
C H A P T E R F O U R

Understanding Software Engineering
Through Qualitative Methods

Andrew Ko

People trust numbers. They are the core of computation, the fundamentals of finance, and an

essential part of human progress in the past century. And for the majority of modern societies,

numbers are how we know things: we use them to study which drugs are safe, what policies

work, and how our universe evolves. They are, perhaps, one of the most powerful and potent

of human tools.

But like any tool, numbers aren’t good for everything. There are some kinds of questions for

which numbers answer little. For example, public health researchers in the 1980s wanted to

explain epileptic patients’ difficulties with taking their medication regularly. Researchers

measured how many people failed to comply; they looked for statistical differences between

those who complied and those who didn’t; they even ran elaborate longitudinal controlled

experiments to measure the consequences of noncompliance. But none of these approaches

explained the lack of compliance; they just described it in rigorous but shallow ways.

Then, a groundbreaking study [Conrad 1985] took a different approach. Instead of trying to

measure compliance quantitatively, the researchers performed 80 interviews of people with

epilepsy, focusing on the situations in which their informants were expected to take their

medications but did not. The researchers found that the lack of compliance was due not to

irrational, erratic behavior, but to patients’ deliberate choice. For example, some patients were

aware of the potential of becoming chemically dependent on the drugs and carefully regulated

their use of the drug to avoid tolerance. These qualitative findings, one of the first of their kind

55

in public health research, became a critical part of redefining how epilepsy medication is

delivered to society.

What does all of this have to do with software engineering? Like public health, software

engineering is full of why and how questions for which numbers and statistics are of little help.

For example, if you’ve managed a software team, you’ve probably asked yourself a number of

questions. Why won’t my developers write unit tests? Why do users keep filling out this form

incorrectly? Why are some of my developers 10 times as productive as the others? These

questions can’t be answered with numbers, but they can with the careful application of

qualitative methods.

But using qualitative methods isn’t as simple as asking people a few questions, nor is reading

reports of qualitative studies as simple as reading the abstract. This chapter explains what

qualitative methods are, how to interpret the results of qualitative studies, and how you might

use them in your own work to improve software process and quality.

What Are Qualitative Methods?
Put simply, qualitative methods entail the systematic gathering and interpretation of nonnumerical

data (including words, pictures, etc.). Like quantitative methods, qualitative methods can be

used to gather data to confirm or reject beliefs (deductive reasoning). However, qualitative

methods can also be used to support inductive reasoning: gather data to arrive at new

explanations. Because qualitative methods gather nonnumerical data, they also lend

themselves to being used in more natural settings.

To illustrate, let’s focus on a specific scenario and discuss how qualitative methods might be

used to understand it. Imagine you’ve just started managing a software team. You’re leading

a new project and have just adopted a new bug tracking system with some great features your

team has been dying to have. Over the next few months, you see your team patching a lot of

code and making great progress, but every time you check the bug list in the new system, there

are only a few reports from the same few testers and they never seem to change. Then, one

morning you walk by your best developer’s desk and see the old bug tracker up on his screen.

Your team has been secretly using the old system for weeks! After all of that training, the careful

transition, and the costly licensing, why aren’t they using the new tracker?

One obvious thing to do is simply ask. For example, you could call a meeting and just ask the

team to explain why they’re avoiding the new system. You’d get some explanation, but it may

not be entirely trustworthy, especially if the developers find themselves opposing your decision

to adopt the new tracker. Moreover, the fact that they’re in a social context will also make the

less talkative members of your team less likely to speak, biasing the explanations you get to

your most vocal employees. A biased, warped explanation won’t be helpful to anyone.

To take yourself out of the equation, perhaps you could ask a trustworthy friend to ask around

during coffee breaks, conducting brief, informal interviews. That would give each person a

56 C H A P T E R F O U R

chance to state his opinion outside of a group context, perhaps freeing him to be more vocal

and more honest. But you’ll still be limited to the views of your friend’s friends. Even worse,

your friend might not be impartial; maybe he particularly dislikes the new tracker and

unintentionally biases his report back to you.

The issue with the approaches I’ve just suggested is that they are secondhand or even thirdhand

accounts. Ideally, you would be able to observe the moment of interest. For example, when

people on the team decided to use the old tracker instead of the new one, what was going on

in their heads? What were the other constraints on their time? Who were they collaborating

with? What data were they entering? To get at these questions, you might sit next to developers

for a day, watching what they do. This would allow you to directly observe the moments when

they decide to use the old tracker instead of the new one.

Of course, directly observing people in these moments is often unfeasible. People don’t like

being watched, and often adapt their behavior to preserve their privacy or avoid

embarrassment or anxiety. Moreover, since you’d be the sole observer, you’re likely to bring

biases to your observations.

It might also be possible to take people out of the picture altogether and just study the

documents. Which bugs are getting reported in the old system, and which are reported in the

new system? This might uncover differences in the type of reports that the team hasn’t been

filing in the new system. This might give you a hunch about the reasons for using the old

tracker, but it still wouldn’t tell you the actual reasons inside the minds of your team.

All of these approaches are qualitative methods and all of them have limitations. The solution

to getting around these limitations is to embrace them: no one approach will reveal the whole

unbiased truth. Instead, good qualitative research combines multiple methods, allowing one

to triangulate evidence from multiple sources. For example, suppose you interviewed

individual employees about the tracker but also studied which bugs were being filed in the

new tracker. Each approach will give you a distinct story, more or less consistent with the

stories from other approaches. By comparing and contrasting these stories, one can uncover

the ground truth behind a question.

Aside from gaining understanding, qualitative methods are also good for gaining empathy. More

often than not, the cause of communication breakdowns, broken processes, and user

frustration is people’s inability to see the world from another person’s perspective. And this is

precisely what qualitative methods are designed to correct. This perspective-taking is often

precisely the goal of qualitative methods. For example, suppose you manage a team and have

noticed that every Friday the build breaks, people spend the whole day trying to fix it, and

everyone goes home frustrated. Using a qualitative approach to diagnose the cause of these

broken builds might lead you to discover that Thursday nights are a big night for check-ins

because you’ve decided Friday is meeting day. Knowledge like this can help you see the world

from the developers’ perspective and find solutions that make everyone happy.

U N D E R S T A N D I N G S O F T W A R E E N G I N E E R I N G T H R O U G H Q U A L I T A T I V E M E T H O D S 57

Reading Qualitative Research
Having described what qualitative methods are, we now turn to a discussion of how to read

qualitative studies like the ones that appear throughout this book. For example, what does a

particular study teach? When can you trust a study’s results? When can you generalize a

study’s results to the larger world? To discuss these issues, let’s consider The Errors of TeX,

published in 1989 by the Turing Award winner Donald Knuth [Knuth 1989].

In this classic article, Knuth analyzes more than 850 errors he logged while writing the TeX

software. The study, as Knuth described it, was “to present a list of all the errors that were

corrected in TeX while it was being developed, and to attempt to analyse those errors.” Knuth

describes the rationale for his approach as overcoming the limitations of quantitative methods:

The concept of scale cannot easily be communicated by means of numerical data alone; I believe

that a detailed list gives important insights that cannot be gained from statistical summaries.

What did Knuth discover in this study? He presents 15 categories of errors, gleaned from a

much larger catalog, and then describes them with examples from his log. For example, Knuth

describes the “blunder or blotch” category, which included program statements that were

syntactically correct but semantically wrong. The root cause of these errors was variable names

that were closely related conceptually but led to very different program semantics (e.g.,

reversing variables named before and after, or next_line and new_line). Knuth goes on to describe

the other error categories, the history behind the TeX software project, his personal experiences

in writing the software, and how he recorded errors in his log.

At the end of the article, he concludes:

What have I really learned then? I think I have learned, primarily, to have a better sense of

balance and proportion. I now understand the complexities of a medium-size software system,

and the ways in which it can be expected to evolve. I now understand that there are so many

kinds of errors, we cannot stamp them out by systematically eliminating everything that might

be ‘considered harmful.’ I now understand enough about my propensity to err that I can accept

it as an act of life; I can now be convinced more easily of my fallacy when I have made a mistake.

Now let us step back and reflect on the merits of this work: what did we learn, as readers? The

first time I read this article in the mid-1990s, I learned a great deal: I had never written a

medium-sized software system, and the rich details, both contextual and historical, helped me

understand the experience of undertaking such a large system by one’s self. I recognized many

of the error categories that Knuth described in my own programming, but also learned to spot

new ones, which helped me become better at thinking of possible explanations for why my

code wasn’t working. It also taught me, as a researcher, that the human factors behind software

development—how we think, how our memory works, how we plan and reason—are

powerful forces behind software quality. This was one of just a few articles that compelled me

to a career in understanding these human factors and exploiting them to improve software

quality through better languages, tools, and processes.

58 C H A P T E R F O U R

But few of these lessons came immediately after reading. I only started to notice Knuth’s

categories in my own work over a period of months, and the article was just one of many

articles that inspired my interests in research. And this is a key point in how to read reports

on qualitative research critically: not only do the implications of their results take time to set

in, but you have to be open to reflecting on them. If you dismiss an article entirely because of

some flaw you notice or a conclusion you disagree with, you’ll miss out on all of the other

insights you might gain through careful, sustained reflection on the study’s results.

Of course, that’s not to say you should trust Knuth’s results in their entirety. But rather than

just reacting to studies emotionally, it’s important to read them in a more systematic way. I

usually focus on three things about a study: its inputs, its execution, and its outputs. (Sounds like

software testing, doesn’t it?) Let’s discuss these in the context of Knuth’s study.

First, do you trust the inputs into Knuth’s study? For example, do you think TeX is a

representative program? Do you think Knuth is a representative programmer? Do you trust

Knuth himself? All of these factors might affect whether you think Knuth’s 15 categories are

comprehensive and representative, and whether they still occur in practice, decades after his

report. If you think that Knuth isn’t a representative programmer, how might the results have

changed if someone else did this? For example, let’s imagine that Knuth, like many academics,

was an absent-minded professor. Perhaps that would explain why so many of the categories

have to do with forgetting or lack of foresight (such as the categories a forgotten function, a

mismatch between modules, a surprising scenario, etc.). Maybe a more disciplined individual, or

one working in a context where code was the sole focus, would not have had these issues.

None of these potential confounding factors are damning to the study’s results, but they ought

to be considered carefully before generalizing from them.

Do you trust Knuth’s execution of his study? In other words, did Knuth follow the method that

he described, and when he did not, how might these deviations have affected the results?

Knuth used a diary study methodology, which is often used today to understand people’s

experiences over long periods of time without the direct observation of a researcher. One key

to a good diary study is that you don’t tell the participants of the study what you expect to

find, lest you bias what they write and how they write it. But Knuth was both the experimenter

and the participant in his study. What kinds of expectations did he have about the results? Did

he already have categories in mind before starting the log? Did he categorize the errors

throughout the development of TeX, or retrospectively after TeX was done? He doesn’t describe

any of these details in his report, but the answers to these questions could significantly change

how we interpret the results.

Diary studies also have inherent limitations. For example, they can invoke a Heisenberg-style

problem, where the process of observing may compel the diary writer to reflect on the work

being captured to such a degree that the nature of the work itself changes. In Knuth’s study,

this might have meant that by logging errors, Knuth was reflecting so much about the causes

of errors that he subconsciously averted whole classes of errors, and thus never observed them.

Diary studies can also be difficult for participants to work on consistently over time. For

U N D E R S T A N D I N G S O F T W A R E E N G I N E E R I N G T H R O U G H Q U A L I T A T I V E M E T H O D S 59

example, there was a period where Knuth halted his study temporarily, noting, “I did not keep

any record of errors removed during the hectic period when TeX82 was being debugged....”

What kinds of errors would Knuth have found had he logged during this period? Would they

be different from those he found in less stressful, hectic periods?

Finally, do you trust the outputs of the study, its implications? It is standard practice in academic

writing to separate the discussion of results and implications, to enable readers to decide

whether they would draw the same conclusions from the evidence that the authors did. But

Knuth combines these two throughout his article, providing both rich descriptions of the faults

in TeX and the implications of his observations. For example, after a series of fascinating stories

about errors in his Surprises category (which Knuth describes as global misunderstandings), he

reflects:

This experience suggests that all software systems be subjected to the meanest, nastiest torture

tests imaginable; otherwise they will almost certainly continue to exhibit bugs for years after

they have begun to produce satisfactory results in large applications.

When results and implications appear side-by-side, it can be easy to forget that they are two

separate things, to be evaluated independently. I trust Knuth’s memory of the stories that

inspired the implication quoted here because he explained his process for recording these

stories. However, I think Knuth over-interpreted his stories in forming his recommendation.

Would Knuth have finished TeX if he spent so much time on torture tests? I trust his diary,

but I’m skeptical about his resulting advice.

Of course, it’s important to reiterate that every qualitative study has limitations, but most studies

have valuable insights. To be an objective reader of qualitative research, one has to accept this

fact and meticulously identify the two. A good report will do this for you, as do the chapters

in this book.

Using Qualitative Methods in Practice
While qualitative methods are usually applied in research settings, they can be incredibly useful

in practice. In fact, they are useful in any setting where you don’t know the entire universe of

possible answers to a question. And in software engineering, when is that not the case?

Software testers might use qualitative methods to answer questions about inefficiencies in the

human aspects of a testing procedure; project managers can use qualitative methods to

understand how the social dimensions of their team might be impacting productivity.

Designers, developers, and requirements engineers can use qualitative methods to get a deeper

understanding of the users they serve, ensuring a closer fit between user needs and the feature

list. Any time you need to analyze the dynamics between who, what, when, where, how and

why, qualitative methods can help.

Using qualitative methods is a lot like being a good detective or journalist: the point is to

uncover truth, and tell a story people can trust—but also realize that there are usually many

60 C H A P T E R F O U R

truths and many perspectives. How you go about uncovering these perspectives depends a lot

on the situation. In particular, you need an instinct for the social context of what you want to

understand, so you know whom you can trust, what their biases are, and how their motives

might affect your sleuthing. Only with this knowledge can you decide what combination of

direct observation, shadowing, interviews, document analysis, diary studies, or other

approaches you might take.

To illustrate, let’s go back to our bug tracker example. One of the most important factors in

choosing which methods to use is you, and so there are a number of things to consider:

• Do your employees like you?

• Do they respect you?

• Do they trust you?

If the answer to any of these questions is no, you’re probably not the one to do the sleuthing.

Instead, you might need to find a more impartial party. For example, a perfect role for sleuthing

is an ombudsperson. Her job is to be a neutral party, a person who can see multiple perspectives

to support effective communication and problem solving. If your organization has an

ombudsperson, she would be a great candidate for a class on qualitative methods and could

play an instrumental role in improving your workplace.

If your employees do like you, the next most important factor is your employees. Are they

good communicators? Are they honest? Do they hide things? Are there rival factions on your

team? Is there a culture of process improvement, or is the environment rigid and conservative?

All of these social factors are going to determine the viability of applying any particular

qualitative method. For example, direct observation is out of the question if your employees

like to hide things, because they’ll know they’re being observed. Document analysis might

work in this case, but what will your team think about their privacy? Interviews work quite

well when the interviewer can establish rapport, but otherwise they’re a garbage-in, garbage-

out process. The goal of a good qualitative approach to answering a question is to find ways of

probing that minimize bias and maximize objectivity.

Regardless of whether you or someone else is doing the sleuthing, another important

consideration is how you explain to your team what you’re sleuthing about. In all of the cases

I can imagine, keeping the sleuthing a secret is a terrible idea. You’re probably asking a question

because you want to solve a problem, and you’re managing a team of problem solvers: get

them to help! It’s important to point out to them, however, that your agenda is to understand,

not to dictate. It’s also important to say that there’s probably not a single explanation and

everybody’s perspective will differ at least a little. Communicating these points creates an

expectation that you’ll be seeking your informants’ perspectives and empathizing with them,

which makes them more likely to reflect honestly.

Finally, qualitative methods can feel loose and arbitrary at times. How can you really trust the

results of a process without structure? The trick is to realize that bias is all around you and

U N D E R S T A N D I N G S O F T W A R E E N G I N E E R I N G T H R O U G H Q U A L I T A T I V E M E T H O D S 61

embrace it. You as the researcher are biased, your informants are biased, and the different

methods you use to understand a context are biased toward revealing certain phenomena. The

more you can explicitly identify the bias around you and understand how it affects your

interpretations of what you see, the more objective your findings.

Generalizing from Qualitative Results
Whether you find qualitative results in a research paper or you get them yourself, one issue

that always comes up is how much you can generalize from it.

For example, qualitative methods are can identify common behavior, but they cannot identify

average behavior. Averages and other aggregate statistics require some ability to count, and

that’s not what qualitative methods are about. Moreover, because the gathering of

nonnumerical data can be more labor-intensive, qualitative methods often end up with smaller

sample sizes, making it difficult to generalize to the broader population of situations under

study.

Nevertheless, qualitative studies can and do generalize. For example, they can demonstrate

that the cause and effect relationships present in one context are similar to those in another

context. Suppose you were part of a user interface team for a web application, trying to

understand why code reviews were always taking so long. Although your findings might not

generalize to the team managing the database backend, they might generalize to other frontend

teams for web applications in a similar domain. Knowing when the study generalizes is no less

challenging than for quantitative studies; in both cases, it’s a subjective matter of knowing

which assumptions still apply in new contexts.

Qualitative Methods Are Systematic
Qualitative methods are increasingly important in research on software engineering, and they

can be quite important in software engineering practice as well. But there’s a significant

difference between simply understanding problems and understanding problems

systematically. Therefore, the next time you read the results of a qualitative study or set out to

do your own, make sure you or the article are following a process like this:

Formulate the question

What knowledge is desired and why? How will the knowledge be used?

Consider viable sources of objective evidence

What data can be gathered objectively, with as little bias as possible? Can you gather from

multiple sources to account for biases in individual sources?

62 C H A P T E R F O U R

Interpret patterns in the evidence

Are the sources of evidence consistent with one another or do they conflict? What new

questions does the evidence data raise? Do they lead to a hypothesis that can be tested

with further data?

Although this cycle of question formulation, evidence gathering, and interpretation can be a

long process, each iteration can lead to more confidence in your understanding, which means

better decisions and better outcomes. Moreover, when you combine qualitative methods with

quantitative tools, you’ll have a powerful toolbox with which to understand and improve

software engineering practice.

References
[Conrad 1985] Conrad, P. 1985. The meaning of medications: another look at compliance.

Social Science and Medicine 20:29–37.

[Knuth 1989] Knuth, D. 1989. The Errors of TeX. Software Practice and Experience 19(7):607–685.

U N D E R S T A N D I N G S O F T W A R E E N G I N E E R I N G T H R O U G H Q U A L I T A T I V E M E T H O D S 63

