
4

Extracting and Answering Why and Why Not
Questions about Java Program Output

AMY J. KO
University of Washington, Seattle
and
BRAD A. MYERS
Carnegie Mellon University, Pittsburgh

When software developers want to understand the reason for a program’s behavior, they must
translate their questions about the behavior into a series of questions about code, speculating
about the causes in the process. The Whyline is a new kind of debugging tool that avoids such
speculation by instead enabling developers to select a question about program output from a set
of “why did and why didn’t” questions extracted from the program’s code and execution. The tool
then finds one or more possible explanations for the output in question. These explanations are
derived using a static and dynamic slicing, precise call graphs, reachability analyses, and new
algorithms for determining potential sources of values. Evaluations of the tool on two debugging
tasks showed that developers with the Whyline were three times more successful and twice as
fast at debugging, compared to developers with traditional breakpoint debuggers. The tool has
the potential to simplify debugging and program understanding in many software development
contexts.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; tracing; H.5.2 [Information Interfaces and Presentation]: User Interfaces—
User-centered design; interaction styles

General Terms: Reliability, Algorithms, Performance, Design, Human Factors

Additional Key Words and Phrases: Whyline, questions, debugging

This article is a revised and extended version of a paper presented at ICSE 2008 in Leipzig,
Germany.
This work was supported by the National Science Foundation under NSF grant IIS-0329090 and
CCF-0811610 and the EUSES consortium under NSF grant ITR CCR-0324770. The first author
was also supported by NDSEG and NSF Graduate Fellowships. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.
Authors’ addresses: A. J. Ko, The Information School, University of Washington, Seattle, WA 98195;
B. A. Myers, Human-Computer Interaction Institute, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213.
Due to a conflict of interest, Professor D. Rosenblum was in charge of the review of this article.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1049-331X/2010/08-ART4 $10.00
DOI 10.1145/1824760.1824761 http://doi.acm.org/10.1145/1824760.1824761

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Most up-to-date version: 06/02/2021

4:2 • A. J. Ko and B. A. Myers

ACM Reference Format:
Ko, A. J. and Myers, B. A. 2010. Extracting and answering why and why not questions about Java
program output. ACM Trans. Softw. Eng. Methodol. 20, 2, Article 4 (August 2010), 36 pages.
DOI = 10.1145/1824760.1824761 http://doi.acm.org/10.1145/1824760.1824761

1. INTRODUCTION

Software developers have long struggled with understanding the causes of
software behavior. Yet, despite decades of knowing that program understanding
and debugging are some of the most challenging and time-consuming aspects of
software development, little has changed in how developers work: these tasks
still represent up to 70% of the time required to ship a software product [Tassey
2002].

A simple problem underlies this statistic: once a person sees an inappro-
priate behavior, he or she must then translate questions about the program’s
output into a series of queries about the program’s code. In doing this transla-
tion, developers must guess which code is responsible [Ko et al. 2006b]. This is
worsened by the fact that bugs often manifest themselves in strange and un-
predictable ways: a typo in a crucial conditional can dramatically alter program
behavior. Even for experienced developers, speculation about the relationship
between the symptoms of a problem and their causes is a serious issue. In our
investigations, developers’ initial guesses were wrong almost 90% of the time
[Ko et al. 2006b].

Unfortunately, today’s debugging and program understanding tools do not
help with this part of the task. Breakpoint debuggers require people to choose
a line of code. Slicing tools require a choice of variable [Baowen et al. 2005].
Querying tools require a person to write an executable expression about data
[Lencevicius et al. 2003]. As a result, all of these tools are subject to a “garbage-
in garbage-out” limitation: if a developer’s choice of code is irrelevant to the
cause, the tool’s answer will be similarly irrelevant. Worse yet, none of today’s
tools allow developers to ask why not questions about things that did not
happen; such questions are often the majority of developers’ questions [Ko and
Myers 2004; Ko et al. 2006b]. (Of course, lots of things do not happen in a
program, but developers tend to only ask about behaviors that a program is
designed to do.)

In this article, we present a new kind of program understanding and de-
bugging tool called a Whyline, which overcomes these limitations. Rather than
requiring people to translate their questions about output into actions on code,
the Whyline allows developers to choose a why did or why didn’t question about
program output and then generates an answer to the question using a variety
of program analyses. This avoids the problems noted above because developers
are much better at reasoning about program output, since unlike the execution
of code, it is observable. Furthermore, in many cases, developers themselves
define correctness in terms of the output [Ko et al. 2006a].

This work follows earlier prototypes. The Alice Whyline [Ko and Myers 2004]
supported a similar interaction technique, but for an extremely simple lan-
guage with little need for procedures and a rigid definition of output (in a lab

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:3

study, the Whyline for Alice decreased debugging time by a factor of 8). The
Crystal framework [Myers et al. 2006], which supported questions in end-user
applications, applied the same ideas, but limited the scope to questions about
commands and events that appear in an application’s undo stack (in lab studies
of Crystal, participants were able to complete 30% more tasks, 20% faster).

These successes inspired us to extend our ideas to support Java programs,
removing many of the limitations of our earlier work. In this article, we con-
tribute (1) algorithms for extracting questions from code that are efficient and
output-relevant; (2) algorithms for answering questions that provide nearly
immediate feedback; and (3) a visualization of answers that is compact and
simple to navigate. We achieve all this with no limitations on the target pro-
gram, other than that it use standard platform-independent Java I/O APIs and
that the program does not run too long before the problem occurs (given our
trace-based approach).

This article represents an expanded version of our earlier conference paper
on the Java Whyline [Ko and Myers 2008]. There are two major differences
between this article and the earlier conference article. First, here we include
enough algorithmic and architectural detail for an experienced developer to
replicate our work. These details include new algorithm listings, architectural
details, details on the Whyline’s recording format, and challenges with recre-
ating an interactive output history. Second, we have included an expanded
discussion of limitations, implications, and future work, providing a balanced
perspective on the strengths and limitations of the Whyline approach. Complete
information about the Whyline, including the motivating user studies and sum-
mative evaluations, are available in the first author’s dissertation [Ko 2008].

2. AN EXAMPLE

To motivate the implementation, let us begin with an example of the Java
Whyline in use. A study reported in Ko et al. [2006b] used a painting program
that supported colored strokes (see Figure 1(a)). Among the 500 lines of code,
there were a few bugs in the program that were inserted unintentionally, which
were left in for the study. One problem was that the RGB color sliders did not
create the right colors. In this study, participants used the Eclipse IDE for Java
and took a median of 10 minutes (from 3 to 38) to find the problem. The high
variation in times was largely due to the participants’ strategies: most used
text searches for “color” to find relevant code, revealing 62 matches over 9 files;
others followed data dependencies manually, sometimes using breakpoints.

With the Whyline, the process is greatly simplified (see Figure 1). The user
simply demonstrates the behavior he or she want to inquire about (a), in this
case by drawing a stroke that exhibits the wrong color. The user then quits the
program and the trace is automatically loaded by the Whyline. The user then
finds the point in time he wants to ask about by moving the time controller,
the black vertical bar at (b). Then, the user clicks on something related to the
behavior to pop-up questions about it (c). In this case, a user could click on the
stroke with the wrong color and can then ask the question, “why did this line’s
color = � ?”

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:4 • A. J. Ko and B. A. Myers

Fig. 1. Using the Whyline (the highlighting and arrows above are part of the Whyline; the only
annotations above are circled letters): (a) The developer demonstrates the behavior; (b) after the
trace loads, the developer finds the output of interest by scrubbing the I/O history; (c) the developer
clicks on the output and chooses a question; (d) the Whyline provides an answer (the orange
highlight indicating the selected event), which the developer navigates (e) in order to understand
the cause of the behavior (f); (g) shows the call stack.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:5

In response, the Whyline shows a visualization explaining the sequence of
executions that caused the stroke to have its color (d),(e). This visualization
includes assignments, method invocations, branches, and other events that
caused the behavior. When the user selects an event, the corresponding source
file is shown (f), along with the call stack and locals at the time of the selected
execution event (g). In this case, the Whyline selects the most recent event in
the answer, which was the color object used to paint the stroke (d). To find
out where the color came from, the user could find the source of the value by
selecting the label “(1) why did color = rgb(0,0,0)” (d). This causes the selection
to go to the instantiation event (e) and the corresponding instantiation code (f).
Here, the user would likely notice that the green slider was used for the blue
component of the color; the blue slider should have been used.

In a user study of this task (reported elsewhere [Ko 2008]), people using
the Whyline took half the time that participants with traditional tools took
to debug the problem. This was because participants did not have to guess a
search term or speculate about the relevance of various matches of their search
terms, nor did they have to set any breakpoints. Instead, they simply pointed
to something that they knew was relevant and wrong, and let the Whyline find
the relevant execution events.

3. DESIGN AND IMPLEMENTATION

The Whyline is intended to support1 interactive debugging (unlike automated
debuggers, which take a specification of correctness to find potential causes of a
problem [Cleve and Zeller 2005]). Therefore, the Whyline needs new incremen-
tal and cache-reliant algorithms to ensure near-immediate feedback for most
user actions. The Whyline also takes a post-mortem approach to debugging,
capturing a trace [Wang and Roychoudhury 2004, Zhang and Gupta 2005] and
then analyzing it after the program has stopped, like modern profilers. This
choice was based on evidence that bug-fixing is generally a collaborative process
[Ko 2007], which could benefit from the ability to share executions of failures.
The post-mortem approach was chosen explicitly for this purpose; an alterna-
tive design of “live” debugging could have been implemented, but would have
required a different approach.

3.1 Software Architecture

The Java Whyline design has five major parts (each implemented in Java): the
instrumentation framework, the trace data structure, the user interface, the
question extractor, and question answerer. These are shown in Figure 2 and
discussed throughout subsequent sections. Here we note their basic functions
and relationships to each other.

The instrumentation framework consists of an API for reading, writing, and
representing Java classfiles (similar to other bytecode APIs, such as BCEL,2

but less error-prone in its instrumentation support) and support for reading,

1Our prototype is available at http://www.cs.cmu.edu/∼natprog/whyline-java.html.
2http://jakarta.apache.org/bcel

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:6 • A. J. Ko and B. A. Myers

Fig. 2. A depiction of the major components of the Java Whyline architecture. The instrumentation
framework inserts instrumentation calls into the subject program, which produces a trace data
structure. The user interface components, question extractor, and question answerer all query the
trace data structure in response to user requests, and the user interface presents the results.

analyzing, and instrumenting classfiles to capture a trace. The instrumenta-
tion framework modifies the subject program in Figure 2 such that a trace is
produced when it is executed.

The trace data structure encapsulates all of a program’s source, class files
and execution history into a single data structure. It is designed to read the
files that represent a Whyline trace from disk and represent it compactly in
memory, shuttling information to and from the disk on demand. The trace is
immutable, except for log information and annotations that the user might
place on the immutable data. The trace data structure provides access to static
and dynamic facts about the immutable trace, such as all of the executions of
a particular method or all of the potential callers of a method, through several
query and predicate functions. The results of most of these queries are cached to
improve performance and serialized to disk so that subsequent uses of the trace
can reuse these analyses. The trace data structure has detailed knowledge of
how the instrumentation framework records events to disk, as it needs to know
how to read them from disk.

The Java Whyline user interface components (the five components on the
right of Figure 2) provide views of the trace data structure, facilitating users’
questions by querying the trace and providing views of the information re-
turned. Views of source files, execution events, call stacks, and so on, are gen-
erated on demand and discarded for optimal memory management. These user
interfaces serialize their user interface state, such as window size and the vis-
ibility of various views, using a metadata framework supported by the trace
data structure.

When a developer clicks on some output using the OutputUI, the question
extractor queries the trace data structure for static and dynamic information
and uses the results to display questions in menu form. When a question is
selected, an answer UI is generated which queries the question answerer to
present visualizations and answer text. The other user interface components
interact directly with the trace data structure to present trace data based on
the user’s selection.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:7

Table I. The File Hierarchy of a Recorded Whyline Trace

File Purpose
metadata number of events, objects, files, etc.
Static...

call graph constructed on the first load to speed up subsequent loads
class identifiers unique identifiers for each loaded class, used to identify

instructions in the event sequence
class names used to find classes stored on disk that were loaded at

runtime
source... a source file hierarchy for the executed program

dynamic...

immutables a table of strings, colors, fonts, gradients, strokes,
rectangles, and transforms, stored by object ID, used to
recreate output history efficiently

objects a history of object instantiations, stored by object ID
thread histories a set of files, each containing a thread event histor

3.2 Recording Program Execution

A Whyline trace of an execution consists of a number of types of information:
sequences of events that occurred in each thread (many of which regard pro-
gram output); all class files executed and the source files that represent them;
and other types of metadata recorded to interpret the data in the trace. This
information is summarized in Table I. This section describes this information
in detail.

3.2.1 Recording Source Files. Before launching the program, the Why-
line scans the user-specified folders for user-defined source code, copying all
of the current versions of the source. The directory structure of the source is
maintained, whether in a platform-specific directory or a JAR file, so that the
qualified name of the class defined by the source file can be recovered.

3.2.2 Analyzing a Method for Instructions to Instrument. In general, there
are two major ways to capture an execution history of a Java program. One is
to instrument a Java Virtual Machine to record a history of the program as
it is executing.3 This has the advantage of having potentially lower perfor-
mance overhead, but the disadvantage of being platform- and VM-dependent.
Instead, the Java Whyline uses bytecode instrumentation. As each Java class
is loaded, the tool intercepts its byte array (using the java.lang.instrument
package, standard across most JVM implementations after version 1.5), in-
struments each of the methods in the class, and returns the modified code as a
byte array to the JVM. This approach allows the prototype to work in a largely
platform-independent manner (although there may be inconsistent support
for this particular instrumentation mechanism). The disadvantage is the com-
plexity of inserting bytecode instructions into a Java program to capture in-
formation about its execution, as well as the additional overhead of executing

3An alternative to instrumentation would be to use the Java Platform Debugger Architecture
(JPDA), which was not implemented for most platforms at the time of the implementation of the
Java Whyline. This would allow more control over the subject program’s execution, while still
providing access to the same kinds of data.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:8 • A. J. Ko and B. A. Myers

the instrumentation code. A third option would have been to instrument the
source, which is the most platform-independent manner of capturing a trace,
but that approach has the most overhead and will not work with precompiled
libraries.

The instrumentation process involves an analysis step and an instrumenta-
tion step. The analysis step identifies control and data instructions to instru-
ment. Control instructions include invocations of methods, thrown exceptions,
exception catches, and branch instructions (all part of the Java bytecode in-
struction set). These are straightforward to identify by simply parsing the
bytecode and looking for particular opcodes. The data instructions in Java
bytecode are more various, but generally involve instructions that affect the
JVM operand stack (essentially arithmetic) and instructions that affect the
JVM heap or local variable space (assignments to local variables, fields, glob-
als, etc.). The Java Whyline instruments all of the latter category instructions.
For the former category that only has operand stack effects, the Whyline in-
struments only those instructions that compute values for control instructions
or data instructions with heap or frame side-effects. For example, in the Java
assignment statement “x = a + b + c,” the prototype would instrument the
value produced by the final addition and the assignment instruction, but not
the values pushed onto the operand stack by “a” and “b.” This omission is purely
for performance purposes. The value of “a” and “b” will be known from prior
instrumented assignments, so recording their values at the time of use would
be redundant. The one exception to this case is the use of global variables or
public fields; such variables may be changed by uninstrumented code.

Of course, to know which instructions produce a value consumed by a control
or assignment instruction, the prototype must first analyze the operand stack
dependencies within a method. To do this, the prototype uses an algorithm
that explores all execution paths through a method, and for each path, pairs
instructions that push values onto the operand stack with instructions that
later pop them off (this algorithm is similar to the verification steps performed
by JVMs for security purposes). While exploring paths, the algorithm main-
tains a simulated operand stack, with each value-producing instruction on the
stack representing the value produced. (The rules for whether an instruction
produces and/or consumes a value are based on the Java bytecode specifications
for each instruction.) This process determines a set of stack dependencies for
each instruction in a method, allowing the system to perform a variety of anal-
yses on the data dependencies within a method. For performance, the system
caches these stack dependencies as a method attribute (defined in Section 4.7
of the JVM specification, second edition) to make class loading and analysis
more efficient when a trace is loaded for the first time.

3.2.3 Instrumenting a Method. Next, the Whyline steps through each in-
struction, inserting a call to a global instrumentation method either before or
after the instrumented instruction. Stack duplication instructions are also in-
serted if the instrumentation needs a copy of a value from the operand stack.
For example, to record the result of an integer addition, dup instruction would
be inserted to push a copy of the result onto the stack. An invokestatic

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:9

instruction would be inserted afterwards to call the record int() method,
which would pop this copied result and record it to the trace file. In other
cases, the instrumentation call is inserted before the instruction; for example,
to record a thrown exception, the event must be recorded before the throw
instruction executes.

Each instrumentation call records specific information as a prefix to any
other arguments included in the type of event. Each event has a header con-
taining the following information. A 1 bit switch flag represents whether the
event is the first occurring after a thread switch. If it is set, a 32-bit serial event
ID is recorded. The IDs for all subsequent events follow this ID in sequence,
until the next switch. Switches are identified when reading the trace by check-
ing whether the next event ID follows the last in a thread. A 1 bit io callstack
flag is set to true if the code represents I/O or is necessary for maintaining a
call stack, which helps the trace loader know which events to process immedi-
ately. The event type is represented with 6 bits (there are currently 55 types,
as shown in Table II). Finally, 32 bits represent the instruction ID, consisting
of two parts: a 14- bit class ID (maintained for all instrumented classes, across
all programs), and an 18-bit integer represent the index of the instruction as
it appears in the class file. (The largest JDK class file we have seen contains
fewer than 200,000 instructions and is an outlier).

Event types include assignments, invocations and returns, thread synchro-
nization events, exception throws and catches, instantiations of objects and
arrays, and some special events to represent I/O events that are generated
natively (such as mouse and keyboard events). All 55 are shown in full in Table
II (with some events grouped, namely those that cover the eight primitive Java
types but with the same semantics). Multiple studies have suggested that de-
velopers find concrete values essential for interpreting program state [Ko et al.
2004, 2006b]. Therefore, unlike prior work [Baowen et al. 2005; Wang and Roy-
choudhury 2005], many of these events also include a value after their header.
For example, the Whyline records values passed as arguments to invocations
and as well as values assigned to variables.

When recording an object, the Whyline obtains a unique 64-bit ID for it,
creating a new ID if the object has not yet been encountered. These are stored
in a thread-safe weak reference hash table, so that objects can be garbage-
collected. For each new object encountered, the tool also writes the type of
the object (as a class ID) with its object ID to a separate file. Thread IDs are
managed in the same way at runtime.

3.2.4 Special Instrumentation for I/O Events. Most I/O events are ex-
tracted from the regular event sequence. For example, calls to java.awt.
Graphics are captured as invoke events in the trace just like any other call,
and these are used to identify graphical output events and their arguments.
Some I/O events benefited from or required special support, namely the last
six event types in Table II. For example, the prototype replaces all calls to
java.awt.Window.getGraphics() with a custom call, which gathers informa-
tion about the size and location of Window instances before returning the value
originally requested. The prototype also inserts custom instrumentation into

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:10 • A. J. Ko and B. A. Myers

Table II. The 55 Different kinds of Events Recorded by the Java Whyline

Event Purpose Event Purpose
putfield object field assignments throw captured just before throw
putstatic global variable

assignments
catch captured at beginning of catch

block
setarray array index assignments monitor before and after synchronized

blocks
setlocal/iinc local variable

assignments
constant for 8 primitive types;

placeholder for constant used
in expression

comprefs/compnull reference comparison
branch

value for 8 primitive types; records
value of expression or call

compints/compzero integer comparison
branches

this records occurrence of event, but
not value of reference (to save
space)

tablebranch switch statement
branches

newobject captured after constructors
complete

invoke the four JVM invocation
instructions

newarray captured after array
instantiated

start marker for the beginning
of a method’s execution,
in case its call was not
instrumented

argument for 8 primitive types; captures
value argument passed to
method, in case call not
instrumented

return marker before method
return

Events that do not map to bytecode instructions
repaint used to mark a graphical

repaint cycle
context used to track duplications of

graphics context used for
rendering

mouseevent tracks mouse input
arguments

keyevent tracks keyboard input
arguments

window tracks window size and
state changes

imagesize tracks the size of images drawn
to screen for use in
placeholders

The constant, value, and argument categories contain eight events each, to cover each of the eight
primitive types in Java. The group of six events at the bottom are custom instrumentation to capture
certain I/O events.

the constructors of the java.io.KeyEvent and java.io.MouseEvent construc-
tors to capture information about low-level I/O events and their parameters.
The latter two were added for performance reasons; extracting them from the
normal event sequence at load time would have been possible, but slower than
capturing it as a customized event.

3.2.5 Instrumenting Programs. The Whyline intercepts loading classes
and performs a number of preprocessing steps before instrumenting the class.
For each class loaded, the Whyline:

—copies the uninstrumented version of each class in a trace folder, in case the
class was loaded off a network;

—uses the uninstrumented versions of classes for those that the user has
marked to skip. The Whyline also skips classes that are used in the

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:11

instrumentation code itself as well as Java methods that, once instrumented,
exceed the 65,536 byte-length limit imposed by the JVM;

—keeps track of each class referenced by each loaded class, in order to keep
track of code not executed (for answering “why didn’t” questions). Just before
the program halts, the tool writes each of these unexecuted class files to
the same trace folder. Ideally, this would be done recursively, in order to
get the complete call graph of all of the code that the program could have
executed, but this would take considerable time and likely include all known
classes. Tracking classes that are never loaded is important for “why didn’t”
questions, since code that does not execute is often not dynamically loaded
by the JVM;

—caches instrumented versions of the class files and their modification date so
that later executions of the target program or other programs that use the
same classes can load faster by avoiding redundant instrumentation. This is
particularly useful for API classes that are used by many programs.

There are four major files recorded to disk in a Java Whyline trace (summarized
in Table I).

—A file declaring a list of fully qualified class names that were loaded or
referenced by a program execution, along with global class identifiers for
each. The names are listed in loaded order.

—An “immutables” file, which stores constant values used by the program
execution. This includes all of the strings referenced, the names of threads,
and custom support for common immutables, such as java.awt.Color.

—A source file hierarchy, as just described.
—A set of event sequences, one for each thread. Each thread history is format-

ted as stated above in a separate file.

When a program halts, the Whyline writes a few bits of metadata to disk as well,
to note how many events were written, how many objects were instantiated,
and so on, to help the loader later create reasonably sized data structures to
store the information. If the program halts in such a manner that prevents
this information from being captured, the trace can still be loaded, but less
efficiently. This usually occurs because the program unexpectedly crashes or is
forced to terminate because of an infinite loop, deadlock, or other fatal condition.

3.3 Loading a Recording

When a Whyline trace is loaded, it performs a number of duties to prepare for
question-asking. First, the source files and class files are loaded, since these are
used for nearly every aspect of question-asking and- answering. As classes are
loaded, the loader also processes several types of static information extracted
from the class files:

—Associating invocation instructions with methods potentially called,
—Associating field references with field declarations,
—Associating class references with class declarations,

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:12 • A. J. Ko and B. A. Myers

—Gathering all known “primitive output” instructions, which in this proto-
type include all calls on java.awt.Graphics, java.io.PrintStream, thrown
exceptions, and exception catches. These are later analyzed to generate
questions.

After loading this static information, the Whyline generates a precise call
graph, using all of the invocations found in class files. Precise in this situation
means that rather than using the type declared in the invocation instructions,
the tool uses the analysis in Figure 3, which scans definition-use edges to find
transitively reachable new expressions from the code’s receiver. The result is
a set of new instructions, which represent potential sources of new instances
for the given instruction. This set is used to conservatively find all of the po-
tential types of the actual instance used in the call, and resolves the method
on these types. This omits many types of infeasible calls, increasing the pre-
cision of “why didn’t” answers. This algorithm is called on demand whenever
the Whyline needs to identify a set of potential callers to a method. (Whenever
an algorithm in this article refers to a “caller,” the set of potential callers is
identified using this algorithm.) It should be noted that many call graph con-
struction algorithms have been proposed, which may help make the algorithm
in Figure 3 more efficient [Grove and Chambers 2001].

Next, the Whyline reads the thread traces, loading events in the order of
their event IDs, switching between thread trace files as necessary using the
switch flag in each event. This allows the Whyline to have a complete ordering
of the events in the execution. As events are read, events whose io callstack
flag are set are processed immediately (essentially output and events needed
to maintain a call stack); others are processed on demand. As call stacks are
maintained, they are cached at equal intervals to provide constant time access
to the call stack state at any event.

To improve the performance of question extraction and answering, the Why-
line constructs tables of invocations, assignments to fields and other types of
variables, and the values produced by expressions, all by event ID. All of these
histories are extracted from the serial thread histories the first time a Whyline
recording is loaded. Most histories are stored as integer sequences of event IDs.
For example, if there were 30 calls to some method foo(), the event IDs for each
call would be stored in a sorted list. These lists can then be efficiently searched
using a binary search.

3.4 Recreating an I/O History

After loading the static and dynamic information, the final duty of the loader
is to create a primitive I/O history. This step is fundamental to the Whyline’s
question support, since every question extracted depends on the Whyline’s abil-
ity to relate the pixels on the screen to the program logic responsible for them.
The prototype assumes that a program uses standard Java I/O interfaces and
their subclasses to produce output: java.awt.Graphics2D for graphical output,
java.awt.Window to represent windows and KeyEvent and MouseEvent for in-
put events in these windows, java.io.Writer, OutputStream, PrintStream,
Reader, and InputStream for console and file I/O, and java.lang.Throwable for
exception output. The Java Whyline does not record the native I/O, such as

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:13

Fig. 3. Algorithm getSources, which gathers instructions that could produce a value for a given
instruction’s argument, and getArraySources which gathers instructions that could produce values
for an array.

those used in some Java look-and-feels or in native UI toolkits such as the
Simple Windowing Toolkit (SWT) used in Eclipse. This would involve instru-
menting and recording code compiled for platforms other than the JVM, which
was out of the scope of this implementation.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:14 • A. J. Ko and B. A. Myers

3.4.1 Recreating Graphical Output. The Whyline extracts graphical out-
put events from the standard event sequence in a Whyline recording (described
in previous sections). For example, a call to Graphics2D.drawRect() and the
events producing its arguments are combined into an I/O event representing
the rectangle drawn. This extraction process produces a sequence of I/O events,
which the Whyline then uses to construct a user interface for navigating the
I/O history, like the one seen in Figure 1. To recreate this history, the Whyline
iterates through each I/O event, segmenting the event sequence into repaint
cycles using the repaint event (in Table II). Within each repaint, the Why-
line tracks the creation and duplication of Graphics2D instances, determining
when and where each render event occurred on screen. A Graphics2D instance
stores information about the current color, stroke, font, and origin, among
other information, all used to determine the appearance of the next render
call. Java programs duplicate these Graphics2D instances when painting in
order to modify the render context and draw some output, without having to
explicitly revert the rendering context to its previous state. Each render event
is related to the Graphics2D instance that was responsible for rendering it. The
Whyline then uses the history of modifications to these Graphics2D instances to
determine the font, color, stroke, and so on, of each of the graphical primitives
rendered.

While parsing repaint cycles, the Whyline also tracks the visual occlusion
of render events. For example, if a hundred small rectangles were drawn into
a buffer and then a large rectangle drawn over all of them, the hundred small
rectangles would be marked “occluded” after the time of the larger rectangle’s
rendering. Once this process is complete, there is enough information to render
the program output for any given time in the program’s execution history. For
a given time t, the Whyline finds all repaint cycles that began before tand
renders all of the render events in each repaint cycle until reaching a render
event that occurred after t. The Whyline uses the visual occlusion information
to skip render events that are not visible at t, allowing users to “scrub” the I/O
history at interactive speeds.

In order to allow users to point and click on render events, the Whyline
uses a basic picking algorithm. Given a point p, the Whyline first finds which
window contains p. Then, it searches through all of the visible render events in
the window, gathering a bottom-to-top list of render events that contain p. This
list of events is used to generate a list of questions about the top-most render
event (i.e., a text label and a background rectangle), as well as the objects that
the list of render events represent (i.e., the button represented by the text and
rectangle). This process is described in the next section. For each item in the
list, the Whyline also has to determine the original renderer of the output. This
is because render events can be drawn into arbitrary image buffers and these
buffers can then be rendered into other buffers (this includes double-buffering,
which is used to ensure that whole screens are drawn at once to a physical
display rather than pieces at a time, avoiding a flickered appearance). For ex-
ample, to paint a gradient for a button in a UI, which can be an expensive
operation, some systems will render part of the button’s gradient into a buffer,
then quickly paint the buffer at multiple locations to “tile” the output. Such

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:15

techniques are now ubiquitous in modern operating systems, meaning that any
Whyline that supports graphical output needs mature support for tracking to
which buffer a graphical primitive is drawn. What makes such support chal-
lenging is that a single event can be rendered into a buffer, but the buffer can
be drawn multiple times and at multiple locations in other buffers. This means
that a single render event can have effects on multiple places in the screen.
Therefore, when mapping a user’s mouse cursor to the graphical primitives
underneath the cursor, the system must distinguish between the render time
of the event and one or more appearance times in which the rendered output
appeared in the physical display. A single user click in the graphical output
thus refers to a list of render event pairs, which is then processed to create a
list of questions.

3.4.2 Recreating Console Output. Console output and exception output are
relatively straightforward to create, as it is just a list of strings and exceptions
to display as a vertical list. Textual output events are extracted from the stan-
dard event sequence by watching for calls on java.io.PrintStream. Each tex-
tual output event, rather than referring to just the string printed by the print
stream (as in the string in System.out.println(‘‘message =’’ +message)),
refers to each individual argument used to concatenate the final argument.
This way the Whyline can support questions about both the string ‘‘message
=’’ and the string variable message independently. Once these are extracted,
the sequence of textual output events is processed in order of execution, and
text printed to the console is laid out onto a single line, advancing a single
line on the occurrence of each ‘\n’ character. Clicking on a string in the console
output generally results in a single question ‘‘why did this get printed?’’.

3.5 Extracting Questions

In any program execution, many things happen, and many things do not. The
Whyline uses both static and dynamic analyses to extract questions about these
behaviors that the developer may or may not have expected.

“Why did” questions refer to a specific event from a trace; the questions
available for asking depend on the input time selected by the user (Figure
1(b)), since this time also determines what events are visible on screen (this
differs from the Alice version [Ko and Myers 2004], which required the user
to pause the program at the time desired). When the user clicks on an output
event, the Whyline shows questions related to the output event selected. For
example, in Figure 1(c), “why did” questions relate to the properties of the line
the user has selected.

In addition to questions about output primitives, it is also helpful to have
questions about higher level concepts that these primitives represent (e.g., in
addition to questions about rectangles, also the supporting questions about a
button that is drawn using the rectangles). The Java Whyline supports ques-
tions about two types of higher level entities. The first kind of entities are fields
of Java objects that indirectly influence an output primitive’s arguments; these

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:16 • A. J. Ko and B. A. Myers

are data that affect primitive output.4 For example, imagine a drop-down menu
with a list of items; it is important to not only be able to ask about the individual
items, but also about the list itself. The prototype follows all upstream dynamic
control and data dependencies of the primitive output’s arguments to identify
fields that affected the primitive output’s arguments, stopping when finding
no more upstream dependencies. This amounts to a backwards dynamic slice,
tuned to gather field references. The size of this list can be relatively large,
since there are typically many upstream data dependencies, but the entities
are organized by Java class, making the list easier to navigate.

The second kind of higher level question regards entities responsible for
indirectly rendering low-level output; -these are callers that affect primitive
output. For example, when clicking on the label of the button, the user may
also want to ask about the button itself and its properties, such as its visibility,
enabled state, and so on. These objects are found on the call stack of the in-
vocation that rendered the primitive output, and all such objects are included
in the list (with the exception of those filtered out as described in the next
section).

3.5.1 Filtering by Familiarity. One way to reduce the size of the question
menus is to filter the menus by familiarity. It is important to include only those
objects that are relevant to output and that the user is likely to have created
or used, since questions about unfamiliar classes or data structures will likely
not seem relevant to the user. For example, in the Swing UI toolkit, Button UI
class does not know how to draw itself. This is delegated to a Button look-and-
feel class which renders the button. A developer may write code to instantiate
a Button, but have no idea about the existence of its look-and-feel delegate.
The same is true of Swing’s ButtonModel, which is a helper class for storing
a button’s pressed state. To avoid presenting questions about these types of
delegate and helper classes, the Whyline defines a notion of familiarity. A class
is familiar if user-owned code either defines or references the specific class. In
the prototype, user-owned code consists of those classes that were derived from
source on the last compile (thus excluding APIs and libraries for which the
developer has no source). One could imagine more sophisticated definitions for
familiarity and ownership based on authorship, checkins, or other measures.

This notion of familiarity is used to filter the two types of higher level ques-
tions about data and callers. For callers, the Whyline inspects the call stack
of the invocation that produced the selected output primitive and for each call
stack entry that represents a call on an object and only includes questions about
that object if the object is of a familiar class. This results in questions about
Buttons, but not ButtonUIs, unless the user had directly referenced ButtonUI
in their code. To filter questions about data, the Whyline only includes ques-
tions about familiar data structure classes, thus excluding helper classes such
as ButtonModel.

4These types of questions were not originally included in the Java Whyline design; the need for
such questions became apparent after piloting the design of the study in the evaluation described
at the end of this article.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:17

Fig. 4. Algorithms markAffectors and markInvokers which mark methods and fields that affect
or invoke output (the two algorithms do not invoke each other).

3.5.2 Filtering by Output Modality. Another way to filter question menus
is to exclude code structures that do not affect the modality of output in ques-
tion. For example, if a user is asking about graphical output, it can exclude
questions about fields, methods, and classes that only indirectly affect tex-
tual output. To accomplish this, the Whyline finds fields and invocations that
could have affected each known output instruction, using the first algorithm
in Figure 4. For example, the color used to draw a rectangle might be affected
by some field in an object or by the return value of a call to some method. To
find these fields and invocations, the algorithm follows upstream static data
dependencies, marking fields and methods as “output-affecting” along the way,
keeping track of the modality of the output. This way, methods and fields are
marked as affecting graphical output, textual output, or other types.

Next, if the output instruction directly invokes output (such as drawing
a rectangle, unlike setting the color, which merely affects appearance), all
potential indirect callers to the output instructions method are marked as
output-invoking. This is done by following potential callers of a method, start-
ing with the output instruction’s method (bottom of Figure 4). Each algorithm
is run on each primitive output instruction, and halts either when reach-
ing an instruction already visited for a particular modality or code with no
dependencies.

One detail not mentioned in the algorithms in Figure 4 is how the al-
gorithm traverses potential callers of methods. Aside from the precise call
graph mentioned earlier in this article, the algorithm also tracks the class of
the method that the propagation begins in, and remembers this class during
the traversal of potential callers. For example, if the propagation started in

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:18 • A. J. Ko and B. A. Myers

a method of the javax.swing.jButton class, then arrived later at some call
on a java.awt.Component (a superclass of JButton, but eventually arrived at
a method of javax.swing.JComboBox (which is not a subclass of JButton, the
algorithm would know not to follow any calls on the JComboBox, because the
original source of output was a JButton. This allows the algorithm to exclude
infeasible calls as part of the call graph traversal by propagating the class that
originated the output.

Intuitively, it would seem these algorithms mark everything; after all, what
code is not responsible for affecting or invoking some output? Practically, how-
ever, the parts of applications that affect different kinds of output are often
isolated from each other. Because the algorithms in Figure 4 are run on each
individual output instruction, the Whyline knows what kind of output a partic-
ular field or method can affect. The Whyline can use this knowledge to generate
and filter questions based on the kind of output the user expresses interest in
(whether textual, graphical, or otherwise).

3.5.3 Creating Questions. Once the Whyline identifies each entity repre-
sented by the selected output primitive, the Whyline generates questions for
each entity. The first questions identified regard the properties of the selected
primitive output (Figure 5.1) and the rest of the questions regard entities re-
lated to the primitive output. These include “why did” questions about each
of the familiar, output-affecting fields’ current values, such as “why did this
Button’s visible = true?” (Figure 5.2) and also “why didn’t” questions about
why these fields were not assigned after the selected time (Figure 5.3). Each
of these questions points to the most recent assignment to the field on that
instance. The Whyline also generates questions about objects that indirectly
invoked the selected output primitive, including questions about the creation
of the object (Figure 5.4), about the objects output-affecting fields, and about
output-invoking methods that may not have executed (Figure 5.5).

The actual phrasing and presentation of questions depends on the type of
output. Exceptions thrown by the program, caught or uncaught, are phrased
as “why did” questions, and map to a throw event. Output in the console his-
tory supports questions about why a particular string was printed (mapping
to the event that produced it). The questions supported for graphical output
are somewhat more diverse, because the output itself is more complex in na-
ture. For primitive-level output, such as a line, circle, or rectangle, users may
ask “why did” questions about any of the properties used to render the out-
put. These correspond to arguments passed to the render method, such as
position and size, as well as state in the Graphics2D object such as color and
font.

“Why didn’t” questions refer to one or more instructions in the code. The
Java Whyline currently supports “why didn’t” questions about:

—Output-affecting fields, such as “why didn’t this Button’s hidden field
change?”

—Output-affecting methods, such as “why didn’t this Button repaint()?” and
—Output-affecting classes, such as “why didn’t a Button appear?”

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:19

Fig. 5. All supported questions for a graphical output event in the Java Whyline prototype,
showing six types of questions currently supported by the prototype (numbered 1–6) and three
types of menus. For each, the content on the left lists the meaning of the question (items in []
represent nested menus of the specified type) and the content on the right gives an example screen
shot.

For “why didn’t” questions about fields, there are two types. For discrete-valued
variables such as booleans or enumerated types as well as constant-valued
objects, the system can identify specific values for “why didn’t” questions.
For example, one might ask “Why didn’t the filled rectangle’s color = red?”
if the program referred to the constant Color.red; these values are found
by following upstream data dependencies until reaching constant values. For
continuous-valued variables (integers, floats, etc.), this is usually not feasible;
for these variables, the system instead supports questions of the form “why
didn’t the variable get assigned?” For both kinds of questions, there may be
numerous places that could have caused a variable to be assigned, these ques-
tions refer to the set of potential assignment statements. These instructions are
grouped into a single question to avoid user speculation about which particular
source should have executed; instead, all of them are considered together. For
“why didn’t” questions about methods, the system analyzes all of the potential
callers of the subject method.

The last type of “why didn’t” question supports questions about output that
has no representative output to click on. For example, a user might have ex-
pected a dialog box to appear after a certain input event, or a console string
after a certain action; but there are no primitives to choose that would en-
able questions about such output. To support these, the Whyline includes a
question for each familiar class that has output-invoking methods inherited or

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:20 • A. J. Ko and B. A. Myers

declared. An example of the resulting menu is seen in Figure 5.6, showing sev-
eral different types of windows that could have appeared (the prototype does
not yet add questions about nonwindow classes, but this is a straightforward
addition).

There are a few types of questions that the Whyline does not support. First,
it does not support questions about concrete values of continuous variables
(“why didn’t x = 6.08?”). This is partly because answering such questions can
be computationally expensive and that such answers can pose too many pos-
sible reasons to be useful. Moreover, developers do not often know precisely
what value to expect. Rather, they might guess that x > 0 and around 5; such
specifications would require new algorithms to support. As an alternative to
these kinds of questions, the Whyline allows users to ask “why didn’t x change?”
questions or simply to ask the positively phrased version of the same question
to find the source x’s value.

One other type of unsupported question is about the effects of input such
as “why didn’t this drag event do anything?” The problem with such “forward-
looking” questions is that even in very simple situations, input events have
many effects on programs, and with no expectation provided to the system
there is no way to filter all of the things that do occur. Instead, users can ask
the “why didn’t” questions discussed throughout this article, which inquire
about some expected output after an input event. This is an unfortunate but
necessary restriction. Future work might investigate techniques for adding
forward-reasoning questions (one place to start might be the Garnet toolkit’s
limited support for forward reasoning “why didn’t” questions about input events
[Myers 1990]).

The Alice Whyline [Ko and Myers 2004] and Crystal [Myers et al. 2006] both
contained global why menus. The Java Whyline does not, largely because there
are far too many events that do and do not occur in a Java program globally.
If there were a menu, there would be too few constraints on what appears in
the menu. Having the user choose a particular output at a particular time is
central to providing a reasonably-sized question menu.

3.6 Answering Questions

In this section we discuss how the Whyline computes answers to “why did” and
“why didn’t” questions. Details on the presentation and interactive features of
these answers in the Whyline user interface appear elsewhere [Ko and Myers
2009].

3.6.1 Answering “Why Did” Questions. Although there are a variety of
types of “why did” questions, each maps to an event from the program’s ex-
ecution history. The approach to answering them is to work backwards from
the event to find its chain of causality. Dynamic-slicing techniques [Baowen
et al. 2005], which use a concept of control [Cooper et al. 2001] and data de-
pendencies, are a natural approach to constructing these chains. However, the
typical approach of dynamic-slicing algorithms is to generate a set of instruc-
tions and present them to the user as a set of highlighted lines of code. Given
evidence that developers tend to work backwards temporally [Ko et al. 2006b;

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:21

Weiser 1982], this seems less helpful, therefore the Whyline produces a visu-
alization of events, temporally sequenced. This visualization is a tree of the
events that are traversed in a typical backwards dynamic-slicing algorithm.
Although the algorithm is essentially the same [Baowen et al. 2005], the differ-
ence in data structures affect how the information is presented to the user: a
chain of events shows what happened at runtime temporally, whereas a set of
instructions simply states dependencies, many of which a user might already
know.

Another difference from traditional slicing algorithms is that each event’s
control and data dependencies are computed on demand when a user selects
an event. For example, rather than have the algorithm automatically traverse
all of the data dependencies in a slice, the user explicitly chooses the data
dependencies to navigate in the form of “follow-up questions” (Figure 1(d)),
similar to the interaction in thin slicing [Sridharan et al. 2007]. This means
that answers are produced almost immediately, making slicing time largely
moot, unlike previous slicing systems which process answers in full as a batch
process [Baowen et al. 2005].

Some “why did” questions pre- and postprocess slicing algorithm inputs
and outputs to increase the utility of the answers. For example, when an-
swering a question about an argument value passed to a method, the system
first finds the “source” of the value by default. The source essentially follows
data dependencies backwards until reaching a data dependency with multi-
ple incoming dependencies (not counting control dependencies). To be concrete,
imagine a color is instantiated in a call and then the color is passed, unmod-
ified, through a dozen other calls until it is finally used. When asking about
this color (the “follow-up questions” about data dependencies, like those in
Figure 1(d)), the system follows these data-passing dependencies backwards
until reaching the source, which might be an instantiation, an expression, or
the return value of an unrecorded method. The assumption that this analysis
makes is that the calls made to pass such data are not buggy, but that the data
itself is buggy. If this assumption is not true, the analysis will skip over the
buggy code; for example, perhaps the color was obtained from the wrong call. To
account for this, the system also allows users to follow direct data dependencies
and avoid skipping these potentially erroneous intermediate steps.

3.6.2 Answering “Why Didn’t” Questions. “Why did” questions analyze an
event by searching backwards in the history at a certain time. “Why didn’t”
questions analyze one or more potentially unexecuted instructions forward
from the I/O event the user has selected using the time cursor. A “why didn’t”
query thus consists of one or more instructions, a time, and, in addition, an op-
tional constraint on the expected conditions of the given instructions’ execution
(discussed shortly). For example, imagine a question about a button’s enabled
field; there may be three places this enabled field could be assigned. Each
potential assignment is analyzed individually, generating individual answers.
These answers are then combined into a final single answer.

To explain each individual instruction, the Whyline uses two analyses: (1)
determining why an instruction was not executed, and (2) determining why

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:22 • A. J. Ko and B. A. Myers

the wrong value was used. Each of these is constrained by two types of scope.
Temporal scope affects what events it considers. For example, a developer may
ask about something that did not occur after a specific event, but may have oc-
curred in other situations. Therefore, “why didn’t” analyses only search through
events that occurred after the event selected by the time cursor (see Figure 1(b))
and before the end of the program. This omits other executions of events and
reduces the amount of information to process. The tool could have supported
scopes that end at a time different than the end of the program, but developers
are notoriously bad at predicting precisely when something should have hap-
pened in the future; including the whole scope ensures that they make no false
assumptions. Developers are fine at knowing the time after which something
should happen, since most things happen as the result of a user action.

Identity scope is the second kind of scope, which considers what object(s) the
developer has expressed interest in. For example, if they have asked why the
“hidden” field of a button did not change, the analyses are restricted to events
on that specific button instance. This calling constraint is propagated through
the algorithms discussed next.

Why was this instruction not executed? To explain why an instruction was
not executed, the first thing the Whyline does is check if it did execute. Our
studies have found that developers are often prone to misperceiving output [Ko
and Myers 2004; Ko et al. 2006b], and believe something has occurred when
it has not (for example, believing that something did not change color, when it
did, but then changed back). By supporting “why didn’t” questions about things
that did happen, the Whyline can reveal these assumptions.

If the instruction did not execute, the Whyline uses the algorithm
whynotreached listed in Figure 6, to explain why the instruction did not execute
after a particular time. The approach is to explore all reasons why an instruc-
tion was not executed after a specified time. Algorithm whynotreached gathers
unexecuted instructions in an iterative control-flow graph traversal; the helper
function explain considers a single instruction and the various reasons why
it may not have been executed, identifying either (1) one or more instructions
that needed to be executed in order for the given instruction to be executed
or (2) the execution event in the trace that explains why the instruction did
not execute. The data structure UnexecutedInst helps to represent the sub-
graph that whynotreached traverses, storing the incoming control-flow edges
of the instruction, the reason for each instruction not being executed, and any
execution events returned by explain. Therefore, the result of whynotreached
is a directed graph of the program’s control-flow graph including only those
instructions that, if executed, could have caused the instruction of interest to
be executed. Nodes that involve an invocation on a different object or a condi-
tional branching in the wrong direction also have an execution event attached,
explaining the source of the wrong object, or the value of the conditional’s
expression, respectively. When a question refers to multiple potentially unex-
ecuted instructions, a single answer containing the union of these graphs is
presented.

Algorithm explain in Figure 6 checks for possible reasons why an instruc-
tion was not executed. The first step is to check whether the method of the

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:23

Fig. 6. Algorithm whynotreached, which explains why a particular instruction in a Java program
was not executed. The helper function explain analyzes the reason for an individual instruction
not executing.

instruction of interest was executed at all. As shown in Figure 6, the explaina-
tion takes optional arguments objectID and argument if these are included,
explain excludes method invocations that did not use the value in objectID
for the given argument number. This allows questions about particular objects,
such as “why didn’t this button execute doAction ()?”

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:24 • A. J. Ko and B. A. Myers

If an invocation satisfying these criteria was not found after the given time,
then either: (1) the method has no known callers (one or more calls may exist,
but they may not have been loaded at runtime); or (2), none of the known callers
executed. In this latter case, the algorithm identifies the set of callers and calls
whynotreached on each for further explanation. If the instruction’s method did
execute after the given time, then there are several possibilities for why the
given instruction did not: (3) a caught exception jumped over the instruction of
interest; (4) the method exited prematurely because of an uncaught exception;
(5) the method did not finish executing because the thread or program halted;
(6) the instruction’s control dependency executed in the wrong direction (e.g.,
a conditional evaluated to true instead of false); (7) the instruction’s control
dependency did not execute.

One additional detail about case (2) above is worth noting. If an ObjectID
and argument was passed to explain, then to pass this constraint backwards
along the calls to a method, the algorithm must translate the constraint into
the new calling context. For example, if the current expectation is that a virtual
method doAction() was invoked on a particular Button (argument number 0 in
Java bytecode terms), but the call was button.doAction(), then the argument
number needs to change from 0 to the argument number of the local variable
button. This expectation can then continue to filter invocations until the value
no longer originates from a method argument.

There are a few exceptional cases to the algorithm for Java code. For example,
some instructions have multiple control dependencies in Java, as in the case of
code in an exceptional handler, where there may be multiple points of entry into
the handler. In this case, all possible dependencies should be explained. Also,
some methods have no explicit calls, such as java.lang.Thread.run(), and thus
the answer generated by the algorithm should be careful in explaining that the
method was not called (as opposed to explaining that it is not reachable).

Why was the wrong value used? Questions that ask about potential values of
fields or primitive properties compare the expected dynamic dependency path
to the actual dynamic dependency path at runtime. The former is obtained by
tracking the path followed by getSources in Figure 3; the latter comes from
the dynamic slice on the event that actually occurred, whether it was a field
assignment or argument of an output instruction. (These are lists because the
algorithm only analyzes unmodified values passed through intermediaries.) To
illustrate, consider the following code, which controls a text field’s background
based on various states.

Imagine that the user expected the background to be red (line 8) and selected
a question “why didn’t this TextField’s color = red?” The expected dependency
path from H would be 2, 1, 5, 4, 8. Then imagine that, instead, the back-
ground was gray (line 10), with actual dependency path 2, 1, 5, 4, 10 or
black with path 2,1,5,4,12. In both cases, the point of deviation was 4: the
program called setBack() with some color other than red. To explain why, the
Whyline then checks whether the expected line (8) did execute. If it did and
the other call to setBack() occurred after, then the color was overridden. If line
8 did not execute, then the tool uses the whynitreached algorithm in Figure 6
to determine why the instruction did not execute (in this example, it would be

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:25

Fig. 7. Algorithm whynotvalue, which explains why a certain dynamic data dependency did not
occur.

because enabled and/or invalid were false, or determinecolor() was not called).
This algorithm is shown in Figure 7.

Limitations of “why didn’t” answers. Because the “why didn’t” answering
algorithm uses a constrained traversal of a program’s control-flow graph, the
completeness of the control-flow graph greatly influences how much the user
can trust the Whyline’s answers to “why didn’t” questions. For example, if the
Whyline determines that there are no callers to a method and answers, so it
may be that the actual calls occur through reflection or other mechanisms that
the control-flow graph construction algorithm cannot detect. If the Whyline
determines that there are callers to a method, it may be that none of the calls
can feasibly be made at runtime (a precision issue). These precision issues can
be dealt with by incorporating other research on creating precise control-flow
graphs, but with a performance cost [Milanova et al. 2002].

4. EVALUATION

Although the primary contribution of this article is the implementation of the
Java Whyline, it is worth summarizing the results of evaluations of its perfor-
mance and its effectiveness. For example, several performance and scalability
results are reported in Ko and Myers [2008] and Ko [2008], showing that the
traces are reasonable in size and compress well; data on the instrumenta-
tion overhead shows that interactive programs have slowdown factors ranging
from 2 to 8, and pipelined architecture programs like compilers have slowdown
ranging from 10 to 20. These results are similar to those reported elsewhere
for other tracing and analysis techniques [Zhang and Gupta 2005].

To date, we have completed two studies of the Java Whyline in use by devel-
opers. In the first study, nine people worked on the slider bug in Figure 1 after
a 1 to 2 minute tutorial including information on how to ask questions and how
to follow data dependencies. Their task performance was compared with that

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:26 • A. J. Ko and B. A. Myers

of 18 self-described expert Java developers from the study in Ko et al. [2006b].
Overall, the participants with the Whyline completed the task in a median of
4 minutes, ranging from 1 to 12, significantly faster than the control group,
which had a median of 10 minutes, ranging from 3 to 38 (p < .05, Wilcoxon
rank sums test). The Whyline participants were more than twice as fast as the
skilled developers without the Whyline. This is despite the fact that most of
the Whyline users were self-described novices and that many of the developers
in the control condition had already spent time understanding the design of
the application. In fact, in the Whyline condition in this pilot study, the novices
tended to outperform the skilled developers for some interesting reasons. The
novices tended to say aloud, “Why is the line black?” and then use the Whyline
to ask that question directly, quickly finding the cause. One novice said that “It
was like a treasure hunt! It was fun! I didn’t know debugging was like this.” The
skilled developers asked the same question, but then rather than proceeding
to ask it with the Whyline, speculated about the possible reasons (e.g., “Why
didn’t this slider’s event get handled?”), and then looked for a question that al-
lowed them to check their speculation. When they failed to find such a question,
only then did they ask about the color. One skilled developer explained that
he did not “expect the Whyline to be able to make the connection between the
slider and the color,” and so he thought he had to make the connection himself.
This led to a number of changes to the presentation of the data dependencies
to make them appear as “follow-up questions.”

In the second study, we compared skilled Java programmers using the Why-
line to similarly skilled Java programmers using breakpoint debugging tools.
The study had a between-subjects experimental design, with the independent
variable of “debugging approach” and dependent variables of task completion
time and task success. The goal was to determine whether the Whyline would
significantly impact success at program understanding compared to modern
debugging tools. The study participants consisted of 10 people in each group
for a total of 20. Participants were all students in a masters program in soft-
ware engineering, but had a median of 1.5 years of industry software devel-
opment experience before coming back to school, ranging from 0 to 10 years.
Participants worked on two tasks adapted from real bug reports of ArgoUML,
a 150,000 line open source Java application for designing Java applications
themselves using UML diagrams. The first bug involved removing a particu-
lar checkbox from the user interface. The second bug involved investigating
a drop-down list of Java types that was supposed to contain all legal Java
classes for a Java field, but was for some reason excluding classes in different
packages that had equivalent names. All ten Whyline participants completed
task 1, compared to only three control participants (χ2 = 10.6, p < .05). Why-
line participants also completed task 1 twice as fast (t = 4.5, p < 0.05). The
control participants who did finish the task explored hundreds of files, but
got lucky in their searches, whereas the Whyline participants only explored
a median of three. For task 2, of the ten participants, four Whyline partici-
pants were successful, compared to none in the control group (χ2 = 5, p < .05).
This task was considerably more difficult; the successful Whyline participants
spent all thirty minutes on the task, but much of it was in order to understand

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:27

some of the Java APIs used in constructing the list for the drop-down
menu.

One interesting result of these studies was the suggestion that the Whyline
might be a useful way to teach diagnostic strategies, such as that of work-
ing backwards from program output and exploring data dependencies. In fact,
many of the participants in these studies of the Whyline, after getting Whyline
answers about things that they thought did not happen, but actually did, com-
mented to themselves about needing to be more cautious about assumptions.
Participants would hover over questions about particular data, ask questions
like, “Is this the data I really want to ask about?” These anecdotes suggest
that it may be possible to train developers to be more objective and careful
about their debugging efforts by using the tool. An interesting research ques-
tion is whether such strategies would then persist, even if the Whyline was
not available, and whether such strategies are the same strategies that skilled
developers use.

While we have not discussed our experimental methods in detail here (such
details appear in other publications, including Ko and Myers [2008, 2009] and
Ko [2008]), it is worth mentioning that both of these human subject studies
included small samples of developers and were quite limited in the range of
bugs to which the Whyline was applied. Further studies of the Whyline on
more diverse sets of faults would be necessary to make broad claims about the
general effectiveness of the Whyline on real-world debugging tasks.

5. RELATED WORK

In more than half a century of research on debuggers, there have been countless
ideas of how to make program understanding easier [Ungar et al. 1997]. Earlier
ideas (such as core dumps) were constrained by performance needs, limiting the
type and amount of information that a developer could obtain about a program’s
execution. As performance became less of a concern, researchers proposed new
ways of collecting data and replaying or exploring it [Lewis 2003]. However,
such techniques failed to consider how users might search through such data.
The Whyline is different from other tools in its ability to elicit high relevance,
high precision queries from users in an intuitive manner.

One notable approach is Cleve and Zeller’s Delta Debugging [2005], which,
given a specification of success and failure, and successful and failing program
inputs, can empirically deduce a small chain of failure-inducing events. Similar
tools take successful and failing runs of a program and perform other kinds
of differential diagnosis [Liblit et al. 2005; Jones and Harrold 2005]. These
approaches are quite powerful, but limited to circumstances where the success
is simple to specify and possible to demonstrate (typically in situations where a
new version of a program has regressed). These techniques could be integrated
with the Whyline to provide higher precision answers.

Researchers have explored question-asking tools in other application do-
mains. The ACT-R cognitive framework [Bothell 2004] and cognitive tutoring
tools that used this framework [Aleven et al. 2006] both support “why not”
questions about production rule systems. AI knowledge base systems support

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:28 • A. J. Ko and B. A. Myers

“why not” questions about why certain data was not used in answering queries
to a knowledge base [Chalupsky and Russ 2002]. Lieberman explored “why”
questions about e-commerce transactions [Wagner and Lieberman 2003]. The
Whyline concept has directly inspired projects looking at one-way constraints
in user interface design [Clark et al. 2007], as well as spreadsheets [Abraham
and Erwig 2005], where a developer can choose a wrong value, specify the
correct value, and receive change suggestions that would cause the program
to compute the desired value. These spreadsheet suggestions are feasible be-
cause of the limited domain of spreadsheet functions and the functional aspect
of spreadsheet languages. It remains to be seen if such change suggestions
are feasible (or even useful) for more complex imperative languages. Our own
Crystal framework [Myers et al. 2006] explored question support in a word pro-
cessor. Another budding area of research is in helping to understand failures
in software that uses machine learning and AI techniques, since the indeter-
minacy and data set dependencies of such software can be difficult to explain
[Tullio et al. 2007].

The Whyline is also related to work on static and dynamic program slicing
[Weiser 1982; Baowen et al. 2005; Korel and Laski 1988], which the Whyline
employs in many of its answering algorithms. The Whyline is less a competi-
tor to these approaches and more of a consumer of them. It provides a more
reliable way for users to select inputs to these techniques, providing queries
of higher relevance than if users chose their queries unassisted. Furthermore,
the Whyline is easily capable of taking advantage of advancements in slicing
techniques [Sridharan et al. 2007; Zhang and Gupta 2005]. Slicing is also re-
lated to other work in feature-location tools, which have similar goals to the
Whyline. For example, Eisenberg and De Volder discuss a test-case approach
to helping users identify portions of a system relevant to a particular behavior
[Eisenberg and De Volder 2005].

The Whyline would integrate well with tools that address other difficulties
in bug fixing. For example, work on capturing failures in the field [Clause and
Orso 2007] could be used to automatically produce a Whyline trace. Bug reports
could then contain replicas of failures observed directly by users, which could
then be shared, annotated, and analyzed, not only leading to faster debugging,
but also providing a form of institutional knowledge that could then be mined
for other issues. There may also be useful analyses from tools that focus on
diagnosing particular kinds of failures, such as data structure integrity and
threading issues [Lencevicius et al. 2003; Potanin et al. 2005]. The challenge
will be to adapt the Whyline’s approach to queries to support these techniques’
input requirements.

6. LIMITATIONS

While the Whyline approach has a number of benefits, it also has several
inherent limitations. We discuss them here.

6.1 Program Quality affects Question and Answer Quality

Because the Whyline extracts all of the knowledge about a program from the
program itself, any limitation on the knowledge encoded in a program limits

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:29

a Whyline’s utility. For example, the Whyline uses identifiers in the code to
phrase questions, hence, if the quality of the identifiers is low, the quality of
the question phrasing will be low. In an organizational context, this dependency
may have interesting social side-effects. By making class and field names inher-
ently public to the rest of the software development organization, the Whyline
could incentivize more descriptive names for code constructs. It could also in-
centivize descriptive comments for fields and classes, which could be extracted
from source code and shown to Whyline users to help them choose appropriate
questions.

Another issue is the degree to which the concepts defined in a program
faithfully represent the domain they represent (what might be called “type
fidelity”). For instance, the Java Whyline relies heavily on Java’s object-oriented
and statically-typed nature. Object-orientation compels developers to declare
classes and fields that separate distinct behaviors and state in these classes.
The Java Whyline relies on this conceptual organization to provide conceptually
organized menus of questions. There are a number of language paradigms
that compel different forms of conceptual organization of domain concepts. For
example, a procedural C program that nevertheless supports GUI components
like buttons and menus, may not have a collection of clearly defined structures
to render the components. Instead, there may be parameterized procedures for
doing so, and a Whyline would have to do extra work to identify and organize
these procedures before extracting questions from them.

6.2 Call Graph Precision Affects “Why Didn’t” Answer Precision

The Whyline relies on static type information in order to extract, present,
and answer “why didn’t” questions. Therefore, dynamically-typed program-
ming languages pose unique challenges for Whyline answers. For example, one
challenge is building a precise call graph. Dynamically-typed languages such
as Javascript are most problematic: even with runtime data, we cannot find
all possible calls to a method without being conservative and losing precision.
This makes it more difficult for the Whyline to answer “why didn’t” questions
precisely. Even statically-typed late-binding languages like Objective-C pose
problems: when analyzing why an instruction did not execute, it is necessary
to know all of the feasible callers to a particular method. Another problem is
if the call graph is incomplete: if the Java class containing the invocation that
needed to be called was never loaded, the call will not be known and will not
be part of the Whyline’s answer. This can be mitigated by actively loading ref-
erenced classes, but traversing too many levels in such a call graph becomes
impractical.

One side-effect of imprecise call graphs is the difficulty of identifying data
structures that indirectly render or affect primitive-level output. For example,
it would be difficult for a Whyline to determine precisely what variables could
affect output produced by a JavaScript function, unless there was runtime in-
formation to detect such data dependencies. Even then, this would not reveal
other possible data dependencies about which a user might want to ask nega-
tively phrased questions. The consequence of this imprecision is that it may be

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:30 • A. J. Ko and B. A. Myers

difficult to identify good names to use in “why didn’t” questions, since so many
different functions may be relevant.

6.3 Limitations of Tracing

Execution traces pose several limitations. It is not practical to record executions
that span more than a few minutes because the amount of data captured is
too much to load and process in a reasonable amount of time. Programs and
test cases that process and produce substantial amounts of data also pose a
similar problem, since so much intermediate state is captured in the process (of
course, what is feasible depends highly on the context: if a bug is particularly
difficult to find, it may be worth the time and space necessary to capture and
analyze a trace). Tracing also limits Whyline support to program behavior that
is reproducible while probing, meaning that nondeterministic multithreaded
bugs may not be reproducible while tracing. Programs that rely on real-time
behavior may also behave differently when instrumented, making it difficult
to reproduce a problem that relies on real-time performance.

Tracing also makes the approach feel “heavier” than tools like breakpoint
debuggers, which require virtually no set-up time compared to the time spent
waiting for a Whyline trace to load. All of these issues are worsened by the fact
that the memory demands on a developer’s machine grows with the size of the
trace. At a certain size, performance becomes an issue as the Whyline begins to
rely on virtual memory. Better disk bandwidth would alleviate this. Also, there
may be ways to utilize multicore or distributed CPUs to provide dedicated
support for trace capture and processing. Another possibility is that there may
be ways to only trace at certain times, like today’s performance profilers; the
challenge would be that the causes of events might not be captured, even if the
effects were.

6.4 Limitations of Question Extraction

By relying on a program as the source of questions, the Whyline will rarely
perfectly match the questions that the user has in mind. People will phrase
questions differently than the Whylines and there will be other contexts that
the user may wish to specify in a query that the Whyline may not support (such
as questions relative to multiple objects, as in “why didn’t the Menu appear next
to the Button?”). Furthermore, the Whyline will not always describe output at
the level of granularity that the user thinks of it. If the Whyline cannot extract
a “Button” concept from the program’s code, the user will have to ask about
whatever concept the Whyline is able to find as a proxy for “Button.” The
consequence of these limitations is that users will have to learn about how
the Whyline extracts questions in order to know what questions to expect and
where to find them.

There are other aspects of program output that are at a higher level of
abstraction than an output primitive, but may not have any corresponding
program entity to represent it. Imagine a menu with a list of items with varying
degrees of padding between items in the list and the margins of the menu
boundaries. To ask about the whitespace in the menu if the whitespace was

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:31

defined internally through constants, we would have to just ask about the
position of one of the item’s text labels and hope that it was related to the
whitespace the user wants to ask about (another option is to add domain-
specific support for such concepts, as in Crystal [Myers et al. 2006]).

6.5 Limitations of Answers

The most important limitation of Whyline answers is that they only reason
about causality: they do not offer change suggestions, they do not isolate bugs,
and they will not guide the user in interpreting the consequences of the answer
to the debugging problem. All of these things are still the developer’s responsi-
bility. Therefore, although the Whyline will help users get closer to a fix than
they would have otherwise, users must still objectively and systematically ex-
plore the answers provided by the Whyline in order to find and fix a bug. The
reason for this limitation has less to do with the Whyline approach and more to
do with the notion of a “bug.” In truth, bugs are just undesirable program be-
haviors; even a program crash can be an expected and desired behavior under
the right circumstances, for example when it prevents a more serious failure
from occurring. As a consequence of this notion of a bug, any undesirable be-
havior has many possible solutions. The Whyline has no knowledge about the
desirability of these various solutions, and so it is still up to the developer to de-
cide what program behavior needs to change. The only kinds of techniques that
can get around this problem are those that rely on specifications of a program’s
intended behavior, such as model-checking systems, because they can compare
intended execution with actual execution.

The kinds of answers that the Whyline gives have their own limitations. The
causal answers provided in response to “why did” questions and some “why
didn’t” questions can be quite large, since they are based on dynamic slicing.
What determines how “large” these answers are depends on several factors. The
more complex the program design and execution, the more complex the Whyline
answer. The more users explores causality, the more information they will have
to consider in assessing the cause of a problem. As they explore the answers,
users will have to work around incompleteness in the Whyline’s recording.
Native calls and other procedures may not be amenable to instrumentation
or even available for static analysis. This will result in a loss of precision for
reasoning about the inputs and outputs of these calls, so Whyline prototypes
will have to support ways for users to know when such information is missing
and help them work around it. In general, the size of the answers was not a
serious issue in user studies of the Whyline [Ko and Myers 2009], but these
tests were limited to only two tasks.

There are also situations in which Whyline answers can lead to dead ends.
There are at least two kinds, both having to do with developers’ navigation of
the control and data dependencies. First, if the Whyline has not instrumented
some function and therefore cannot reason about it precisely, a developer must
understand the function from its code rather than its execution. The other kind
of dead end is where the Whyline answer does contain the relevant events,
but the developer does not perceive them to be relevant. In these cases they

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:32 • A. J. Ko and B. A. Myers

may overlook a relevant chain of causality. This did occur in some cases in
a lab study of the Whyline [Ko and Myers 2009], although these developers
eventually returned to the unexplored dependencies after exhausting other
possibilities.

7. FUTURE WORK

Despite limitations inherent in its approach, the Whyline opens several new
research opportunities and questions.

7.1 Real-Time Debugging

A natural extension of the postmortem version of the Java Whyline is to support
debugging of a live Java program, without having to quit the program and
load a recreation of its output. Aside from the challenge of tracking dynamic
dependencies in real time, one significant challenge with this is in allowing the
developer to point to output in the running application and have the Whyline
actually relate it to live objects in the Java heap. To do so would require the
Whyline to do the same I/O tracking that is done when a Whyline recording
is being loaded, but instead doing it at runtime, thus incurring potentially
significant overhead. One way around this problem is to have special toolkit
support. For example, we could imagine a JVM debug mode which maintains
a history of output, providing a hook for whatever debugging tool wanted to
relate output to an execution history.

7.2 Other Output Modalities

Current Whyline prototypes only support questions about graphical and textual
output, but there are many other popular forms of program output, including
sound, network traffic, disk activity, and others. The central challenges in sup-
porting these other modalities is in (1) finding effective ways to inquire about
features of the the output and (2) choosing the appropriate output primitives.
For example, what characteristics of sound are important to interrogate: just
the presence or absence of sound, or detailed properties of its pitch and mod-
ulation? Writing to disk can often entail large amounts of data and we often
only notice a failure in output after a file is completely written. How can tools
effectively present this output in a manner that makes it easy to find the sub-
ject of the question amid so much information? It is possible that there could
be a visible proxy for such modalities.

7.3 Collaboration Support

Collaboration support is a central design challenge for future Whyline proto-
types. Debugging is an inherently collaborative activity in most software devel-
opment contexts [Ko et al. 2007], requiring the knowledge of multiple people
over the course of many days or more. This places a number of constraints on
the Whyline design.

First, Whyline traces should be small and easy to share. This allows traces
to be shared along with bug reports and other software development artifacts.
Related to this support is the need to annotate a Whyline trace, as developers

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:33

discuss a program failure and move towards a solution. These annotations
might relate to particular events in a trace or particular parts of the software’s
code. It is also possible that a Whyline trace could replace the modern notion
of a “bug report,” capturing information about who the trace is assigned to,
along with a discussion of other aspects of the trace. It may also be possible to
define a bug report as a collection of traces, all potentially demonstrating the
same failure.

Another issue, unexplored in the Java Whyline, is the problem of versions of
code. The current prototype just records the Java classes, but without any no-
tion of which version of each class is stored in a version control system. Version
information will be important in relating the Whyline trace to a particular bug
report, which is typically related to a particular release. By explicitly relating
a failure to a particular set of versioned source files, there may be other oppor-
tunities to detect the same failure in other versions of these source files as well.
The Whyline could also integrate well with unit testing systems that explore
changes to source that lead to unit test failures [Xie and Notkin 2007].

The notions of familiarity and ownership used in the Java Whyline might
need to be more elaborate in collaborative settings. For example, the current
definition defines familiarity by access to an editable source. Software develop-
ment teams typically have much more complicated notions of ownership and
certainly of familiarity [LaToza 2006].

7.4 Integration with Other Techniques

The Whyline concept utilizes modifications of a number of well-known software
engineering techniques including static and dynamic slicing and other methods
for constructing and analyzing call graphs and data-dependence graphs. There
are, however, a number of other techniques that could be useful to integrate
into the Whyline approach.

One challenge with navigating a Whyline’s answer is that the user has little
guidance beyond his own experience to know what control and data dependen-
cies to follow. Researchers have looked at ways to provide such guidance. For
example, static checkers [Bush et al. 2000; Cole et al. 2006] could provide cues
about which dependency chains have the most potential problems, leading the
user to fault-prone code. Another more interactive approach would be to allow
the user to explicitly validate values as in the WYSIWYT testing and the fault
localization approach [Ruthruff et al. 2005]. These annotations of correct and
incorrect values could be propagated through the dynamic slice, highlighting
contributors to incorrect values.

Another promising approach is to use multiple traces or multiple slices to
identify differences in test cases, isolating the failure (the approach used by
Zeller [2002], for example). Another approach would be to have the user specify
multiple relevant questions related to the failure, rather than a single question;
this is similar to the notion of a “chop” described in Gupta et al. [2005], but
potentially easier to express.

The Whyline might also integrate well with other kinds of static verification
tools [Cole et al. 2006] that apply a range of static checks as heuristics to

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:34 • A. J. Ko and B. A. Myers

find common problems with code. Rather than applying these checks in batch
mode, the Whyline might be a more helpful context in which to make these
checks, using the slice as a filter on which code to analyze. Not only would such
information be more helpful contextually, but it may reduce the number of false
positives that the systems report because there would be much more dynamic
data for the system to use in its static checking. Conversely, the Whyline user
interface might be used to help explain the answers that static verification
tools provide.

8. CONCLUSIONS

Debugging remains one of the most challenging aspects of software engineering,
partly because today’s tools require users to speculate about the causes of
program behavior. We have presented an entirely new way to query program
output, allowing the user to obtain evidence about the program’s execution
before forming an explanation of the cause. In the future, we hope this will
inspire explorations of the limits of our approach for both Java and also for
other languages and computing architectures.

ACKNOWLEDGMENTS

We thank Bonnie John, Gail Murphy, and Jonathan Aldrich for their comments
on the first author’s dissertation, which served as the basis of much of this
article.

REFERENCES

ABRAHAM, R. AND ERWIG, M. 2005. Goal-directed debugging of spreadsheets. In Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing. IEEE, Los Alamitos,
CA, 37–44.

ALEVEN, V., MCLAREN, B. M., SEWALL, J., AND KOEDINGER, K. 2006. The cognitive tutor authoring
tools (CTAT): Preliminary evaluation of efficiency gains. In Proceedings of the International
Conference on Intelligent Tutoring Systems. 61–70.

BAOWEN, X., JU, Q., XIAOFANG, Z., ZHONGQIANG, W., AND LIN, C. 2005. A brief survey of program
slicing. SIGSOFT Softw. Engin. Notes 30, 2, 1–36.

BOTHELL, D. 2004. ACT-R Environment Manual, Ver. 5.0.
http://act-r.psy.cmu.edu/software/EnvironmentManual.pdf.

BUSH, W. R., PINCUS, J. D., AND SIELAFF, D. J. 2000. A static analyzer for finding dynamic pro-
gramming errors. Softw. Pract. Exper. 30, 7, 775–802.

CHALUPSKY, H. AND RUSS, T. A. 2002. Why not: Debugging failed queries in large knowledge bases.
In Proceedings of the National Conference on Artificial Intelligence (AAAI). 870–877.

CLARK, P., CHAW, S. Y., BARKER, K., CHAUDHRI, V., HARRISON, P., FAN, J., JOHN, B., PORTER, B.,
SPAULDING, A., THOMPSON, J., AND YEH, P. Z. 2007. Capturing and answering questions posed to
a knowledge-based system. In Proceedings of the International Conference on Knowledge Capture
(K-CAP). 63–70.

CLAUSE, J. AND ORSO, A. 2007. A technique for enabling and supporting debugging of field failures.
In Proceedings of the International Conference on Software Engineering. 261–270.

CLEVE, H. AND ZELLER, A. 2005. Locating causes of program failures. In Proceedings of the Inter-
national Conference on Software Engineering. 342–351.

COLE, B., HAKIM, D., HOVENMEYER, D., LAZARUS, R., PUGH, W., AND STEPHENS, K. 2006. Improving
your software using static analysis to find bugs. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications. ACM, New York, 673–
674.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

Extracting and Answering Why and Why Not Questions about Java Program • 4:35

COOPER, K. D., HARVEY, T. J., AND KENNEDY, K. 2001. A simple, fast dominance algorithm.
http://www.hipersoft.rice.edu/grads/publications/dom14.pdf.

EISENBERG, A. AND DE VOLDER, K. 2005. Dynamic feature traces: Finding features in unfamiliar
code. In Proceedings of the International Conference on Software Maintenance. 337–346.

GROVE, D. AND CHAMBERS, C. 2001. A framework for call graph construction algorithms. ACM
Trans. Program. Lang. Syst. 23, 6, 685–746.

GUPTA, N., HE, H., ZHANG, X., AND GUPTA, R. 2005. Locating faulty code using failure-inducing
chops. In Proceedings of the IEEE/ACM International Conference on Automated Software Engi-
neering. ACM, New York, 263–272.

JONES, J. A. AND HARROLD, M. J. 2005. Empirical evaluation of the tarantula automatic fault-
localization technique. In Proceedings of the International Conference on Automated Software
Engineering. 273–282.

KO, A. J. AND MYERS, B. A. 2009. Finding causes of program output with the Java Whyline.
In Proceedings of the 27th International Conference on Human Factors in Computing Systems
(CHI). ACM, New York, 1569–1578.

KO, A. J. 2008. Asking and answering questions about the causes of software behav-
iors. Dissertation, CMU-CS-08-122, Human-Computer Interaction Institute, Carnegie Mellon
University.

KO, A. J. AND MYERS, B. A. 2008. Debugging reinvented: Asking and answering why and why not
questions about program behavior. In Proceedings of the International Conference on Software
Engineering (ICSE). 301–310.

KO, A. J. DELINE, R., AND VENOLIA, G. 2007. Information needs in collocated software devel-
opment teams. In Proceedings of the International Conference on Software Engineering. 344–
353.

KO, A. J., MYERS, B. A., AND CHAU, D. H. 2006a. A linguistic analysis of how people describe soft-
ware problems. In Proceedings of the IEEE Visual Languages and Human-Centric Computing.
IEEE, Los Alamitos, CA, 127–134.

KO, A. J., MYERS, B. A., COBLENZ, M., AND AUNG, H. H. 2006b. An exploratory study of how
developers seek, relate, and collect relevant information during software maintenance tasks.
IEEE Trans. Softw. Engin. 32, 12, 971–987.

KO, A. J. AND MYERS, B. A. 2004. Designing the Whyline: A debugging interface for asking
questions about program failures. In Proceedings of the ACM Conference on Human Factors in
Computing Systems. ACM, New York,151–158.

KO, A. J., MYERS, B. A., AND AUNG, H. H. 2004. Six learning barriers in end-user programming
systems. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Com-
puting. IEEE, Los Alamitos, CA, 199–206.

KOREL, B. AND LASKI, J. 1988. Dynamic program slicing. Inform. Process. Lett. 29, 3, 155–163.
LATOZA, T. D., GARLAN, D., HERBLSEB, J. D., AND MYERS, B. A. 2007. Program comprehension as

fact finding. In Proceedings of the Foundations of Software Engineering. 361–370.
LENCEVICIUS, R., HOLZLE, U., AND SINGH, A. K. 2003. Dynamic query-based debugging of object-

oriented programs. J. Autom. Softw. Engin. 10, 1, 367–370.
LEWIS, B. 2003. Debugging backwards in time. In Proceedings of the International Workshop on

Automated Debugging. 225–235.
LIBLIT, B., NAIK, M., ZHENG, A., AIKEN, A. AND JORDAN, M. 2005. Scalable statistical bug isolation.

In Proceedings of the Programming Design and Implementation. 15–26.
MILANOVA, A., ROUNTEV, A., AND RYDER, B. G. 2002. Precise call graph construction in the presence

of function pointers. In Proceedings of the IEEE International Workshop on Source Code Analysis
and Manipulation. 155.

MYERS, B. A., WEITZMAN, D., KO, A. J., AND CHAU, D. H. 2006. Answering why and why not questions
in user interfaces. In Proceedings of the ACM Conference on Human Factors in Computing
Systems. ACM, New York, 397–406.

POTANIN, A., NOBLE, J., AND BIDDLE, R. 2004. Snapshot query-based debugging. In Proceedings of
the Australian Software Engineering Conference. 251.

RUTHRUFF, J. R., PRABHAKARARAO, S., REICHWEIN, J., COOK, C., CRESWICK, E., AND BURNETT, M. M. 2005.
Interactive, visual fault localization support for end-user programmers. J. Visual Lang. Comput.
16, 1-2, 3–40.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

4:36 • A. J. Ko and B. A. Myers

SRIDHARAN, M., FINK, S. J., AND BODIK, R. 2007. Thin slicing. In Proceedings of the Programming
Language Design and Implementation. 112–122.

TASSEY, G. 2002. The economic impacts of inadequate infrastructure for software testing. RTI
Project 7007.011, 2002, National Institute of Standards and Technology.

TULLIO, J., DEY, A. K., CHALECKI, J., AND FOGARTY, J. 2007. How it works: A field study of non-
technical users interacting with an intelligent system. In Proceedings of the ACM Conference on
Human Factors in Computing Systems. ACM, New York, 31–40.

UNGAR, D., LIEBERMAN, H., AND FRY, C. 1997. Debugging and the experience of immediacy. Comm.
ACM 40, 4, 39–43.

WAGNER, E. AND LIEBERMAN, H. 2003. An end-user tool for e-commerce debugging. In Proceedings
of the International Conference on Intelligent User Interfaces. 331–331.

WANG, T. AND ROYCHOUDHURY, A. 2004. Using compressed bytecode traces for slicing Java pro-
grams, In Proceedings of the International Conference on Software Engineering. 512–521.

WEISER, M. 1982. Programmers use slices when debugging. Comm. ACM 25, 7, 446–452.
XIE, T., TANEJA, K., KALE, S., AND MARINOV, D. 2007. Towards a framework for differential unit

testing of object-oriented programs. In Proceedings of the International Workshop on Automation
of Software Test. 202.

ZELLER, A. 2002. Isolating cause-effect chains from computer programs, In Proceedings of the
International Symposium on the Foundations of Software Engineering. 1–10.

ZHANG, X. AND GUPTA, R. 2005. Whole execution traces and their applications. ACM Trans.
Architect. Code Optim. 2, 3, 301–334.

Received September 2008; revised March 2009; accepted April 2009

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 4, Pub. date: August 2010.

