

How Do Open Source Developers Talk about Users?

ABSTRACT

When open source software developers are making design

decisions, how do they talk about users? To begin to answer

this question, 100 contentious Firefox bug reports were

analyzed for distinct uses of the word “user.” The results

show that developers use authoritative words (such as

allow, educate, and require) to describe what software does

for users. Most statements involved confident speculation

about what users need, expect and do, whereas a minority

of statements demanded evidence for such unsubstantiated

claims. The results also show that when describing users,

developers describe them in general terms, rather than

referring to particular uses cases or user populations. These

results suggest that, at least in the broader Firefox developer

community, developers rely largely on stereotype and

instinct to understanding user needs.

Author Keywords

Open source software, usability, Mozilla, Firefox

ACM Classification Keywords

H.5.2 [Information interfaces and presentation]: User

interfaces—evaluation/methodology.

INTRODUCTION

Nearly 25 years ago, Gould and Lewis [4] found that many

designers believed investigating user needs would be

fruitless as users do not know what they need. Some

designers also tended to underestimate or overestimate user

diversity, arguing that user research was unnecessary

because user behavior was either too homogenous to

require such investigation, or too diverse to benefit from it.

Arguably, some of these beliefs sound naive today. Many

companies are competing on the usability of their software,

and particularly on the web, user-centered design principles

have received broad awareness. User-centered design is

taught in universities around the world, and in the past

decade, software companies and even open source

communities have begun to form dedicated user research

teams in order to improve the user experience of their

software.

Given these shifts, have software designers’ beliefs about

users changed? For example, the Firefox web browser is

thought of as one of the most usable browsers relative to

many other browsers, and one of the most usable open

source applications available (despite issues with the

usability of other open source projects [6]). Is there

something particular about the developer community and

how they perceive users in projects like Firefox that allows

them to better achieve usability?

We investigated this question by analyzing how Firefox

developers use the word “user” in design discussions

embedded in bug reports. Unlike asking developers about

their attitudes about user-centered design, this data allows

us to see, as independent observers, how developers’

attitudes influence practice. For example, do developers

discuss users in objective, substantive ways? Or do they

invoke stereotypes and generalizations about users and

design from instinct? What are the different ways in which

the word “user” is used to convey arguments and make

claims about user behavior? By answering these questions,

we can begin to understand how the software designers of

today reason about user needs.

To answer these questions, we analyzed a large corpus of

statements in 100 public Firefox bug reports containing the

word “user.” Our goal in analyzing these reports was to

understand developers’ use of the word “user,” but bug

reports cover a much broader spectrum of collaboration,

including reproduction, code review, and repair [5]. In

order to focus our analysis on discussion, we focused on

reports of problems that had been reproduced and decided

upon, by downloading only those marked as RESOLVED,

VERIFIED, or CLOSED and resolved as FIXED,

INVALID, or WONTFIX.

CHI 2010 Workshop on The Future of FLOSS in CHI Research and Practice

Amy J. Ko and Parmit K. Chilana
Information School

University of Washington
Seattle, WA (USA)

{ajko, pchilana}@u.washington.edu

KEY FINDINGS

Developers Make Strong Claims about User Impact

About 27% (124 of 452 statements) of the occurrences of

“user” described what the current or future version of the

software would make possible for users (independent of

whether such capabilities would be useful to users). A

useful way to analyze these statements is by the verb used.

In our sample, there were 11 kinds of verbs used to describe

what affect the software would have on users (e.g. allows,

enables, educates, requires, restricts, breaks, helps, protects,

confuses, satisfies, annoys).

Another interesting trend in these statements about user

impact was that, at least when talking about what the

system would make possible, developers usually spoke

universally about user impact. In 90 of the 124 statements,

developers referred to “users” or “the user” in general when

speculating about what the system would make possible,

instead of identifying a particular group of users who would

benefit. In the other 34 statements, developers tended to

identify groups who performed particular actions or used

particular platforms or systems.

Developers Speculate Confidently about User Behavior
and Needs

About half of the uses of user involved claims about user

behavior or needs (260 of 452 statements). We again found

it informative to consider the verbs that developers used in

describing users’ behaviors and needs (e.g., do, understand,

expect, want, don’t care, need, confused by, benefit from, annoyed

by, know). The most common claims that developers made

were about what users would understand, want or expect in

particular design changes and what users do with the

existing software design. Developers also speculated about

what users care or do not care about, what they would be

confused and annoyed by, and what they know and need.

Few Developers Demand Evidence

Although the previous findings paint a picture of developers

as highly speculative and overconfident, there were some

developers who criticized these practices, or at least

reflected on them. The first critique raised concerns about

the lack of evidence that developers had about user

behavior or user needs and the problems with making

changes to the software on such unsubstantiated grounds.

The second critique raised concerns about the lack of depth

in developers’ understanding of user needs, critiquing the

ill-defined nature of the problems that developers were

trying to solve. The last critique was for developers

patronizing, deriding, and even insulting users.

Unfortunately, few of these comments led to substantive

discussion about how to substantiate developers’ claims or

how to better understand user needs.

DISCUSSION

In general, our findings reveal a number of interesting

trends in the use of the word “user.” In particular, our

results show that the word helps accomplish two major

tasks: (1) Describing what the software enables users to do,

implicitly connecting these capabilities to possible user

needs. (2) Speculating about user needs, but rarely invoking

even simple forms of objective evidence. This is similar to

the notion of the “elastic user” [3], in which users are

described in whatever way would support developers’

opinions. What this reveals is an imbalance of evidence: not

surprisingly, developers were confident in their reasoning

about system capabilities, but lacking in evidence about to

what extent these capabilities matched user needs.

Although our data suggests that Firefox developers lack rigor

in their understanding of users, the frequency with which users

are mentioned implies that the community has high awareness

of the importance of user needs. The lack of user research,

with the high awareness of the user perspective and the relative

usability of Firefox suggests that simply bringing the user

perspective into discussions may promote more iterative

development and refinement. For example, perhaps

exaggerated, speculative claims about users play a positive role

in design discussions, helping groups to identify more

conservative ground truths, even in the absence of evidence.

Returning to our original question, have software designers’

beliefs about users changed in the past 25 years? At least

with regard to our sample, the answer is yes: attitudes have

shifted from one where the developer knows best to one

where designers are more aware of their role as a service

provider. What has not changed is the degree to which

designers seek evidence about actual user needs and the

degree to which they use such evidence to inform their

design decisions. These findings both affirm the importance

of user-centricity in software design, but also call for future

work in evidence about user needs more widely available in

the resource- and time-constrained context of larger

software development practice. For example, Gould and

Lewis [4] originally proposed a form of participatory

design, in which users are active participants of a design

team; these practices are now being seen in open source

projects [1,2]. Both researchers and practitioners, in

industry and open source communities, should think

carefully about tools and methods that make learning about

user needs more feasible.

REFERENCES
1. Bach, P.M., DeLine, R., and Carroll, J.M. Designers wanted:

participation and the user experience in open source software

development. Proc CHI '09, (2009), 985-994.

2. Barcellini, F., Détienne, F., and Burkhardt, J. User and developer

mediation in an Open Source Software community: Boundary

spanning through cross participation in online discussions. Int. J.

Hum.-Comput. Stud. 66, 7 (2008), 558-570.

3. Cooper, A. and Reimann, R. About Face 2.0: The essentials of

interaction design. Information Visualization 3, (2004), 223-225.

4. Gould, J. and Lewis, C. Designing for usability: key principles and

what designers think. Comm ACM 28, 3 (1985), 300-311.

5. Ko, A., Deline, R., and Venolia, G. Information Needs in

Collocated Software Development Teams. Proc ICSE '07 (2007),

344-353.

6. Nichols, D. and Twidale, M. The usability of open source

software. First Monday 8, 1-6 (2003).

