project and are open to anyone who wants to help reproduce and
address the problem or influence how it is dealt with. Although bug

reports are not the only place that developers discuss design, they
are one of the few places where design decisions are translated
directly into code. This makes them a compelling place to uncover
the structure of software design debate, understand how
contributors defend opinions, and assess how opinions influence
decisions. Furthermore, in addition to limiting our analysis to bug
reports, we focused specifically on changes to existing software (as
opposed to initial design) and on contentious (rather than routine)
discussions, to help amplify the strengths and weaknesses of
computer-mediated discussion tools.
Our results suggest that while OSS design discussions exhibit
challenges similar to other domains [26,17] (understanding the
design space, exploring alternatives, making tradeoffs, etc.), they
also exhibit key differences:

• Discussions exhibited an underlying philosophical divide
between achieving the original intent of a design or adapting to
user needs. This divide did not fall along user/developer roles as
many developers were quite user-centered in their arguments.
This fundamental power dynamic calls for new forms of process
scaffolding to support software design decision-making.

• The measurability of software qualities being discussed
influenced whether consensus was achievable and to what extent
commenters relied on anecdote, speculation, and generalization
to support their claims. For example, discussions of performance
were driven by testing and converged quickly, whereas qualities
that required subjective or empirical interpretation (such as
learnability, flexibility, and security) diverged and were
ultimately decided by authorities instead of the community.

• The above challenges were aggravated by the unsuitability of
online textual discussions for discussing changes to software
behavior. Design proposals were lost among a sea of critiques,
leading to redundancy and reiteration. Design critiques were
detached from the ideas themselves, making it difficult to see on
what evidence, if any, consensus was based. Also, because of the
sequential nature of comments, the more a discussion involved
user feedback, the harder it was to find it.

Before describing these results and their implications in detail, we
first describe prior work and our methodology. We then discuss the
implications of our results for distributed software teams.

2. RELATED WORK
There is considerable prior work on software engineering practice
[1,4,13,15], computer-mediated discourse [14,24], and discussion
of various forms [10,17,20], but little work focusing on discussion
in distributed software teams. Recent work on a corpus of Mozilla
bug reports briefly considered contentious reports, finding that they
were rife with misunderstandings about the intent behind bug report
discussion [16]. Twidale and Nichols describe a study similar to
ours, finding a lack of usability expertise and difficulties in
describing user interaction with text, but limited their investigations
to usability discussions and focused on an ad hoc, exploratory
sample of reports [25]. An interview study with 25 software
designers found that developers are rational when choosing one of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

iConference 2011, February 8-11, 2011, Seattle, WA, USA
Copyright © 2011 ACM 978-1-4503-0121-3/11/02…$10.00

106 Most up-to-date version: 06/02/2021

several options but less so when iterating on a single option [27].
Another related study investigated “decision episodes" in emails
and forums of six OSS projects, finding that most changes could be
done with one author, but decisions about impact beyond code
involved multiple contributors [20]. There is also considerable work
on contexts in which software design discussions occur. For
example, a study of information needs in collocated software teams
[15] showed that software developers regularly use instant
messaging, e-mail, and informal face to face conversation in order
to make design decisions with their team. Developers also discuss
design decisions in mailing lists [3], during code inspections [23],
and sites designed to facilitate collaboration between developers
and designers [2].
Studies of other aspects of bug reports have revealed findings about
design discussion. For example, in a study of software developers’
opinions about what makes “good” bug reports, Bettenburg et al.
[4] found that developers give preferential attention to known
reporters and that violating “netiquette,” such as opening rude or
sarcastic bugs, can influence the degree to which the bug gets fixed.
A study of bug reports found that the bug reports of collocated
teams contain only a small fraction of the key events a bug report’s
history and that team culture affects bug related activities [1]. There
is evidence, for example, that distance increases bug fixing time
because of increased communication requirements [9].
Outside of software design, there have been numerous studies of
design decision making, both computer-mediated and face to face.
For example, studies have also shown that computer-mediated
discussions can be more focused [24], but take more time, involve
more conflict, and have more difficultly leading to consensus
[14,24]. Other studies show that informal social interactions and
the awareness that arises from them, are crucial in overcoming
attribution errors (blaming a collaborator, rather than the
collaborator’s situation) [8]. Studies comparing online discussion
boards to face to face discussion show that discussants tend to form
more developed arguments in online meetings [19].
Other studies have focused on particular design contexts. For
instance, Friess investigated the extent to which novice interaction
designers use evidence to support their design decisions [11]. She
found that despite rigorous knowledge of user-centered design
theory, in practice, only about half of the designers’ claims were
based on evidence, and most of the evidence was speculative.
Mentis et al.’s study of group decision making in emergency
planning showed that newly formed groups focus on refining
particular ideas, whereas established groups first develop common
ground and shared values [21]. Kriplean et al. describes the policies
that structure collaboration in Wikipedia “talk pages” [17], finding
that conflicts escalate by starting with requests for comment, and if
necessary, requests for arbitration.
While studying online software design discussions is a new topic,
argument and critical discourse has a long history in other
disciplines. For example, the field of rhetoric seeks to inform how
people persuade through speech and writing. The earliest known
writing on the subject comes from Aristotle’s Rhetoric, who
claimed that there were three means of persuasion: establishing
one’s credibility, accounting for the emotional disposition of the
audience, and using inductive and deductive logic. In this writing
and those following it, scholars have named several types of
rhetorical devices that help one achieve Aristotle’s forms of
persuasion. Metaphor, for example, compares two things by
speaking of one in terms of the other (“this design is a ball of
mud”), where allusion is an informal reference to a famous person
or event (“this patch fails in Vista-like proportions”). There are
several more obscure rhetorical devices, such as sententia, which is

concluding with pithy wisdom (“I think the label is fine, but the
user is not like me.”), or exemplum, which is citing an illustrative
story (“When I last used the factory pattern, no one knew how to
instantiate. It was a disaster.”). More recent work on argumentation
[18] focuses on kinds of claims, such as fact-based evidence (which
comes from a source independent from the person making the
claim), non-evidence (circular reasoning), and pseudo-evidence
(speculation and hypothetical reasoning).
In sum, there is substantial work on argumentation and group
discussion in general, but little specifically about software design.
Our study lays a foundation for this understanding.

3. METHOD
To understand the structure and content of open bug report design
discussions, we gathered the complete set of closed reports from
three online software projects, sample the most “contentious” of
these reports, and then qualitatively analyze these reports for trends
in process, ideas, rationale, and decisions.
We obtained our data set from the Bugzilla repositories of three
online software projects: Firefox (a popular web browser), the
Linux kernel (an operating system kernel), and Facebook API (an
API for developing social networking applications). It is worth
noting that these projects are quite different in their organization.
Firefox is not only a large group of online contributors, but benefits
greatly from the Mozilla corporation, which has several collocated
developers in physical offices. Linux, like Firefox, is supported by
corporations, in addition to many remote contributors. Facebook
API is not an open source project, but does have an active
community of developers who use the API and submit change
requests to the open bug repository. Finally, in all of these
communities, developers are not the only commenters: testers,
designers, and users are known to contribute to these conversations.
Our goal in analyzing these reports was to understand design
discussions, but bug reports cover a much broader spectrum of
collaboration, including reproduction, code review, and repair [4].
In order to focus our analysis on discussion, we focused on reports
of problems that had been reproduced and decided upon, by
downloading only those marked as RESOLVED, VERIFIED, or CLOSED
and resolved as FIXED, INVALID, or WONTFIX. We only considered
reports available as well-formed XML from each project’s website
(a standard feature of each site’s Bugzilla repository).
Our next step was to select a subset of the reports to read and
analyze. We considered two approaches: sampling randomly and
reading discussions varying in length, or sampling only reports with
substantial discussion. We chose the latter, since our goal was to
understand argument, disagreement, and persuasion, which we
found was less common in more routine reports. Our first approach
to identifying contentious reports was to use a word count, but this
was biased by the predominance of error logs included in report
comments. Instead, we used a measure of “contentiousness” based
on the frequency of personal pronouns, counting occurrences of I,
you, we, they, and us, and the phrases IMO and IMHO (given their
prevalence in discussions). These words and phrases tend to
indicate social involvement in a discussion [22]. We then ranked the
reports by this measure, resulting in a power law distribution. We
then randomly sampled 100 reports from the top 300 reports, which
was the “elbow” of the power law curve. We chose 100 reports
because of the time required to codify its ~1 million words.
Descriptive statistics about the reports read appear in Table 1.
Firefox reports tended to be more contentious than reports in other
projects, and are therefore a larger proportion of our data.

107

To see the distribution of report topics, we classified the report titles
by the primary software quality referred to by the report author
(though most report discussions contained references to a variety of
software qualities). The results are shown in Figure 1. Functionality
dominated report topics (generally referring to unintended
behaviors), with usability improvements, requests for more user
flexibility, and enhancements making a large proportion of other
reports. The difference between “bugs” and “requests” was not
always clear, as for many software qualities, this was a matter of
opinion and prior intent by project leaders.
To analyze bug report comments, we used an inductive analysis
approach [12], formulating our descriptions of the data in a
systematic manner. We began by randomly assigning half of the
reports to the 1st author and the remaining half to the 2nd, and first
reading the reports in detail, trying to understand the discussion
around design ideas, support for design ideas, and their merits.
Most of the bugs we read contained significant discussion about
bug reproduction, followed by discussion about potential fixes and
their merits. Once we had achieved this more global understanding,
we then focused on conceiving and iteratively refining a set of
codes, which we then used to more rigorously classify the data.
This process led to a list of potential concepts and structures, which
we then distilled into the codes listed in Table 2. With these codes
established, the two authors then read half of the sample
independently, applying the six codes to each utterance in each
report comment. We assessed agreement informally throughout.
To demonstrate how we classified statements, consider the
abbreviated design discussion in Figure 2. By reading the left
column, containing codes from Table 2, one can see the general
progression from discussion of scope and ideas to rationale and
decision. Such analyses form the basis of our results.

!"#$%&'

()#*)
"%!#"'+)
"%'",%-%

.

()#*)
"%!#"'+)

"%/.)

()#*)
�%1'+)

"%/.

"%!#"')"%+#234#1+"%!#"')"%+#234#1+"%!#"')"%+#234#1+ 50,1)6)0/789)0%.,/1)!")"%!#"'+)"%/.50,1)6)0/789)0%.,/1)!")"%!#"'+)"%/.50,1)6)0/789)0%.,/1)!")"%!#"'+)"%/.

!"#$%&'

()#*)
"%!#"'+)
"%'",%-%

.

()#*)
"%!#"'+)

"%/.)

()#*)
�%1'+)

"%/. !"#$%!& '(")*!+ *!+,& !"#$%%&'() !"
#$%%&'(&*)

+,*-.$'"/+-0)1

#$%&"!' ()*+,- .(((*(,- / (- +. 0-121+3/4*1/- 03121.54*1(- 0(1213*3-34*1,+/

6$78'19&%7&: .;. (3 /3; ,) . 0;121(.+4*1,5 87<=<$:<>:& 0(121(*,/,4*1(+(

#<?&>!!91@AB (*.)3 - +/; () / 03)1213(34*1-) 051213+4*111; 03121,)/4*1((;

'#'/2 :;9<=> :?? :<9;=@ :: :> >< 5>)6)@<A89))A; 5<)6)B;89):A 5:)6)<9<><89);@A)

Table 1. For each repository, the number of reports downloaded and read, the number of
comments read, the frequency of report resolution types, and descriptive statistics about the

number of comments, number of commenters, and report duration. Figure 1. Qualities referred to
in report titles.

"87?C$!7<:$CD

8E<>$:$CD

":&'$>$:$CD

&7F<7?&G&7C

G<$7C<$7<>$:$CD

H&%"!%G<7?&

E&?8%$CD

?%<EF

?!7E$EC&7?D

I!?8G&7C<C$!7

)J ()J 3)J 5)J

&#.% .%C1,4#1 "%!"%+%1'/4-%)D3#'%)*"#0)+/0!2%
E?!H& I&K7$7L1MF<C1

?<71>&1?F<7L&I

7&$CF&%1!"1CF&E&1>8LE1$E1<>!8C1&I$N7L1O1

&I$N7L1$E1>8L13++3++P

$I&< <1I&E?%$HN!71!"1

<1?F<7L&

Q&<::D1CF&%&17&&IE1C!1>&131G&?F<7$EGE1"!%1

E$C&1$?!7EP1R7&1"!%1>!!9G<%9E1<7I1!7&1"!%1

H<L&E1=EC&I1PPPCF<C1<%&17!C1$71>!!9G<%9EP

I$G&7E$!7 "<?C!%E1<S&?N7L1

<1?F<7L&

T!1MF<C1<%&1CF&1I$S&%&7?&E1>&CM&&71UVVA*1

UVVAT1<7I1#VA1CF<C1<18E&%1EF!8:I1?<%&1

<>!8CW

%<N!7<:& L%!87IE1"!%1<1

H<%N?8:<%1

!H7!7

B1CF$791CF<C1G<9$7L1H<%C1!"1CF&1>!!9G<%9E1

:$EN7L1ID7<G$?1MF$:&1:&<=$7L1CF&1C&'C1EC<N?1

$E1:&EE1X?:&<7Y1"%!G1<1ZB1H&%EH&?N=&P

H%!?&EE ?!GG&7CE1

<>!8C1CF&1

I$E?8EE$!7

[&1EF!8:I1F<=&1<1?:&<%1%<N!7<:&1>&"!%&1

:<D$7L1F<7IE1!71?!I&P1[&1EF!8:I17!C1>&1

&'H&%$G&7N7L1M$CF!8C1<1"<:E$K<>:&1

FDH!CF&E$E*1$"17!C1<1CF&!%DP

I&?E!7 &=&7C1G<%9$7L1

CF&1?:!E$7L1!"1<1

%&H!%C

0PPP41CF$E1>8L1F<E1>&?!G&1CF&1\B1:!EC1GD1

>!!9G<%9E]1I8GH$7L1L%!87I*1B]G1L!$7L1C!1

%&E!:=&1$C1<E1B^_@6B`P

Table 2. Codes used to classify utterances in the comments,
with definitions and representative quotes.

NC:& @a&%1EF8b7L1I!M71AF!&7$'1CF&1"<=$?!71"!%1CF&1M&>E$C&1

MMMPF&:$'?!GG87$CDP!%L1$E17!1:!7L&%1H%&E&7C1PPP

E?!H& %&7<G$7L1CF$E1>8L1C!1&#-%")/22)*/-,)2#++/E%PPP

%<N!7<:&

PPP$C1M!8:I1>&187I&%EC<7I<>:&1C!1F<=&1CF$E1F<HH&71MF&71CF&1

>%!ME&%1?%<EF&E*1&C?*1>8C1c8EC1EF8b7L1I!M71AF!&7$'1

7!%G<::D1<7I1CF&71%&EC<%N7L1$C1?<8E&E1CF&1"<=$?!7E1C!1>&1:!EC1

E!G&NG&E1<E1M&::P1FG,+),+)03&G)0#"%)*"3+'"/41EP
$I&< [!8:I7\C1$C1>&1>&d&%1C!1+'#"%)*/-,+)+%!%"/'2H10E$?41PPP1W

%<N!7<:& IGH),+)'G,+)J3E)#*)K0,1#")+%-%",'HKL1M)C1.),')-%"H)/11#H,1EN1
T$7?&1$C\E1?!GH:&C&:D1%&H%!I8?$>:&*1<HH:$&E1C!1<::17&M1

=&%E$!7E1<7I1F<E15)1=!C&EPPP$C\E1$GH!%C<7?&1EF!8:I1L!1"<%18HP1

H%!?&EE 0'-%&4*1CF&1+%-%",'H)"/41E),+)1#')/)0%/+3"%0%1')#*)
!",#",'HP11T&=&%$CD1%&e&?CE1F!M1G8?F1CF$E1<S&?CE1!H&%<N!71

!%1H&%"!%G<7?&1!"1CF&1H%!L%<GP11T&&1FdHfggPPP

H%!?&EE B1I$I7\C197!M1CF<CP1O#P)�%)!",#",'H),+1K')+%'1CF&7W
H%!?&EE Q",#",'H),+1K')"%/22H)3+%.1MCF71#$%&>$%I*1C<%L&CE1<%&PPP

%<N!7<:&

VF&1G<71EE8&1B1F<=&1PPP1$E1CF<C1MF&71B1!H&71CF&1>!!9G<%9E1

G&78*1#$%&>$%I1<d&GHCE1C!1%&I!M7:!<I1CF&1"<=$?!71<7I1

CF8E1/+R+)0%)*#")3+%"1/0%)/1.)!/++P#".)*#")'G,+)+,'%9)%-%1)
PG%1)M).#1K'),1'%1.)'#)E#)'#)'G/')+,'%P

E?!H&

%<N!7<:&

MST9)'G,+),+)/)+,'%)J3EP11$C1EF!8:I17!C1>&1E&%=$7L18H1"<=$?!7E1
!=&%1TT6P11MF<C\E1CF&1H!$7CW1PPP1$"1M&1EC!%&1$C1!71I$E9*1CF&71P%)
/"%)-,#2/41E)#3")!#2,&H)#*)1#')+'#",1E)U+%1+,4-%U)./'/)!71
I$E91M$CF!8C1&'H:$?$C18E&%1?!7E&7CP

E?!H&

$I&<

BC\E17!C1<1>8L1$71CF&1E$C&10'-%&41O1"<=$?!7E1:$=&1<C1CF&1%!!C1!"1
CF&1I!G<$71>D1I&"<8:C1PPP1B1M!7I&%1$"1$C\E1M!%CF1?%&<N7L1<1

E&H<%<C&*12%++)-#2/42%)&/&G,1E)0%&G/1,+01"!%1"<=$?!7EPPP

E?!H&

%<N!7<:&

PPP1PG#)0#"!G%.)'G,+)'#)J%)$3+')OFFQVW11CF&1h<a&%1
EF8CI!M7h1:!EE1?<E&1/2+#)G/!!%1+),1)&/+%+1!"1$GH%!H&%1

EF8CI!M7Eg?%<EF&E1MF&%&1M&1e8EF1CF&1?<?F&1?!GH:&C&:DP

I$G&7E$!7 "<=$?!71"&C?F$7L1$E1<71iT1F<?9PPPIG/').#%+)MW).#L

$I&<

Rj*1B1E&&G1C!1F<=&1L!d&71&=&%D!7&1&'?$C&Ik1fl1A&%F<HE1<::1!"1

CF&E&1H%!>:&GE1M!8:I1>&1>&EC1E!:=&I18E$7L1CF&1C&?F7$m8&1!"1

+/-,1E)/)./'/X)YZ[),1)J##R0/"R+NG'02P

I$G&7E$!7

$I&<

nV[*1$1I!7\C197!M1CF<C1CF&1I<C<f1E!:8N!71$E1E!1$I&<:P11MF<C)
G/!!%1+)PG%1)'G%)+,'%)&G/1E%+),'+)*/-,W11$"1M&1L!1M$CF1<1
E!:8N!71CF<C1P/2R+)'G%)2,+')#*)J##R0/"R+1PPP

$I&<

%<N!7<:&

BC1M!8:I1>&1<18E&"8:1C!1M%$C&1/1)%7'%1+,#1)PG,&G)+&/1+)D!8%)
>!!9G<%9E1:!!9$7L1"!%18HI<C&I1$?!7E*1>8C1B1M!8:I7\C18E&1$CP11

MK-%)E#')/)*%P)G31."%.)J##R0/"R+)\)MK0)+3"%)MK0)1#')/2#1%P
%<N!7<:& [&::*1CF&1"<=$?!71F<E1<71ZQ6*1PG%"%/+)'G%)4'2%)#*)'G%)!/E%)

.#%+)1#'PPPB1I!7\C1&'<?C:D1E&&1CF&1H<%<::&:E1>&CM&&71CF&1CM!P
%<N!7<:& PPPGD1H!$7C1<>!8C1$C1>&$7L1I$o?8:C1C!18HI<C&1I<C<f1ZQ6E1$E1

/!!/"%1'2H)0##')+,1&%)5!"#$8)+/H+)G%)G/+)/)!/'&Gk1pOl
%<N!7<:&

$I&<

PPPD!81<%&1"!?8E&I1!71CF&1$GH:&G&7C<N!7*11#')PG/')'G%)
3+%")+%%+P11VF&1h:&<EC1E8%H%E7L1>&F<=$!%h1F&%&1qBiURl1$E1

MF&7)D!8)I%<L1CF&1:$d:&1"<=$?!71"%!G1CF&1<II%&EE1><%1C!1

D!8%1>!!9G<%9E1q!%1MF<C&=&%l*1'G%)4'2%)/1.),)E#)P,'G),')
/1.)+4&R)*#"%-%")3142)H#3)&G/1E%),'PPP

1I&?E!7 Q/'&G)P%1'),11"!%1>8L1(-,3/+1CF<C1EF!8:I1K'1CF$EP
H%!?&EE BC1$E1K'&IP11]#)1#')&G/1E%)'G%)+'/'3+N11@::1%&G<$7$7L1$EE8&E1

<%&1>&$7L1<II%&EE&I1$71!CF&%1>8LEP

Figure 2. Selected discussion of a Mozilla bug report, tagged
with codes from Table 2. Statements in bold are related to

codes on the left; rows separate comments.

108

4. RESULTS
Overall, the design discussions in our sample varied widely in topic
and exhibited a range of perspectives. In this section, we discuss the
trends in the structure and content of these discussions by
considering each of the six concepts from the coding scheme listed
in Table 2. In each section, we cite representative quotes from our
sample, using []’s to represent redacted names and elision.

4.1. Establishing Scope
One significant observation from our analyses was the importance
of establishing a scope for discussion. Bug reports are primarily
work items and not places for discussion, and so commenters often
needed to specify types of changes to the software might be
considered in the report.
We observed commenters establish two kinds of scope. One was
under what time horizon the change would be completed (generally
the current or next release). Commenters acknowledged the
relevance or importance of related design ideas, but gave priority to
certain fixes and deemed others as “off-limits,” because such ideas
were too difficult to implement given the time or technical
constraints, required more deliberation, or were not backed up by
enough evidence. For example:

[PPP41:!!9E1:$9&1<1 8E&"8:1<7I1G&<7$7L"8:1%&=E!71C!1CF&16!?<C$!71n<%10PPP41R71

CF&1 !CF&%1F<7I*1&V6`r(1<7I1&V6`r31F$LF:$LFC$7L1<%&1<%L8<>:D1H%!>:&G<C$?1

<7COHFEF$7L1ZB1H%!H!E<:E1<7I1?<71&<E$:D1>&1?!7E$I&%&I1!8C1!"1E?!H&P

n&CC&%1 H%&E&7C<C$!71 !"1 ZQB1&:&G&7CE1 M!8:I1 F&:H1 FCCH*1 >8C1 CF!E&1 M&%&1

EF!8C&I1I!M71$71<7!CF&%1>8LP1 1[&1 7&&I1C!1 %&=EC1 CF<C1 <7I1L<CF&%1 F<%I1

&=$I&7?&1C!1>&CC&%1 E8HH!%C1 CF<C1 CDH&1 !"1H%&E&7C<C$!7*1>8C1 CF<C\E1M<D1M<D1

!8C1!"1E?!H&1"!%1CF$E1%&:&<E&P11

Another aspect of scope was the generality of the proposed
solution, which ranged from changes of small scope such as hacks
and workarounds to full redesigns of a feature. Commenters’
preference was mostly for local, iterative changes, even if a more
general fix would enable features or be more elegant. These
iterative mindset was driven largely by technical and scheduling
dependencies:
0PPP41 CF&%&\E17!1E!:8C$!71 C!1 CF$E1 H%!>:&G1 <C1 CF&1 G!G&7CP1Z:C$G<C&:D1 CF&1

H%&CCDH%$7C1<HH%!<?F1G<9&E1G!%&1E&7E&1C!1G&*1E$7?&1$C1I!&E7\C1I$EC8%>1CF&1

<HH<%&7C1`Ri1 <7I1G!%&1?:&<7:D1E&H<%<C&E1?F%!G&1"%!G1?!7C&7CP1n8C1M&1

7&&I1 CF&1 E&?8%$CD1G!I&:1 C!1?F<7L&1 "$%EC*1 <7I1 <:CF!8LF1 "!:9E1 F<=&1 >&&71

C<:9$7L1<>!8C1I!$7L1c8EC1CF<C*1$C\E17!C1L!$7L1C!1F<HH&71>&"!%&1(P+10PPP4

Scope also implicitly constrained what ideas, and what justification
for ideas, were considered off-topic:
B1F<I1 CF!8LF0C4*1 H%!><>:D1M%!7L:D*1 CF<C1 CF$E1M<E1 H<%C1 !"1 CF&1 E<G&1 s>8L]1

>&$7L1I$E?8EE&I1F&%&P

Nevertheless, as we discuss later, commenters did comment out of
scope and other commenters worked hard to keep comments within
the established boundaries.

4.2. Proposing Ideas
Commenters design ideas are what usually sparked significant
discussion. For example:
B1M!8:I1E8LL&EC1 CF<C1 CF&1 !%I&%1 EF!8:I17!C1>&1 I&C&%G$7&I1>D1MF<C1 M<E1

_BTBVt`*1 >8C1 >D1MF<C1M<E1VuAt 1̀ $7C!1CF&1 :!?<C$!71><%1 !%1 Tt6tvVt 1̀ "%!G1

CF&1I%!H1I!M71!"1CF&1:!?<C$!71><%P

This idea was a revision to the Firefox ranking of auto-completed
URLs. From the perspective of design ideas, discussions tended to
gravitate around small deviations from the current design along
different qualities. For example, from the same report as above:
B1 E8LL&EC1 <71!HC$!71 $71 CF&1 H%&"&%&7?&E1 0PPP41 MF$?F1M!8:I1 I&?$I&*1 MF$?F1

E!%C$7L1 <:L!%$CFG1 EF!8:I1 >&1 8E&IP1VF&%&1 <%&1 E&=&%<:1 H!EE$>$:C&E*1 <::1 !"1

CF&G1M<7C&I1>D1E!G&!7&1&:E&P

This idea focuses more on user flexibility, whereas another focused
on consistency with other browsers:
VF<C1:$EC1!8LFC1C!1>&1E!%C&I1>D1:<EC1=EC&I*1c8EC1:$9&1$71BtP

Like the examples above, most discussions were trajectories
through the design space of a feature, with debate about the impact
of various ideas on different software qualities. Some ideas were
workarounds, in which the system did not change at all, but the
inputs to the system changed considerably. In other cases, there was
justification to leave the system unchanged. There were frequently
proposals for major redesigns of features, but that were rarely
considered unless part of the larger plans for a release.
Ideas were generally described with words, except when they
involved user interfaces. These ideas
genera l ly moved f rom verbal
descriptions, as in the above quotes, to
representations with more structure,
such as ASCII mockups as in Figure 3,
to more formal photoshop sketches,
and eventually a code patch. All ideas
were iterated, especially code, which
was frequently reviewed.

4.3. Identifying Design Dimensions
Throughout discussions, commenters raised a number of questions
to help understand the relationship between different parts of the
software, as well as the behavior and expectations of people. In our
analyses, we viewed these questions as dimensions of a design
space, since the subjects of commenters’ questions were aspects of
the software or users that had the potential to vary and interact. For
example, some posed questions about the behavior of users:
`!&E1CF&18E&%1&'H&?C1CF&1"<=$?!71C!1%&G<$71EC!%&I*1!%1C!1>&18HI<C&I1MF&71

CF&1E$C&1$?!71?F<7L&EW

@%&1E&?8%$CDOE<==D1H&!H:&1L!$7L1C!1L&C1HF$EF&IW

?<71M&1 L&C1 <M<D1 M$CF1 F<=$7L1 ZB1 CF<C]E1 !7:D1 =E>:&1 C!1 H&!H:&1 MF!1 ?<71

?:&<%:D1IEC7L8$EF1%&I1"%!G1>:<?9W

These questions refer to dimensions such as user expectations, the
degree to which security experts notice security problems, and the
vision capabilities of a user base. Similarly, commenters identified
properties of the software:
B1I!7]C197!M1!""F<7I1$"1CF$E1M!8:I1<""&?C1CF&1E:!M1EC<%C8HP

`!&E1<7D!7&1 F<=&1 <7D1 $I&<1MF<C1CF&1 &""&?C1!"1 CF&1 I!8>:&I1&7C%$&E1$71CF&1

%&L$EC%D1M$::1>&W

M$::1"$'$7L1CF$E1>8L1!%1"$'$7L1>8L1,-;)51?<8E&1G!%&1H%!>:&GE10PPP4W

These questions referred to dimensions such as how much
performance depends on a particular feature, how an operating
system deals with a particular form of data, and the likelihood of
dependencies between one feature and other.
Commenters sought to identify these dimensions usually in order to
establish constraints on design choices, or to further inform the
group’s understanding of certain software qualities, such as the
usability or performance of a particular design. Commenters did not
always get answers to these questions, but these questions did
compel commenters to reply with additional questions.

4.4. Defending Claims with Rationale
The most dominant type of comment in design discussions was
commenters’ rationale for their design ideas. In our analysis, we
identified two fundamental aspects of rationale: the (1) software
quality to which it appealed and (2) a rhetorical device to reinforce
the quality’s importance. Overall, when arguing for a particular
idea, commenters tended to support a single quality at a time (rather

!!!
"#$%&'(&#)'*+############################,"

"#.*/&012#*(#3%&'/*45#617/#8*(+1/69#+8*(##"
"#:'6#+';&#'#0&<#:*47+&(##################"
"###"
"#=""""""""""""!!!!!!!!!!!!!!!!!!!!!!!!!>#"
"###"

Figure 3. An ASCII art
design idea, from a

Mozilla report.

109

than discuss tradeoffs between multiple qualities) and commenters
provided little evidence for their quality claims.
To illustrate these two aspects, consider this example, which uses
hyperbole to argue for visibility:

T12H) JH) FDH&%>!:&1 &7:<%L$7L1 CF&1 H<I:!?91 7!C$!71 $7C!1 <1 G!%&1 ?!GH:&C&1

E&?8%$CD1I$EH:<D1?<71CF$E)J%)0/.%)#J-,#3+)=$E$>$:$CD1PPP

Because there was considerable variety in the types of qualities and
rhetoric that commenters stated, we subdivided the rationale code in
Table 2 into specific types of software qualities and rhetorical
devices employed by commenters. To do this, both authors
independently scanned statements tagged with the rationale code
and generated labels of the types of qualities and devices used, then
merged their lists and settled upon a small set of codes. Each author
then applied the codes to each rationale statement in the sample.
With regard to software qualities, there was a bimodal distribution
of frequencies, the most common of which appear in Table 3. These
include consistency, annoyance, and flexibility, among others
(whereas the infrequent qualities included, in decreasing frequency,
functionality, simplicity, maintainability, guessability, performance,
utility, aesthetics, reliability and bloat). Obviously, this ranking is
highly influenced by our sampling approach: these qualities could
be intrinsically contentious or the projects we studied may place a
high importance on these qualities. Interestingly, the list is largely
devoid of internal software qualities such as maintainability and
code aesthetics, suggesting that commenters were more concerned

with implications for user experience than for technical constraints,
at least in contentious discussions.
A more revealing aspect of commenters’ rationale were the
rhetorical devices that they used to persuade each other. As with the
software qualities, the frequencies of different devices exhibited a
bimodal distribution, the most common of which appear in Table 4.
The most popular rhetorical devices were anecdote, speculation,
generalization, and hyperbole (whereas the infrequent devices, in
decreasing frequency, included hypothetical, insult, priority,
statistics, policy, and sententia). With regard to anecdotes, it was
common for commenters to tell stories about friends or family in
order to illustrate some point of view, then generalize this story to a
larger population. It was also common for commenters to use the
word “user” in an elastic way [7], describing users in whatever way
would support the commenters’ argument:
w!&1 8E&%1M!7]C1 F<=&1 CF&1 97!M:&IL&*1 7!%1 CF&1 7&&I1 C!1 <?m8$%&1 $C*1 <7I1 $E1

87:$9&:D1 C!1 EF!!C1 F$GE&:"1 $71 CF&1 "!!C1 8E$7L1 <1 "&<C8%&1 F&1 I!&E7]C1 97!M1

&'$ECEP

ZE&%E1MF!1I!7]C197!M1<>!8C1ZQ6E1I!7]C1M%$C&1UVi610PPP4

Most other forms of argument were non-evidence and pseudo-
evidence [18], devoid of objective justification (though not
necessarily wrong). The comments above for example, are
generalizations with a certain face validity, but no objective
verification. Connotation and hyperbole were also popular forms of
non-evidence:

D3/2,'H ("%!"%+%1'/4-%)D3#'%)*"#0)+/0!2%
?!7E$EC&7?D (/) #!%1D&<%E1<7I1D&<%E1J/&R+!/&%)G/+)J%%1)^'G%^)P/H)#*)E#,1E)J/&R),1)G,+'#"HP1A:&<E&*1H:&<E&*1H:&<E&*1?F<7L$7L1CF&1>&F<=$!%1!"1

><?9EH<?&1F<E*1$71GD1!H$7$!7*1?%$HH:&I1CF&1>%!ME&%10PPP41`<C<1:!EE1$E1<17!7O<%L8G&7CP

e&'$>$:$CD (5(BiR17!C1<1L%&<C18E<>$:$CD1&'H&%$&7?&P1B1>&:$&=&1/)3+%")+G#32.)G/-%)'G%)#!4#11C!1!H&71CF&17&M1C<>E1%$LFC1MF&%&1F&1$E1<C1CF<C1H!$7C1
0PPP4

<77!D<7?& .- nD1EC<N7L1CF<C1CF$E1K:&1$E1<1H<%N?8:<%1CDH&*1CF&18E&%\E1%&<E!7<>:&1m8&EN!71$E*1hVF&71MFD1I!7\C1D!81F<7I:&1$C1:$9&1!7&Wh11Z7N:1i!x$::<1

?<71I!1<1>&d&%1c!>1!"1<7EM&%$7L1CF<C1m8&EN!710PPP413+%")*"3+'"/4#1)P,22)օ%P
8E&%1&o?$&7?D -+ [F&71!H&7$7L1<17&M1C<>*11#J#.H)P/1'+)'#)J%)*#"&%.)'#)+&"#22)!#'%14/22H).#_%1+)#*)'/J+)/P/H1"%!G1CF&1?8%%&7C1H!E$N!7gC<>1<::1CF&1

M<D1C!1CF&1=&%D1"<%1%$LFC1&7I1!"1CF&1:$7&1!"1!H&71C<>EP1@E1<1I&"<8:C1>&F<=$!%*1CF<C]E1c8EC1<>E8%I1<7I17!C1c8EC1<1:$d:&1"%8EC%<N7LP

E&?8%$CD -) [&1EF!8:I1!7:D1$GH!E&1CF$E1E&?8%$CD1CF&!%D1!71CF&1[&>1<C1:<%L&1,*)P%K"%)+3"%),')+4'3'%+)/)&2%/")+%&3",'H),0!"#-%0%1'*1MF$?F1M&1
I&K7$C&:D1F<=&17!1?!7E&7E8E1!7P1B"1M&1G8EC1<%L8&1"%!G1<8CF!%$CD*1CF&1K7<:1M!%I1M$::17!C1?!G&1"%!G1CF&1ZB1I&E$L7&%EP

?:<%$CD /, B1CF$7918E$7L1yH%&"PE$7L8:<%p1!71CF!E&131?<E&E1$71H%&"E1$E17!C1<1L!!I1$I&<*1<E1CF&E&1<%&131!"151E&:&?C<>:&1I%!HOI!M71G&781!HN!7E1qCF8E1

?F!$?&E*17!C1E&b7LEl1!"1MF$?F1CF&15%I1$E1EN::1:&a1<E1$C1$EP1`!$7L1E!1M!8:I12##R)P%,".)#")%-%1)J%)*3+,1EN
=E>$:$CD /(VF&1CF$7L1B1:$9&I1<>!8C1CF&1RHN!7E1I$<:!L1M<E1CF<C1,')+G#P%.)&2%/"2H)/)130J%")#*)&G#,&%+)'G/')P%"%)/-/,2/J2%*17!C1F$II&71>D1<1

I%!HI!M7P1B1E!%C1!"1?%$7L&I1C!1F<=&1C!1EF!M1CF$E1C!1&=&%D!7&1CF&1K%EC1NG&P

"&<E$>$:$CD /(@a&%1<1:$d:&1G!%&1CF!8LFC*1+&"/'&G)`G/".a)/1.)"%!2/&%)P,'G)`1#')b'##b)G/".a)0PPP41M&1?<71?!>>:&1E!G&CF$7L1C!L&CF&%P

Table 3. Software qualities appearing > 45 times and frequencies and quotes for each. Bold indicates software qualities identified.

.%-,&% ("%!"%+%1'/4-%)D3#'%)*"#0)+/0!2%
<7&?I!C& (-/ #!%1&'<GH:&*1/)'%/&G%")/')'G%)G,EG)+&G##2)M)P%1')'#10PPP41?!8:I1>&1E&&71C!1I!1CF$7LE1CF<C*1M&::*1<%&1:!!9&I18H!71><I:D1>D1C&?F7$?<:1

H&!H:&P11#!%1!7&*1EF&1?!8:I1>&1E&&7178G&%!8E1NG&E1c8EC1?:$?9$7L1hRjh1!71<1I$<:!L*1<7I1EF!%C:D1<a&%1<E9$7L1MFD1CF$7L1M&%&7\C1M!%9$7LP

EH&?8:<N!7 ((, M)/0)!"%cH)+3"%)'G/'1CF&1=<EC1G<c!%$CD1!"18E&%E1M$::17!C197!M1!%1?<%&1MF<C1$E1$71CF&1E8>:$ECP

L&7&%<:$x<N!7 ((3 #!%1;;P;1H&%?&7C1!"1#$%&"!']E1$7EC<::&I1><E&*1'G%H)]T)dTF)efZW)/J#3')G/-,1E)0324!2%)-%"+,#1+1,1+'/22%.)+,.%)JH)+,.%P1B197!M1CF<C1Bt1
I!&E7]C1L$=&18E&%E1CF$E1!HN!7*1E!1C!1CF&1:<D1H&%E!710PPP41CF&D1M$::17!C1G$EE1CF&1<>$:$CD10PPP41>&?<8E&1CF&D1F<I17!1$I&<1D!81?!8:I1I!1CF<CP

FDH&%>!:& .- u!81G&7N!7&I1CF$E1>&"!%&1<7I1B1EN::1CF$791$C1$E1%<CF&%187<??&HC<>:&1C!1:&<=&1E8?F1<1?%$N?<:1>8L1$71%&:&<E&I1=&%E$!7EP1M')"%1.%"+)g,"%*#7)
:N7)"/'G%")/20#+')313+/J2%1O1B197!M1B1<G1&'<LL&%<N7L1<1>$C*1>8C1B1L8&EE1D!81L&C1CF&1H!$7CP

H%<LG<NEG -5 B\G17!C1=&%D1"!7I1!"1$C1&$CF&%*1>8C1$C\E1H%!><>:D1CF&1!7:D1M<D1M&1?<71I!1MF<C1CF$E1>8L1<E9E1"!%P1#%<79:D*1B\G1G8?F1"/'G%")1#')'/R%)'G,+)
h"/'G%")2/"E%i)",+R*1<7I1$7EC&<I1c8EC1?F<7L&1&'$EN7L18E&%E1<7I17&M18E&%E1!=&%1C!1E!G&CF$7L1E$G$:<%1C!1CF&1?8%%&7C1#$%&"!'1EC<%C1H<L&P

$GH<?C -(n8C1CF$E1EH<G$7&EE1CF$7L1$E1<?C8<::D1F8%N7L1H&!H:&1>D1>&$7L1>%!9&71!%1$GH&%"&?CP1M'),+),0!/&41E)0H)J3+,1%++)PG%1)&2,%1'+)P/1')'G%,")
0#1%H)J/&R1>&?<8E&1CF&$%1<HH1$E1>:!?9&I*1!%1MF&71B1?<7\C1EF!M1!S1<1?!!:1<HH1B1>8$:C1$71GD1H!%z!:$!1>&?<8E&1$C1F<E1>&&719$::&IP

:!L$? ,/ VF<C1$E1<1*/2+%)/1/2#EHP1@1>!!9G<%91G<7<L&%1G<D1F<=&1EG:<%$N&E1C!1<1K:&1G<7<L&%*1>8C1$71CF$E1?<E&1D!8%1<7<:!LD1$E1<71$7"!%G<:1

"<::<?D1"!%1CF$E1<%L8G&7CP1BC]E1<:E!1<71,E1#"/4#)%2%1&G,1>&?<8E&1$C1F<E17!CF$7L1C!1I!1M$CF1$GH:&G&7N7L1K7I1>!!9G<%91:$9&1^&CE?<H&1

,P'1I$IP
?!77!C<N!7 ,/ T&&GE1=&%D1,1'3,4-%1C!1G&P

C%<I&!S ,+ U$HH!?%<C&E]1$7EC%8?N!71$E1L!!I*1>8C1B1CF$791C!!1<>E!:8C&1"!%18EP1[&]=&1<:M<DE197!M7*1<7I1B1%&?<::1%&?&$=$7L1E<L&1L8$I<7?&1"%!G1D!81C!1

CF$E1&S&?C1fl*1CF<C1M&1E!G&NG&E1F<=&1C!1'/R%)+#0%)G/"0)'#)/)E,-%1)3+%)&/+%)'#),0!"#-%)#1%)'G/'j+)#*)E"%/'%")-/23%P
<8CF!%$CD 5- M1)!%"+#1)5!"#$8)+/,.)'#)0%)`,*)P%).#1j')J%2,%-%),1)'G%).%+,E1)P%)+G#32.1j')+G,!),'Na

Table 4. Rhetorical devices appearing > 30 times and frequencies and quotes for each. Bold indicates use of rhetorical device.

110

]%*,1,'%2H1<71/11#H/1&%P
Here, the commenter simply referred to the concept of annoyance
and let exaggeration play a persuasive role. Most uses of non-
evidence were characterized by a narrow view of design, appearing
to value only a single quality, as opposed to a more nuanced view
of design tradeoffs. The above devices were used primarily to
defend and critique ideas, whereas commenters relied on
pragmatism, logic, impact, and authority to build consensus and
resolve disagreement:
0B1M!8:I1 >&1 ?!7=$7?&I1>D41@71<%L8G&7C1 CF<C1I&G!7EC%<C&E1CF<C1 CF$E1 $E1<1

"&<C8%&1 CF<C1 M$::1 >&1 >&7&"$?$<:1 C!1 <1 G<c!%$CD1 !"1 8E&%E1 <7I1 c8EC1 <1 EG<::1

H&%?&7C<L&P1 0PPP41 B1M!7]C1 ?:!E&1 CF$E1M$CF!8C1 I$E?8EE$7L1 $C1M$CF1 !7&1 !"1!8%1

8E&%1&'H&%$&7?&1"!:9E1<E1M&::P

VF&1 "<?C1CF<C1 CF$E1>8L1 F<E1>&&71!H&71"!%1E$'1D&<%E1<7I1!7:D1 F<E1531=!C&E1

$7I$?<C&E1CF<C1$C]E17!C1<1>$L1$EE8&1"!%1G!EC1H&!H:&P

0PPP41 MF<C1 B1 H%!H!E&1 $E1 <1 H%<LG<C$?1 <7I1 E$GH:&1 M<D1 !"1 7!C1 >%&<9$7L1

><?9M<%IE1?!GH<C$>$:$CD10PPP4

A minority of commenters referred to tradeoffs and priorities,
raising the level of discussion from isolated design ideas to the
space of design ideas:
VF&D1 <::1G<CC&%PPP1B"1M&1 0G<9&1 CF&1 ?F<7L&4*1 M&1M$::1G<9&1 E&?8%$CD1&'H:!$CE1

&<E$&%*1 7!C1 F<%I&%*1 <7I1 M&1 M$::1 G<9&1 I$<L7!E$7L1 !CF&%1 %&<:OM!%:I1

H%!>:&GE1F<%I&%*17!C1&<E$&%P

T!G&C$G&E1F87?F&E*1$7C8C!7*1<7I1<&ECF&C$?E1<%&1 CF&1 %$LFC1M<D1C!1c8IL&1<1

?F<7L&*1 >8C1 $C1 I&H&7IE1 !71 MF<C1 CF&1 I!M7E$I&E1 <%&P1 B1 CF$791 CF&%&]E1 <1

"87I<G&7C<:1 I$E<L%&&G&7C1 !71 CF&1 :&=&:1 !"1 %$E91 ?F<7L&E1 C!1 CF&1

H%&E&7C<C$!71ZQBE1$7?8%P

Such comments were often viewed as didactic and unhelpful by
commenters supporting a particular design idea.

4.5. Moderating Process
While many discussions proceeded unmoderated, discussions
across all three projects often crossed community-defined
boundaries of acceptable content. In most cases, this occurred when
the alleged impact of the bug led to intense disagreement.
Commenters with authority or those that were willing to take lead
tried to control the process to maintain focus on how the report
should be resolved.
Some commenters expressed frustration, often marked by
hyperbole, over the lack of attention to a particular issue or the
whole bug itself:
VF&%&1$E1E!G&CF$7L1":<M&I1$71D!8%1G&CF!I!:!LD*1L8DEP1VF&%&1 c8EC1$EP1VF&%&1

<%&1 <C1 :&<EC13)1!%1G!%&1>8L1 %&H!%CE1!71 CF$E1$EE8&*1 G!EC1M$CF1<1 I!x&71!%1

G!%&1H&!H:&1?FG7L1$7P1[&1?<7\C1<::1>&1M%!7LP

Developers tried to appease the situation by providing timelines or
explaining the difficulty of devising a solution:
B187I&%EC<7I1CF&1 "%8EC%<C$!71<7I1M<7C1C!1%&<EE8%&1<::1!"1D!81CF<C1 $C1 $E1F$LF1

!71!8%1>8L1H%$!%$CD1:$ECP1VF&1E!:8C$!7E1<%&17!C1&'<?C:D1C%$=$<:1 E!1>&<%1M$CF18E1

MF$:&1M&1"$L8%&1$C1!8CP

Rj*1 ?<:G1I!M71&=&%D!7&P1U!M1G<7D1 C$G&E1I!1B1F<=&1 C!1E<D1 $CW1 BC\E1MF<C1

M&1 M<7C1 C!1 C%D1 !8C1 C!1EC<%C1 M$CFP1 VF<C1 $E1 7!C1 ?!I&1 "!%1 hM&\=&1 G<I&1 <1

I&?E!7h1!%1hD!8%1<%L8G&7CE1<::1E8?91<7I1M&\%&1L!$7L1C!1$L7!%&1CF&GhP

Other process-related comments were about moving unrelated
discussions elsewhere, because the scope of the conversation had
moved beyond the scope of the report. These included comments
on enhancement requests or new features that were not directly
relevant and added to the complexity of the report resolution:
[F$:&1 E!G&1 $7C&%&EC$7L1 HF$:!E!HF$?<:1 $I&<E1 F<=&1 >&&71>%!8LFC1 8HPPP*1 B\I1

:$9&1 C!1 H!$7C1 !8C1 CF<C1 $GH%!=&G&7CE*1 !=&%F<8:E*1 <7I1HF$:!E!HF$?<:1 $I&<:E1

EF!8:I1 >&1 G!=&I1 C!1 &$CF&%1 <1 I$E?8EE$!71 !71 CF&1 "!%8G*1 !%1 $7C!1 <71

&7F<7?&G&7CE1 &7C%D1 F&%&PPP1 VF$E1 CF%&<I1 $E1 7!1 :!7L&%1 %&:&=<7C1 C!1 CF&1

!%L7<:1E$C8<C$!7*1<7I1EF!8:I17!C1>&18E&I1<E1E8?FP

Commenters also tried to enforce etiquette to keep the discussion
on track. For example, in some cases the medium of the

conversation (a sequential list of comments) led to problems with
missing context:

[PPP41 >8C1 "%!G1F&%&1 !71!8C*1 ?<71M&1 %&"%<$71 "%!G1EH<GG$7L1 CF&1 >8L1M$CF1

G!%&1?!GG&7CE1<:!7L1CF&1:$7&E1!"1h$C1F<HH&7E1C!1G&hP1VF<C1$E1CF&1H8%H!E&1

!"1 CF&1 =!C$7L1 G&?F<7$EG1 $71 >8Lx$::<P1 A6t@Tt1 %&<I1 <1 >8L1 "8::D1 >&"!%&1

H!EC$7L1<17&M1?!GG&7C1C!1$C*1 <7I1!7:D1CF&71$"1CF&%&1 $E1$7"!%G<C$!71C!1<II*1

<7I1D!81<%&7\C1%&H&<C$7L1E!G&CF$7L1CF<C1$E1<:%&<ID1CF&%&P

In this example, this request was in the middle of hundreds of
comments and most commenters did not notice it.

4.6. Making Decisions
Given the results in the previous section, a key question is whether
any of rationale expressed by commenters influenced the actual
decisions made for each report. Did commenters’ arguments
influence whether a report was resolved? Did they influence how a
bug was fixed? Whose ideas were implemented and to what extent
did they incorporate the other commenters’ perspectives? In our
analysis, it became evident that there were three distinct decision
patterns, with differing levels of commenter influence. We
classified each report as one of the three.
The most common pattern (63% of reports) involved just
developers (where developers were considered anyone whose e-
mail addresses appeared in the assigned-to field of a bug report).
These began with a brief discussion around the functional design
for the change, which quickly led to consensus and the
implementation of a patch. The discussion in these reports then
focused on the design of the code for the patch. A key characteristic
of these reports was how little of the functional design space was
explored: these reports usually identified few alternative designs
and involved only minor tweaks to maintainability, aesthetics and
performance. Though developers would raise many other qualities
in these reviews, pragmatism and local, iterative changes dominated
decision making. Issues of impact and generality were deferred by
creating new bug reports to represent their concerns.
A different pattern (19% of reports), involved largely divergent
discussion and usually involved both developers and users. There
were two kinds of outcomes of these discussions. In a third of these,
a developer would end the discussion with a decree, sometimes
offering their rationale. When they did offer rationale, it was largely
based on pragmatism and impact (as in Table 4):
t=&7C8<::D1 E!G&!7&1 M$::1 M%$C&1 <71 &'C&7E$!71 C!1 <::!M1 CF$E*1 >8C1 CF&1

H&%?&7C<L&1 !"1 CF&1 8E&%1 H!H8:<C$!71 CF<C1 97!ME1 MF<C1 <HH:$?<C$!7g!?C&CO

EC%&<G1G&<7E1$E1EG<::P1_&%D1EG<::P

It was more common in the Facebook reports that developers would
explain the rationale for a change. Firefox developers were more
likely to state their decisions without rationale, while other
commenters tried to overturn the decision:
R=&%<::1 <71!8C%<L&!8E1I&=&:!HG&7C1 O1 $"1 CF&1 I&=&:!H&%qEl1 <%&1 E!1 $7E$EC&7C1

CF<C1 CF$E1 $E1 7!C1 CF&1 I&E$%&I1 >&F<=$!%1 qMF$?F1 B1I$E<L%&&1 O1 CF&%&1 $E1 M$I&1

<L%&&G&7C1 CF<C1 CF&%&1 EF!8:I1>&1 <1!7&O>8CC!71EF!%C?8C1C!1L!1\><?9\1 <7I*1

:$9&1$C1!%17!C*1n<?9EH<?&1F<E1&G&%L&I1C!1"$::1CF<C1%!:&l*1 CF&71CF&1>8L1 EF!8:I1

>&1G<%9&I1[R^V#B{P

The other two thirds of divergent discussions ended because some
independent change to the software made the discussion moot. For
example, there were many contentious discussions about features of
the Firefox location bar, most of which were made obsolete by a
new implementation that arrived over a year later:
0PPP41 6!?<C$!71 n<%1 <8C!G?!GH:&C&1 F<E1 >&&71 %&I&E$L7&I1 "%!G1 E?%<C?F1 $71

#$%&"!'1 5P1 BC1 8E&E1 <1 G8?F1 G!%&1 &:<>!%<C&1 E!%C$7L1 <:L!%$CFG1 <7I1 !%I&%1

=EC&I1$E1!7:D1!7&1!"1G<7D1?%$C$&%$<P

The third decision pattern we found (18% of reports) involved
convergent discussion, usually between developers and users,
which typically led to developers vetoing a proposed change. These

111

vetoes rarely came with rationale, but when they did, they usually
had to do with inconsistency with prior decisions, pragmatism, and
authority. In particular, there was frequent debate about
distinguishing between officially supported uses of the software and
unsupported appropriations of the software. To the idealists in these
discussions, there was an original intent to the design of the
software, and whether or not users found other uses for features,
developers ought to be free to change the system in ways consistent
with its original design. The opposite and more pragmatic
viewpoint was that regardless of the original intent, users are what
drive adoption of the software, and unexpected appropriations
should become supported.
On either side of these debates, uncovering the original intent of a
design was a crucial part of the discussion. For example, idealistic
commenters would find design documents or IRC conversations
between project leaders and use the rationale in these sources to
document officially supported uses. One debate took place in a
Facebook API report, in which users of the API were concerned
about a change to the spam detection algorithm, and its
reclassification of their Facebook app as spam, thus lowering their
ad revenue. Debate centered around the original intent of spam
detection algorithm and whether the redesign was consistent with it.
Overall, it was clear that the most powerful factors in decision
making were authority (of developers over users) and action
(writing a patch). Furthermore, developers usually used their power
to make pragmatic decisions that addressed the system in actual use
by users, rather than the ideal system sought by some commenters.
The only cases in which design decisions were influenced by design
discussion were in reports with a small number of developers, in
which they briefly discussed the functional design for a change.
One commenter summarized it nicely:
T&&GE1 :$9&1 CF$E1 $EE8&1 $E1 c8EC1 <1 G<CC&%1 !"1 I$""&%&7C1 H&%E!7<:1 !H$7$!7EP1

A&%E!7<:1 !H7!7E1 !"1 CF!E&1 MF!1 F<=&1 H!M&%1 C!1 "$'1 CF$E1 H%&=<$:*1 >D1

I&"7C$!7P

5. DISCUSSION
Our results indicate that the commenters in our sample were
passionate about making decisions that would positively impact
users overall, but that they often lacked the information necessary
to do this in an objective manner. The high reliance on anecdotes
and speculation and the rare discussion of tradeoffs and priorities is
consistent with prior work on argumentation [18,5], including user-
centered design [11]. However, our results also suggest that the lack
of evidence in these discussions was due more to the difficulty of
gathering data about users, than an inherent lack of rationality. In
this section, we discuss these results, their implications on our
understanding of software design, and their impact on the design of
computer-mediated design discussion tools.

5.1. Discussions as Design Space Exploration
Our primary question in this study was how are design decisions
discussed in open bug reports? Our results suggest that these
discussions are essentially explorations of design spaces, heavily
constrained by the scope of the report, the sequential medium of the
bug report comments, and the authority of its participants.
To illustrate this idea, consider Figure 4, which portrays the design
space for the discussion in Figure 2. The space is composed of
several dimensions (two of which are shown). In this figure, the
circle in the center is the current design of the system, and the
smaller points extending from this large circle are the proposed
changes to the system design, moving along different quality
dimensions. The discussions in our data essentially served to map
design spaces such as the one in Figure 4, but with words rather

than drawings. Moreover, rather
than the discussions serving a
deliberative purpose as they do in
other domains [26], explicitly
enumerating design alternatives,
design tradeoffs, and design
priorities, the discussions we
observed were ad hoc and
implicit in their consideration of
these aspects of the decision. A
minority of contributors alluded
to tradeoffs and priorities, but the
discussions rarely considered them explicitly. One possible
explanation for this is a lack of design experience on the part of
many of the commenters; as many of the commenters were testers
and users, rather than developers, this would not be surprising. An
alternative explanation supported by our data is that developers
attempted to suppress design debate, as the bug reports were not the
place to reconsider design decisions.

5.2. Pragmatism, Idealism, and Dependencies
One issue orthogonal to the level of deliberation in discussions
were commenters approaches to resolving design tradeoffs. In
particular, we observed that most debates revolved around the
conflicts between existing and future uses of the software and
deciding which would be supported. For instance, in one report,
commenters discussed whether to revise a preferences dialog, but
recognized that since users had learned the location and function of
a particular preference in the Firefox dialogs, future changes would
be risky, because any change could confuse existing users. Most of
the discussions dealt directly with these design conflicts, drawing
upon anecdote, pragmatism, and impact arguments to help separate
the intended uses of software unintended ones.
These decisions about intended use appear in a variety of other
design contexts. For example, when the dominant culture of a
software team is pragmatism, we would predict that early design
decisions are “sticky,” and later changes to a system tend to be
iterative rather than transformative, because of the risk and cost of
breaking user dependencies [6]. Alternatively, when decisions are
primarily based on ideals and policy, user dependencies are
frequently broken in order to preserve the underlying values of the
ideas. Take, for example, Apple, which is known to completely re-
implement APIs to innovate and ensure consistency, but at the
expense of dependencies that people have on legacy code.

5.3. Software Quality and Measurability
Our results show that underlying the ambiguity around design
tradeoffs and intended use were struggles to characterize a variety
of software qualities. In particular, our data show that commenters
referred frequently particular software qualities, but rarely to
evidence supporting their claims about these qualities. The result of
these differences are apparent when comparing measurable
qualities from immeasurable ones. For example, in Table 3, the
most frequently discussed qualities are qualities that are generally
difficult to assess and compare. In contrast, qualities such as
performance were rarely debated: either a revised algorithm was
faster or it was not. Moreover, we observed little explicit discussion
of which qualities had priority in the community; for example, in
the Mozilla discussions, we expected a particular focus on
flexibility, security, and openness, but did not observe these
qualities taking priority over other qualities. These findings suggest
that a critical part of supporting online software design discussions
is not encouraging explicit discussion of competing software
qualities, but articulating which take priority.

!"#$%&

'()*+#,!&

!%-%$("%./

.%!!&)#.(0.%&

+(+1*,2

3(.4&"1%&.*!"&

#'&5##46($4!

!0+4&'#$%)%$&7,0.&

/#7&+1(,2%&*"

!"#$%$&$'(

)
*"
+
$,
'-
%
$&
$'
(

Figure 4. Design ideas
discussed in Figure 2 along

two dimensions.

112

5.4. Limitations
Our study has several limitations. For example, because we read
only contentious reports, and we selected these reports based on a
certain notion of contentiousness, we may have overlooked other
types of reports with other forms of argumentation and process.
Furthermore, because we only read design discussions in bug
reports, and not mailing lists, internet relay chats (IRC), discussion
boards, and other venues, we cannot be sure that the form of
argument we observed in bug reports generalizes.
Our focus on Firefox, Linux, and the Facebook API may also have
biased our data. While these three represent a diverse sample,
organizational cultures with different conventions, etiquette and
forms of authority may influence design discussion. For example,
in more conventional corporate hierarchies, we might expect fewer
commenters but stronger social ties, leading to different forms of
persuasion and decision making.
There are also issues outside our sampling approach. For example,
we did not know the identities of the commenters in reports. We are
confident that not all of the commenters were developers (many
commenters stated so), and so it may be the case that certain types
of argumentation are more common in non-developer populations.
Also, we had to infer whether a commenter was a developer just
based on context, which may have been inaccurate. Furthermore,
these findings are not necessarily representative of decision-makers
in these developer communities. For example, perhaps the
developers making decisions about patches ignore contentious
reports and only accept those for which there is broad consensus.

6. CONCLUSION
Our results illustrate that in addition to the usual challenges of
understanding a design space and making tradeoffs between
competing qualities, contributors to open bug reports struggle with
a number of issues. The inability to measure many important
software qualities led to extensive use of anecdote, generalization,
and speculation. The fundamental choice between achieving
original design intents and adapting to user needs made bug reports
a hotbed of conflict between developers and users. Finally, temporal
presentation of discussion comments were inadequate for the
proposals and critiques that dominated discussion.
These findings have several implications. First, online discussion
tools should be redesigned to make proposals and critiques in
design discussions more explicit. Second, our results raise several
questions about the role of authority, prior intent, and the
measurability of software qualities in design discussion. These and
other issues are central to improving the quality of open software.

7. REFERENCES
[1] Aranda, J. and Venolia, G. (2009). The secret life of bugs: Going

past the errors and omissions in software repositories. Int’l Conf.
on Software Engineering (ICSE), 298-308.

[2] Bach, P.M. (2009). Design information sharing across multiple
knowledge systems in a FLOSS community. iConference.

[3] Barcellini, F., Detienne, F., Burkhardt, J.M., Sack, W. (2008). A
socio-cognitive analysis of online design discussions in an open
source software community. Interacting with Computers, 20,
141-165.

[4] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R. and
Zimmermann, T. (2008). What makes a good bug report?
Foundations of Software Engineering (FSE), 308-318.

[5] Canary D.J., Brossmann B.G., and Seibold D.R. (1987).
Argument structures in decision-making groups. Southern
Speech Communication Journal, 53(1), 18-37.

[6] Christensen, C.M. (2003). The innovator's dilemma. Harper
Collins.

[7] Cooper, A., Reimann, R. and Cronin, D. (2007). About face 3:
The essentials of interaction design. Wiley Pub.

[8] Cummings, J. and Kiesler, S. (2005). Collaborative research
across disciplinary and organizational boundaries. Social Studies
of Science, 35(5), 703-722.

[9] Espinosa, A., Kraut, R., Slaughter, S., Lerch, J., Herbsleb, J. and
Mockus, A. (2002). Shared mental models, familiarity, and
coordination: A multi-method study of distributed software
teams. Int’l Conf. on Information Systems, 425-433.

[10] Farnham, S., Chesley, H. R., McGhee, D. E., Kawal, R., and
Landau, J. (2000). Structured online interactions: improving the
decision-making of small discussion groups. Computer-
Supported Cooperative Work (CSCW), 299-308.

[11] Friess, E. (2008). Defending design decisions with usability
evidence: A case study. ACM Conf. on Human Factors in
Computing Systems (CHI), 2009-2016.

[12] Glaser, B. G. (1992). Emergence vs forcing : Basics of grounded
theory analysis. Mill Valley, CA, Sociology Press.

[13] Gutwin, C., Penner, R. and Schneider, K. (2004). Group
awareness in distributed software development. Computer
Supported Cooperative Work (CSCW), 72-81.

[14] Hiltz, S., Johnson, K., and Turoff, M. (1986). Experiments in
group decision making: communication process and outcome in
face-to-face versus computerized conferences. Human
Communication Research, 13, 225- 252, 1986.

[15] Ko, A. J., DeLine, R. and Venolia, G. (2007). Information needs
in collocated software development teams. Int’l Conf. on
Software Engineering (ICSE), 344-353.

[16] Ko, A.J. and Chilana, P. (2010). How power users help and
hinder open bug reporting. ACM Conference on Human Factors
in Computing Systems (CHI), Atlanta, GA, USA, to appear.

[17] Kriplean, T., Beschastnikh, I., McDonald, D. W. and Golder, S.
A. (2007). Community, consensus, coercion, control: CS*W or
how policy mediates mass participation. ACM Conference on
Supporting Group Work (GROUP), 167-176.

[18] Kuhn, D. (1991). The skills of argument. Cambridge U. Press.
[19] Lemus, D.R., Seibold, D.R., Flanagin A.J., Metzger M.J.

(2006). Argument and decision making in computer-mediated
groups. Journal of Communication, 54(2), 302-320.

[20] Li, Q., Heckman, R., Allen, E., Crowston, K., Eseryel, U.,
Howison, J., and Wiggins, A. (2008). Asynchronous decision-
making in distributed teams. Computer Supported Cooperative
Work (CSCW), San Diego, CA.

[21] Mentis, H.M., Bach, P. M., Hoffman, B., Rosson, M.B., and
Carroll, J.M. (2009). Development of decision rationale in
complex group decision making. ACM Conf. on Human Factors
in Computing (CHI).

[22] Pennebaker J.W., Mehl M.R. and Niederhoffer K.G. (2003).
Psychological aspects of natural language use: Our words, our
selves. Annual Review of Psychology, 54(1), 547-577.

[23] Seaman, C. B. and Basili, V. R. (1998). Communication and
organization: An empirical study of discussion in inspection
meetings. IEEE Trans. on Soft. Engineering, 244(7), 559-572.

[24] Straus, S. G., McGrath, J. (1994) Does the medium matter? The
interaction of task type and technology on group performance
and member reactions. J. of Applied Psychology, 79, 87-97.

[25] Twidale, M.B. and Nichols D.M. (2005). Exploring usability
discussions in open source development. HICSS.

[26] Ullman, D.G. (2009). The mechanical design process, McGraw
Hill.

[27] Zannier, C., Chiasson, M., & Maurer, F. (2007). A model of
design decision making based on empirical results of interviews
with software designers. Information and Software Technology,
49(6), 637-653.

113

