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Abstract

Many dynamic programming language features, 
such as implicit declaration, reflection, and code 
generation, make it difficult to verify the existence of 
identifiers through standard program analysis. We 
present an alternative verification, which, rather than 
analyzing the semantics of code, highlights any name or 
pair of names that appear only once across a program’s 
source files. This uniqueness heuristic is implemented 
for HTML, CSS,  and JavaScript, in an interactive editor 
called Cleanroom, which highlights lone identifiers 
after each keystroke. Through an online experiment, we 
show that Cleanroom detects real errors, that it helps 
developers find these errors more quickly than 
developers can find them on their own, and that this 
helps developers avoid costly debugging effort by 
reducing how many times a program is executed with 
potential errors.  The simplicity and power of 
Cleanroom’s heuristic may generalize well to other 
dynamic languages with little support for edit-time 
name verification.

1. Introduction

Dynamic languages such as JavaScript, Perl, PHP, 
Python, and Ruby have quickly become the foundation 
of the interactive web. And with good reason: their 
support for implicit declaration, reflection, code 
generation, and other dynamic features frees developers 
to quickly express and iterate on code without worrying 
about variable declarations or types.  For example, 
because JavaScript’s objects are essentially hash tables, 
developers can customize objects with unique 
properties and other metadata (as in object.checked = 
true, where no such property checked has been 
declared), construct property references at runtime (e.g., 
calendar[‘week’+week]),  and dynamically modify 
and generate functions on the fly. It also allows 
developers to use reflection in more facile ways, 
inspecting whether objects have certain properties (e.g., 
object.hasOwnProperty(‘checked’)).

Of course, this benefit also imposes a great cost: 
because program entities need not be declared, there are 
few opportunities for compilers or interpreters to warn 
developers about identifiers that might not exist, 
deferring the detection of many errors to runtime. For 
example, if the developer who wrote the code in the 
previous paragraph had typed cheked instead of 
checked, there would not have been a warning that the 
property was undeclared until the code executed; worse 
yet, many identifier names appear in string literals, 
making them impossible for traditional type checkers to 
verify.

While the semantic name resolution in dynamic 
languages is not possible, there has been little research 
on alternative forms of  verification. In this paper, we 
present one such verification, which we call the 
uniqueness heuristic: any name or pairs of names that 
occurs only once in a program is likely unintended. We 
explore the merits of this heuristic with Cleanroom 
(Figure 1), a new web-based editor that implements the 
uniqueness heuristic for HTML/CSS ids and class 
names, Javascript variables, object properties, function 
names, and string literals.

Figure 1. Cleanroom: a web-based, bug-finding 
JavaScript/HTML/CSS editor.



Although the uniqueness heuristic is simple, we have 
found it to be powerful: through an online experiment 
that asked users to complete a JavaScript-based 
calculator program, we show that Cleanroom identifies 
a variety of legitimate errors, that Cleanroom users 
identify these errors faster and that they find these errors 
before executing their programs. These results 
demonstrate that the uniqueness heuristic, and 
Cleanroom’s implementation of it for popular client-
side web scripting languages, is an effective means of 
detecting problems with identifiers, without requiring 
developers to declare names.

In the rest of this paper, we discuss other forms of 
bug detection and prevention for dynamic languages 
and then describe Cleanroom’s design and 
implementation. We then describe the details and results 
of our experiment and discuss the implications of our 
work on the future of editors and dynamic languages.

2. Related Work

Although the existence of a name can be difficult to 
verify in dynamic language code, there are a variety of 
approaches that can detect and prevent some forms of 
errors. First and foremost, many errors in HTML and 
CSS code occur not because of semantic errors, but 
because of syntax errors. HTML and CSS validators can 
find syntax violations and check for duplicate HTML 
identifiers and reserved words. These validators do not 
check semantics; for example, they do not verify 
whether an HTML class name referenced in a CSS rule 
appears anywhere among the HTML files of a web site. 
Some systems attempt to statically validate dynamically 
generated HTML, but require the use of specification 
languages [2].

Beyond syntax errors, there are many tools that cat 
detect potential errors by identifying error-prone use of 
language constructs. One notable tool is JSLint (http://
jslint.com), which checks for a missing semicolons, 
inappropriate line ending punctuators, risky 
expressions,  unreachable code, and also any variable 
that is not declared with the var keyword. JSLint does 
not check property names of objects, because properties 
can be dynamically assigned and deleted, but it does 
generate a list of all identifiers string literals, which 
developers can look through for misspellings.  Google’s 
Closure compiler (http://code.google.com/closure/) also 
catches common JavaScript errors, including redeclared 
variables, function names that mask variables,  redefined 
namespaces, references to variables before declarations, 
and potentially unused object properties. While both 
tools detect many important errors, they also detect 
many false positives, because the heuristics used are so 
strict. Such high false positive rate can limit the utility 
of warning messages [5].

Modern web development tools also provide error 
prevention features through auto-completion.  For 

example, Dreamweaver’s code hinting keeps track of 
JavaScript frameworks declared with object literal 
notation, to support some auto-completion (e.g., typing 
YAHOO.util. will show all known properties and 
functions of the utility object in the Yahoo UI toolkit). 
Visual Studio 2008 has similar features, also supporting 
some type checking. For example, it is aware that the 
standard document.getElementById() function returns 
an HTMLElement type, and propagates this knowledge 
through a function, so that auto-completion can display 
an object’s functions and arguments. Both auto-
completion tools prevent errors by having developers 
select identifiers rather than type them. Unfortunately, 
neither system propagates knowledge through aliasing, 
where one variable is assigned to another. Moreover, 
these features only work when code is syntactically 
correct, forcing developers to correct syntax errors 
elsewhere in their code before getting feedback about 
problems with the code they are writing.

In recent years,  researchers have begun to focus on 
more sophisticated ways of detecting errors in web 
applications. For example, researchers have used user-
session data to generate tests [3,8]; these, however, 
require an application to be deployed.  Another approach 
crawls the state space of AJAX applications [4], 
detecting many real errors in the process,  but requires 
developers to configure the system for each program, 
choosing application-specific invariants (which the 
authors admit,  can be quite difficult).  Artzi et al. 
describe a similar approach for PHP programs, using 
symbolic execution and model checking to capture 
logical constraints on inputs, which are then used to 
check for crashes automatically [1]. These approaches 
are heavyweight and require significant developer effort 
to use and configure.  In contrast, Cleanroom requires no 
configuration,  and developers can even ignore it until it 
highlights potential problems.

3. Design & Implementation

In contrast to prior work, Cleanroom contributes a 
simple, easy to implement form of error detection 
feedback, which catches many of the same errors in 
prior work,  and many new kinds of errors, with less 
developer effort. In this section, we describe the 
rationale behind Cleanroom’s features and interaction 
design and then describe its implementation in detail.

3.1. Interaction Design

Cleanroom’s design embodies two major ideas. First 
is the uniqueness heuristic: names or pairs of names 
that appear only once across a project are likely to be 
wrong.  For example,  the name console in Figure 2 and 
the pair animal.species in Figure 3 appear only once 
in their respective programs, leading to a warning.



What makes this heuristic valuable is its simplicity 
and effectiveness: it is both easy to implement, efficient 
to evaluate, and easy for developers to understand, 
while also catching a variety of undeclared, unused,  or 
accidental names, across a variety of program 
constructs.   For example, Table 1 lists the types of errors 
that can be detected in HTML/CSS/JavaScript code 
through the sole application of the uniqueness heuristic. 
Moreover, because the heuristic only requires tokenized 
identifiers and string literals to work, it can catch errors 
in the presence of syntax errors. This enables feedback 
to appear consistently throughout a developers’ editing, 
uninterrupted by missing delimiters (as in Figure 2).

Cleanroom’s second major idea is in its immediate 
feedback about potential errors, which appear after 
every keystroke as simple underlines (reminiscent of the 
squiggly red underlines for misspelled words in 
Microsoft Word). Again, the power of this idea is in its 
simplicity: by having the editor always provide 
feedback about the presence of names, Cleanroom’s 
feedback plays a validating role in editing tasks, as 
described in Figure 4. For example, while a developer is 
typing the name lastElement, Cleanroom displays a 
green underline. This confirms what the developer 
knows, that the identifier is not yet complete. When the 
developer is done typing, one of two things will happen. 
If lastElement appears elsewhere, the green underline 
will go away; this confirms the developer’s 
expectations, which is useful feedback. If lastElement 

does not appear elsewhere, the green underline persists; 
this violates the developer’s expectations, drawing their 
attention to a potential problem. Cleanroom provides 
the same type of feedback when warnings appear or 
disappear in a different file after a keystroke. For 
example, Figure 5 shows a scenario in which the clear() 
function is called, causing the file warning count to drop 
from 2 to 1 in index.html and 14 to 13 in code.js.

While this feedback simple, it is also quite powerful: 
the experience of expecting the green underline to 
disappear, but still seeing it, creates a substantial 
surprise, which draws the developers attention to the 
potential error. This is akin to the surprise-explain-
reward design strategy [11], in which some knowledge 
gap draws a user’s attention to an explanation, which 
enables them to take some action to gain some reward. 
In the case of Cleanroom, the surprise is the discrepancy 
between a developer’s expectations about whether the 
Cleanroom warning will disappear and whether it 
actually does. The explanation is the warning message 
and the reward is the fixed bug. 

In addition to playing the role of confirming and 
conflicting feedback, Cleanroom’s warnings also play a 
reminding role, when the warning is on a declaration. 
For example, Figure 6 shows Cleanroom warnings on 
object property and function names that do not appear 
elsewhere. When these names are later referenced, the 
developer receives confirmation that the function or 
variable exists, as well as that the name they referenced 
was the one they intended.

Undeclared HTML identifiers and class names
Undeclared JavaScript variables
Unused identifiers and functions
Accidental typos, such as identfier

Casing typos, such as endoffile vs. endOfFile

Invalid HTML tags and attribute names
Invalid CSS properties and values
Undeclared object properties, such as YAHOO.Dom.getStyle

Undeclared object functions
Missing source file includes
Potentially invalid string literals containing names
Identical names used in incompatible contexts

Table 1. Potential HTML/CSS/JavaScript issues that 
Cleanroom detects with its uniqueness heuristic.

Figure 4. Cleanroomʼs timely, immediate feedback 
about the existence of names, either confirming or 

violating a developersʼ expectations.

developer receives 
feedback that 
unfinished name is 
not declared

developer receives 
conflicting feedback, 
drawing attention to 
potential error.

declared

undeclared

developer receives 
validating feedback, 
that the name intended 
was successful typed.

Figure 5. File-level feedback also 
confirms or violates developer 

expectations.

Figure 3. Cleanroom detects 
sequences of names that only appear 
once in the code, identifying 
potentially undeclared properties.

Figure 2. Errors can 
still be detected in 
the presence of 
syntax errors.

Figure 6. Declaration 
warnings highlight 
unused code.



In addition to simply warning about errors, 
Cleanroom also provides error messages with 
recommendations of similar names, as in Figure 7. 
When these recommendations come from a syntax or 
API, as in the case of CSS property names, HTML tags, 
or standard JavaScript browser globals such as 
document, window,  and console,  they can play an 
educational role, teaching the developer valid names.

3.2. Implementation

Cleanroom consists of several ANTLR tokenizers 
(http://www.antlr.org/), the Bespin code editor (https://
bespin.mozillalabs.com/), JSLint (http://jslint.com), and 
the Cleanroom code. The Bespin editor was customized 
to invokve the Cleanroom analyses after each keystroke 
and to draw underlines beneath tokens with warnings.

The Cleanroom algorithm involves a short sequence 
of analyses, executed each time a file is loaded or 
modified. First, each file that has not been processed or 
was recently modified is incrementally tokenized, 
adding and removing tokens for characters in response 
to modifications. The tokenizer is also responsible for 
assigning a Cleanroom token type to tokens that may 
represent names (primarily identifiers and string literals) 
and reporting these name tokens back to Cleanroom.

After tokenization, Cleanroom updates a table of 
name tokens that appear across all files. The table is 
divided first by the token types assigned by the 
tokenizer. The types in our HTML/CSS/JavaScript 
implementation include HTMLTag, HTMLAttributeName, 
HTMLClass , HTMLID ,  CSSPropertyName , CSSValue , 
JSFunction, JSProperty, JSVariable,  and JSLiteral. 
Within each of these types is a hash table of name token 
lists,  separated by name. It is important to note that 
token types span languages: for example both the 
HTML and CSS tokenizer generated HTMLTag names, 
because both languages refer and use HTMLTag names. 
Moreover, HTML code can contain JavaScript and CSS 
code, so the names of a particular token type can appear 
across files written in different languages.

String literals are processed in a special way. If the 
entire literal matches the JavaScript identifier format 
(based on a simple regular expression) it is promoted to 
a name token. If the string literal successfully parses as 
a JavaScript statement, it is tokenized as JavaScript 
code, and used to identify additional name tokens. All 
other string literals are ignored.

Once the table of name tokens is constructed, 
warnings are computed for all identifiers in the table, by 

token type. For each type, names whose name token list 
is often length 1 are selected for warnings. However, 
each token type is also allowed to compare these unique 
names against any number of other dictionaries.  For 
example, HTML tag names and CSS property names 
are compared against a dictionary of valid names, 
preventing warnings about <body> tags, for example, 
which usually appear only once.  JavaScript function 
name tokens are also compared against standard global 
JavaScript names, such as document, console, window, 
and others.

Each Cleanroom token type can also declare other 
token types to which names should be compared. For 
example, JSFunction tokens are not only compared 
with each other, but also with JSPropertys, 
JSVariables, and JSLiterals. Similarly, JSLiterals 
are compared against all other JavaScript names, since 
they may refer to functions, variables, or properties.

For each name token that appears only once, and 
does not appear in any of the additional dictionaries, 
Cleanroom generates a warning. Each token type 
declares its own message format.  Then, to each custom 
warning, we append a list of similar names (as in Figure 
7). We compute these similar names by computing the 
Levenshtein string distance [6] between the warned 
name and all names in the token type’s dictionaries 
(specifically, we use the Wagner-Fisher algorithm [10], 
which treats transposition as an atomic operation). 
Names whose distance is 1 are included.

To generate warnings about pairs of names, 
Cleanroom’s tokenizers also maintain previous and next 
links between name tokens, when names are separated 
by one of an accepted list of delimiters. For JavaScript, 
these delimiters were . (dot) and [ (left square bracket) 
both of which are valid ways of identifying properties 
and functions of objects. These links are used to 
generate a global hash table of concatenated name pairs, 
which is used to identifier pairs that occur only once. 
This analysis also utilizes any custom name pair 
dictionaries to avoid false positives. For example, we 
converted the standard browser APIs into a name pair 
dictionary, which contains standard pairs such as 
document.getElementById() and window.location.

In general, generating Cleanroom warnings for a 
language involves customizing a tokenizer, defining a 
set of token types, supplying dictionaries of valid names 
for each, as well as indicating which token types should 
be compared to one another. The rest of the Cleanroom 
implementation is language-independent.

Figure 7. Cleanroom suggests other names a developer might have meant.



4. Evaluation

Our goals for Cleanroom were to help developers 
notice legitimate errors before execution, so that they 
may fix them more quickly than they would through 
debugging. To do this, we designed an online 
experiment, comparing a version of Cleanroom that 
showed warnings (the Cleanroom condition), to a 
version of Cleanroom that tracked warnings, but did not 
show them (the control condition). This allowed us to 
observe how developers’ behavior changed as a result of 
Cleanroom’s highlighting. Both versions also showed 
JSLint warnings, to give the baseline version some 
novelty for recruiting purposes. JSLint also identifies 
some of the same errors that Cleanroom can (namely 
undeclared variables through implied global detection).

4.1. The Calculator Task

Developers were asked to complete 
the graphical calculator in Figure 8. In 
the reference implementation, the UI 
was implemented in HTML and CSS 
with HTML class names and ids. Event 
handlers were attached to each button’s 
onclick attribute, to call JavaScript 
functions that operated the calculator. 
A code.js file contained a calculator 
object literal, with the properties 
memory, display, operation, and isReset,  and the 
functions pressDigit, pressOperation,  clear,  add, 
subtract, multiply, divide, and updateDisplay.  The 
calculator worked by appending digits to display with 
the pressDigit() function, saving this string in memory. 
The pressOperation function assigned the name of the 
operation function to later call on the calculator to the 
operation property.  When the operation was the equals 
button, the name of the function stored in operation 
was retrieved using reflection and called. Each of the 
operation functions used the string stored in memory and 
display, parsed each of these numbers, assigned the 
result to display, and then updated the HTML display 
tag. Finally, isReset kept track of whether the 
calculator had just finished a clear or equals operation, 
indicating that the next digit pressed would overwrite 
the value currently displayed.

The experiment version of the calculator omitted the 
code summarized in Table 2, including all event 
handlers and functions, except for updateDisplay. 
Overall, developers were responsible for writing 43 
lines of JavaScript code. To ensure developers wrote 
similar code, we converted each line of the reference 
implementation into natural language (without using 
exact identifier names),  providing developers with line-
by-line specifications in comments above each function. 
This allowed developers to focus on implementing the 
specifications, rather than conceiving of a solution.

To test whether developers had completed the tasks, 
the editor injected several 
automated tests upon each 
preview, checking whether 
pressing the calculator 
buttons would provide 
correct answers for 9+5, 
9–5, 9x5, 9/5, as well as 
properly display 0 after 
pressing the clear button. 
The results were shown 
alongside the Cleanroom 
editor, as in Figure 9.

4.2. Developer Recruiting

Developers were recruited from university mailing 
lists known to have web developers. An email was sent 
with the subject “try Cleanroom, a new bug-finding 
JavaScript/HTML/CSS editor,” describing Cleanroom 
and the study, with a link to the application. Developers 
were offered a $10 at Amazon for completing the task. 
According to Google analytics, 94 potential developers 
visited the site from the direct link while the experiment 
was open. Forty logged in, revealing the editor and task 
description. Of these, 22 typed for more than 3 minutes; 
of these, 8 Cleanroom and 8 control developers made 
significant progress. Although success on task was not 
an explicit factor in our study, it is worth noting that 3 
of 8 Cleanroom developers succeeded (and 3 more were 
missing only one function) and 5 of 8 control 
developers succeeded; the rest of the developers made 
significant progress on the task. Our final data consisted 
of these 16 developers and their  warnings.

Our goal was to involve developers who knew 
JavaScript,  HTML, and CSS syntax, and regularly used 
these languages to develop web sites. Therefore, upon 
arriving at the site and choosing a log in name, 
developers were asked to complete the statement, “In 
the past month, I've written JavaScript code ...” and 
select from never, once, weekly, daily, or hourly.  
Translating these responses to a 1-5 scale, with 5 being 
hourly,  Cleanroom developers averaged 2.0 and control 
developers averaged 2.5.  Analysis using ordinal logistic 
regression showed no significant difference between the 
two groups (χ2(1, N=16) = 0.73, n.s.).

reference code experiment differences
index.html 60 lines of HTML, with 18 

inline event handler calls.
missing 18 inline event 
handler calls, attached to 
buttonsʼ onclick attributes.

code.js 101 lines of JavaScript 
code in an object called 
calculator.

76 lines of JavaScript, missing 
function implementations.

style.css 44 lines of CSS, 4 rules. same

Table 2. The differences between the reference and 
experiment versions of the calculator implementation.

Figure 9. The automated 
test feedback, updated after 
each preview.

Figure 8. The 
calculator that  
developers 
implemented.



4.3. Data Collection, Extraction, and Cleaning

As developers worked, Cleanroom tracked every 
keystroke applied to each file, every time the 
application was previewed, and every time the 
Cleanroom window focus was lost or gained, with each 
even time stamped. Cleanroom also recorded each 
warning it identified, the keystroke that created it, and 
the keystroke that caused it to disappear. With each 
warning, we recorded information about the token it 
regarded, including the token’s text,  its kind (one of the 
types listed in section 3.2) and whether the token was a 
declaration.  Using the data recorded above, we 
extracted the warning measurements summarized in 
Table 3. We ignored warnings that were shown as 
identifiers were typed, by focusing on those that still 
appeared after 2 seconds of typing inactivity.  Moreover, 
out of the 845 warnings obtained in our experiment, 136 
of them were discarded because they were generated as 
a result of file loading delays. This left 709 data points 
to be used in our analyses, 332 from Cleanroom 
developers and 377 from the control group.

4.4. Results

Let us begin by discussing our analysis approach. 
Our unit of analysis was a single warning, resulting in 
unbalanced repeated measures on each developer based 
on their number of warnings. Logistic regression was 
used for dichotomous, categorical, and ordinal results. 
For continuous measures, a mixed-effects model 
analysis of variance was used with subject properly 
nested within cleanroom and modeled as a random 
effect to handle within-subject correlation. 

Were warned names fixed? One of our primary 
questions was whether the warnings that Cleanroom 
identified (regardless of whether they were shown), 
were actually addressed by developers in each 
condition. If both conditions were actively working on 

the task, we would expect both groups to successfully 
remedy legitimate warnings at similar rates. This was 
indeed the case. Cleanroom developers fixed 258/332 
(78%) of warnings; control developers fixed 308/377 
(82%). The difference was non-significant (χ2(1, 
N=709) = 0.12, n.s.), confirming that Cleanroom 
identified real errors, because warnings were addressed 
even when they are not highlighted. 

 Were warned names explicitly modified? In 
addition to checking how often warnings were 
addressed,  we also checked whether warnings were 
directly addressed through the explicit modification of 
the identifier they highlighted (as opposed to changes to 
other identifiers or large blocks of text deletion). Of all 
addressed warnings,  Cleanroom developers explicitly 
modified 98/164 (60%),  whereas control developers 
explicitly modified only 69/203 (34%). This difference 
was significant (χ2(1,N=367)=14.16,p<.001),  showing 
that Cleanroom developers were more likely to focus 
their edits specifically to problematic names, and not on 
segments of code indirectly related to the warning.

How long did warnings persist? Having confirmed 
that the Cleanroom warnings identify legitimate errors, 
and focus users’ attention on them, to what extent did 
showing Cleanroom warnings help developers save 
time? The median Cleanroom warning lasted 141 
seconds (from 1 to 3,085), whereas the median control 
warning lasted 223 seconds (from 1 to 15,558). This 
difference was significant (F(1,16.8)=9.18, p<.01), 
suggesting that Cleanroom significantly reduced how 
long errors remained in code. (Note that because of 
duration’s high skew, values were log-transformed; this 
is a common practice for data with a power law 
distribution). Of course, because the task had no time 
limit, the duration of warnings that were not addressed 
depended on how long developers worked. Excluding 
periods of inactivity lasting longer than 1 minute, 
Cleanroom developers worked an average of 29.3 
minutes (sd=21.1), while control developers worked 
51.5 (sd=26.8). Despite the lower time spent by 
Cleanroom users, these differences were not significant 
(F(1,14) = 3.40, n.s.). This suggests that part of the 
differences in durations may have been due to the 
control group’s extra time on task. 

How often was the program executed while 
warnings were active? Since Cleanroom’s warnings 
were potential errors,  it generally behooved 
programmers to address warnings before executing their 
programs, to avoid debugging effort.  Cleanroom 
developers’ warnings,  on average, persisted through 
about 1.7 executions (sd=4.6), whereas control 
developers’ warnings,  on average, persisted through 
about 6.4 executions (sd=17.0). This difference in (log-
transformed) executions showed a trend in Cleanroom’s 
favor, although it was not quite significant (F(1,14.3)
=4.49, p=.052). This finding suggests that Cleanroom 
does not only reduce the duration of potential errors, but 
also the debugging effort required to detect errors.

measurement operationalization
whether the warning 
was active

Warnings were considered active if there was 
no keystroke that caused them to disappear.

the time duration of 
the warning

The time between warning creation and either 
(1) the warning elimination or (2) the last 
recorded keystroke, less all periods of time 
inactivity greater than 1 minute. 

The kind of token on 
which the warning 
appeared

One of HTMLTag, HTMLAttributeName, 
HTMLClass, HTMLID, CSSPropertyName, 
CSSValue, JSFunction, JSProperty, 
JSVariable, and JSLiteral.

Whether the warning 
was a declaration.

Whether the token appeared after the 
function or var keyword.

explicit creation Whether the warning was appeared because 
of an operation on the token itself.

explicit elimination Whether the warning disappeared because of 
an operation on the token itself.

executions How many times the program was executed 
while the warning was active.

Table 3. Data extracted from logs about warnings.



What kinds of errors did Cleanroom find? Having 
demonstrated Cleanroom’s benefits quantitatively,  we 
now turn to a qualitative analysis of the types of errors 
Cleanroom identified. By inspecting the names 
highlighted in the Cleanroom condition,  we saw that the 
warnings covered the full range of error types described 
in Table 1, including undeclared names, unused names, 
and a variety of typos (including parseFLoat, 
getElementByID, onlcick, alert_box, etc.).

However,  Cleanroom identified more than just typos. 
One user used the word dim to declare a variable, 
apparently borrowing from Visual Basic syntax, but it 
was warned by Cleanroom. There were several cases 
where the developers called calculator functions as if 
they were global,  but upon receiving Cleanroom 
feedback, added calculator before the call. Another 
developer mistakenly used the word sum to refer to the 
calculator’s add function, and fixed the mistake less 
than a minute later.  Another developer attempted to give 
a variable the type int,  but removed it after seeing the 
highlight. All of these errors go beyond simple typos, 
helping developers identify misunderstandings about 
the JavaScript language and other semantic slips.

What non-errors did Cleanroom highlight? 
Surprisingly,  the only false positives were on the add, 
subtract, multiply, and divide function declarations. 
The implementation did not call these functions 
explicitly, but instead were referred to in string literals; 
it turned out that there was a bug in the tokenization of 
string literals inside of string literals in HTML, which 
prevented strings like “calculator.pressOperation
(‘add’)” from including the add in analyses. In other 
words, for at least the calculator task,  none of 
Cleanroom’s warnings were false positives.

4.5. Study Limitations

A number of limitations may influence the validity 
and generalizability of our study results. For example, 
we recruited student developers, whose expertise may 
have been limited compared to experienced web 
developers, who may have less need for Cleanroom’s 
error detection.  Moreover, we only studied 16 
developers; expertise varies enough that this number 
may have been too small to capture the different ways 
that developers might respond to Cleanroom’s feedback.

Another limitation was our study’s online 
deployment. We do not know exactly how often 
developers left the task and returned, or to what extent 
they analyzed Cleanroom’s code instead of working on 
the task.  In fact, one of the developers wrote the first 
author in the middle of the task pointing out a SQL 
injection vulnerability in Cleanroom’s implementation.

There were also some issues with our measurements. 
For example, the duration of a warning can be affected 
by many things other than when a developer noticed the 
problem: a developer might declare a variable, but then 
not reference it for an arbitrary amount of time. 

Moreover, each execution was likely unique in which 
warned names it executed; it is difficult to tell from our 
data how often a warned name was actually executed.

Finally, our experiment did not include a condition 
without warnings, since both conditions included JSLint 
warnings. A condition without warnings may have 
revealed different strategies than those observed in our 
experiment. For example, developers who were 
reminded that their code might have errors might have 
been more vigilant in avoiding them. 

5. Discussion

Our experiment results suggest that Cleanroom’s 
uniqueness heuristic, and its simple feedback about 
uniqueness warnings,  is effective at helping developers 
find and fix errors before executing. However, the 
heuristic does have several limitations and opportunities 
for improvement. We now discuss these in detail. 

5.1. Design Limitations

One of the heuristic’s major limitations is that it can 
catch typos that occur once, but not typos that occur 
multiple times. For example, in the development of 
Cleanroom itself,  the first author repeatedly typed 
identifer, omitting the final i in the name. 
Cleanroom would not have detected these errors, 
because the misspelling was not unique. Such 
misspellings might be detected by incorporating word 
processor style spell checking to words in identifier 
parts, although care would have to be taken to avoid 
false positives on abbreviations and non-words.

One form of identifier error not accounted for is in 
the construction of names. For example, imagine a web 
page with several elements representing weeks, each 
with an HTML id with the prefix week, followed by a 
number (e.g., week1, week2). A simple way to operate 
on these weeks as a set is to construct these ids in a loop 
(e.g., “week” + number). Future versions of Cleanroom 
could reason more intelligently about such dynamically 
generated prefixed and postfixed names.

While there were no false positives in our 
experiment, the uniqueness heuristic may not always be 
right: some names that appears only once may be 
correct; some literals that look like names may not be. 
We found, however, that the simplicity of the heuristic 
made false positives more tolerable and sometimes 
helpful.  For example, in our earlier “week” + number 
example, Cleanroom would have warned about week; 
this would have been a false positive, but it would have 
also reminded the developer that the line has the 
potential for error (because the number may not exist, or 
the prefixes might change). This is consistent with prior 
studies, which show that users’  willingness to tolerate 
false positives has mostly to do with users’ ability to 
understand a system’s reasoning [9].



5.2. Design Alternatives

In designing cleanroom, we considered several 
alternative designs, drawn primarily from text entry 
research.  One was that of digraph likelihood,  in which 
an editor would flag unlikely pairs of characters. This 
would catch a variety of typos.  For example, consider 
the code <script type="text/javscript">: the vs 
character pair is not common in English writing, 
suggesting an error. We considered computing digraph 
frequencies from general English, a broad corpus of 
JavaScript programs, or individual programs. However, 
we found that digraph frequencies are highly 
idiosyncratic: low-frequency digraphs in the NYTime’s 
front page appear as high-frequency digraphs in the 
Seattle Times front page. Moreover, the uniqueness 
heuristic appears to subsume most errors that unlikely 
digraphs would detect.

We also investigated the causes of typos, to look for 
ideas about how to prevent or detect typos. For 
example, typos tend not to occur in the first and last 
character of a word. This comes from a finding that if 
the first and last characters of a word are correct, people 
can still read sentences [7]. Another observation is that 
spelling errors come in many kinds, including character 
duplication, mistaken spelling of vowel or consonant 
sounds, and other mistakes. These facts could have been 
used to decide whether or not to show a uniqueness 
warning. However, after experimenting with some 
examples, we found that the simplicity of the 
uniqueness heuristic would have been diminished by 
selectively omitting warnings. In other words, the 
predictability of the heuristic was its strength.

5.3. Design Generalizability

How well would Cleanroom work for other dynamic 
languages, such as Perl,  PHP, Python, and Ruby? Like 
Javascript, none of these languages require variables to 
be declared, all of them are dynamically typed, and 
most of them support reflection and anonymous 
functions. Where they differ is in their variable scoping. 
For example,  in Perl, variables can be referenced as 
$scalars, @arrays, %hashes and &functions, and 
so the name space can be quite broad. In contrast, Ruby 
variable’s scope is determined by lexical characteristics: 
locals are lowercased,  constants start with an uppercase 
letter,  globals are prefixed by $, and so on. This would 
allow Cleanroom to be more confident in its detection 
of unique names within these separate name spaces. 
PHP is different in that by default, functions have no 
access to the global namespace, except through the 
global keyword; such declarations are their own 
source of error. Therefore, Cleanroom’s uniqueness 
heuristic applies well to all of these languages, but how 
names are scoped might enhance or restrict the 
heuristic’s applicability and false positive rate.

6. Conclusions

In this paper, we have presented Cleanroom, a web-
based HTML/CSS/JavaScript editor that warns 
developers about names and sequences of names that 
appear only once. We have shown that Cleanroom 
detects real errors, that it helps developers find these 
errors more quickly than developers can find them on 
their own,  saving costly debugging effort. Cleanroom is 
just one point in a design space of error detection tools 
that exploit human causes of software errors.  In future 
work, we hope to explore other ways of detecting errors 
by exploiting similar patterns in developer behavior.
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