
 6/14/06

A Linguistic Analysis of How People Describe Software Problems

Abstract

There is little understanding of how people

describe software problems, but a variety of tools

solicit, manage, and analyze these descriptions in

order to streamline software development. To inform

the design of these tools and generate ideas for new

ones, an study of nearly 200,000 bug report titles was

performed. The titles of the reports generally described

a software entity or behavior, its inadequacy, and an

execution context, suggesting new designs for more

structured report forms. About 95% of noun phrases

referred to visible software entities, physical devices,

or user actions, suggesting the feasibility of allowing

users to select these entities in debuggers and other

tools. Also, the structure of the titles exhibited

sufficient regularity to parse with an accuracy of 89%,

enabling a number of new automated analyses. These

findings and others have many implications for tool

design and software engineering.

1. Introduction

Many of the changes that occur in software

maintenance are driven by the descriptions of software

problems found in bug reports. These reports—which

are also known as “problem reports,” “modification

requests,” and a variety of other names—often

translate directly into development tasks. For example,

a report titled “info window sometimes has no

scrollbars” indicates that the software may contain

faulty code that should be repaired. Other descriptions

might come from users or developers requesting new

features, or identifying usability or performance issues.

Although bug reports have been used as a source of

data for some tools [2, 3, 5, 7, 8], none of these

projects have considered how people describe software

problems. Therefore, we analyzed the titles of nearly

200,000 bug reports from five open source projects,

discovering several useful trends. For example, most

titles had the same basic content: an entity or behavior

of the software (such as a user interface component or

some computation), a description of its inadequacy,

and the execution context in which it occurred. Also,

nearly all of the noun phrases in the titles referred to

visible entities, physical devices, or user actions,

suggesting the feasibility of interaction techniques for

selecting entities by direct manipulation. We also

found that report titles can be accurately parsed,

suggesting the feasibility of several new automated

analyses.

These results have a number of implications for

software engineering research. First, our results

suggest designs for more structured problem report

forms that better match people’s phrasing of problems,

while enabling tools to more easily reason about

reports. The results also suggest new ways of

specifying design requirements in a more natural way

than current formal specification languages. Our results

also find that the vocabulary problem frequently cited

in HCI [6] is just as prevalent in software development,

suggesting new requirements for search tools that

require people to describe software behavior [15]. We

also found several new types of questions that

debuggers like the Whyline [9] should support, in

order to allow developers to inquire about the full

range of problems they discover.

Our results also suggest several ways that bug

report titles can be explicitly analyzed in order to

streamline software engineering workflow. Report

titles can be parsed with an accuracy of 89% using a

simple algorithm, enabling new types of automated

analyses. Our results also suggest new strategies for

separating problem reports from feature requests,

grouping reports by the software quality attribute to

which they correspond, and automatically assigning

reports to developers [3, 12].

In this paper, we begin by describing related work

and then our report corpus and the methods that we

used for obtaining and preparing it for analysis. Then,

we describe trends in the language, structure, and

content of the descriptions, and we end with a

discussion of the implications of these trends for tools,

tool design, and software engineering.

0-7695-2586-5/06 $20.00 © 2006 IEEE 127

Amy J. Ko, Brad A. Myers, and Duen Horng Chau
Human-Computer Interaction Institute

Carnegie Mellon University, Pittsburgh PA 15213
ajko@cs.cmu.edu, bam@cs.cmu.edu, dchau@andrew.cmu.edu

http://www.cs.cmu.edu/~marmalade

 6/14/06

2. Related Work

To our knowledge, no other work has specifically

studied linguistic aspects of software problem

descriptions. Twidale and Nichols [10] performed a

qualitative study of usability bug reports, but their

linguistic analyses were sparse and informal.

Sandusky, Gasser, and Ripoche studied dependencies

between bug reports, finding that they served an

organizing role, but they did not study the content of

the reports [14]. Several studies have used problem

reports as data, for example, to better understand the

process of software maintenance over time [5], to

classify reports in order to assign them to developers

[3], and to inform the design of new bug tracking

systems [2]. Other studies have investigated similar

version control data [7, 8], but they have mainly

focused on the resulting changes to code and not the

problematic behavior that motivated the changes.

Several studies have investigated linguistic aspects

of other areas of software development to inform the

design of new tools and languages. Pane et al. studied

the language and structure of non-programmers’

solutions to interactive and numerical programming

problems, discovering a preference for certain

language constructs, a tendency to misuse logical

connectives such as and and or, and the common use

of aggregate operations [11]. Begel and Graham

studied features of programmers’ speech about code in

order to design new interaction techniques for creating

code, finding several types of ambiguity [4]. In our

work on the Whyline [9], we studied professional and

non-programmers’ questions about program failures

(for example, “Why didn’t Pac Man resize?”), but we

only focused on high-level features of these questions,

such as whether the question was negative (why didn’t)

or positive (why did), and whether programmers

referred to multiple events and entities (such as “Why

did Pac resize after eating the dot?”). There have also

been more theoretical studies of linguistic aspects of

software development in the area of semiotics [1].

3. Method

Our study focused on two research questions:

• How varied are the nouns, verbs, adverbs and

adjectives used to described software problems?

• What roles do these parts of speech play in

identifying software problems?

To answer these questions, we analyzed the titles of

problem reports from several online bug tracking

systems. These titles included statements like

Duplication of entries in package browser and crash

if i try to clear cookies. To address the first

question, we determined the set of words of each

particular part used in all titles. We compared this to

the set of words of that part of speech in the electronic

New Oxford American Dictionary (NOAD). For our

second question, we manually classified the titles’

words and phrases, generating descriptive categories.

Unfortunately, we were unable to assess the reliability

of our classifications with multiple raters.

We obtained our problem report data set from

online bug tracking systems for several systems: a

software development environment (Eclipse), a web

browser (Firefox), a web server (Apache), an operating

system kernel (Linux), and a suite of office applications

(OpenOffice). These were obtained by downloading

each project’s bug database in comma-separated value

format from the project’s website. The reports for these

projects come from diverse user and developer

populations, the applications are implemented in

various languages, and the projects all have unique

communities and processes. The number of reports, the

number of unique reporters, and the date of acquisition

for each database are given in Table 1. The number of

unique reporters was less than the sum of each

project’s number of reporters, suggesting that some

reporters (11%) reported on multiple projects.

To prepare the five datasets for the analyses in this

paper and also for future work, we determined

common fields across all project databases, which

included the title, and also the open date, priority,

severity, assignee, reporter, status, resolution, product,

component, and version. To aid our linguistic analyses,

we then applied the Stanford probabilistic part-of-

speech tagger [16] to each report title. For each word in

each title, the tagger identified its part of speech (noun,

verb, adjective, etc.), while accounting for words that

have different meanings but identical spellings. The

tagger that we used is reported to have 97% accuracy

when used on a standard corpus of newspaper stories,

meaning that about 3 of every 100 words are tagged

incorrectly. We expected our accuracy to be lower,

however, because the titles were very technical, often

grammatically incorrect, and prone to misspellings.

Our final data set is available for download at

http://www.cs.cmu.edu/~marmalade/reports.html.

Table 1. The five projects studied, the number of

reports and unique reporters for each, and the date on

which the project!s reports were acquired.

project # reports # reporters date acquired

Linux Kernel 5,916 3,296 Jan. 18, 2006

Apache 1,234 8,538 Jan. 18, 2006

Firefox 37,952 16,856 Jan. 17-18, 2006

OpenOffice 38,325 11,604 Jan. 18-19, 2006

Eclipse 90,424 9,175 Jan. 19, 2006

total 187,851 49,469 (44,406 unique)

0-7695-2586-5/06 $20.00 © 2006 IEEE 128

 6/14/06

4. Results

Overall, there were 123,417 unique words in the

data set. Word frequencies generally followed Zipf’s

law, as seen in Figure 1.

Nouns and Noun Phrases

There were 82,181 distinct nouns in the dataset.

Although the projects dictated what entities were

described, we were able to identify categories that

spanned all of the projects by using regular expressions

to analyze the dataset’s 82,181 distinct nouns. About

54% were proper nouns that represented code, file

names, acronyms and version numbers. About 9%

were quoted error messages and UI labels. About 7%

were hyphenated, such as file-format, representing

application-specific concepts or behaviors. About 3%

were acronyms of data types, such as PDF or URL. Less

than one percent were abstract nouns ending in -ility,

-ness, and –ance that indicated some software quality;

the most common of these are shown in Table 2.

Overall, there were about 4000 nouns consisting of

only lower case letters. The eight most common were

file, page, error, text, dialog, view, menu, and editor,

which accounted for 5% of all the nouns used. The

most frequent nouns of each project indicated its major

kinds of entities. For example, the most common

Eclipse nouns were view, editor, dialog, file, and NPE

(null pointer exception), each occurring in about 3% of

titles. The most common OpenOffice nouns were

document, file, text, page, and OOo (the executable),

each occurring in about 4% of titles.

To get an understanding of the kinds of noun

phrases in the data, we sampled 100 titles and

identified and categorized their 221 top-level noun

phrases. We then sampled 1000 titles, and using the

same categories, found less than 2% change in

category proportions. The resulting categories are in

Table 3. About 26% described some GUI component.

The majority of these did not refer to the component

itself, but to some functionality, described by its visual

manifestation. For example, reporters referred to a

search dialog to describe a problem with its search

algorithm. About 23% were verbatim quotes of labels,

filenames, commands, and error messages (but not

necessarily within quotation marks). About 15% of

noun phrases were application names, and about 8%

described physical artifacts such as mice, keyboards, and

printer output. About 7% described user actions, such

as clicking or changing color, typically to indicate the

event that resulted in some problematic system

response. About 6% described some system-specific

behavior, and another 6% described some visual

attribute such as color, shape, order, or spacing. About

5% described some data type, typically to indicate the

type of data on which some computation failed. The

remaining 4% described some abstract concept such as

problem or issue, or any of the software qualities from

Table 2. These findings demonstrate that reporters

described nearly all entities and behaviors by referring

to some visual or physical entity or input event. This

was even true for problems in Linux and Apache,

where reporters described problems by relying on

named entities, physical devices, and visible system

behaviors such error messages, boot and freeze.

We expected variation in naming [6], and for

unnamed entities, there was considerable. For example,

commands to search in various applications were

referred to in a variety of ways, including find dialog,

find, “Find...”, find command, finding, find/replace,

and command to find. We expected less variation in the

named entities such as NullPointerException, but even

they exhibited substantial variation. For example, we

found nine variants of NullPointerException, and

several, such as NPE, did not contain the word null.

Figure 1. Frequencies of the 30 most common words.

Table 3. Categories of entities and behaviors to which reporters referred,

and examples and relative proportions of each (based on 1000 titles).

entity or behavior example %

GUI component find toolbar unexpectedly pops up 26

verbatim quote “firewire device not found” 23

application name Apache - Tomcat - mod_Jk 500 Internal Server Error 15

physical artifact blue screen with saa7134 tv tuner 8

user action saving a webpage as "Complete" messes with some tags 7

system behavior Jasper performs parallel compilations of same JSP. 6
visual attribute Line backgrounds and 'highlight current line' 6

data type Cannot open realvideo movies in realplayer 5

abstract concept Performance: slow object effects on solaris 9 4

Table 2. Qualities referred to most often

and the relative proportions of each.

quality % of qualities
performance 17
visibility 4
compatibility 6
usability 5
compliance 3
accessibility 4
badness 1
appearance <1
(other) 60

0-7695-2586-5/06 $20.00 © 2006 IEEE 129

 6/14/06

4.1 Verbs

There were 14,241 distinct verbs in the data set. Of

these, there were about 1,000 distinct base forms of

verbs that occurred more than twice throughout the

titles. For comparison, there are 9,525 base forms of

verbs in NOAD. The most common verbs and

conjugations are shown in Table 4, accounting for 25%

of all verbs used in the dataset.

Verbs played two roles in describing problems. The

most common was to indicate the grammatical mood,

which is a linguistic concept that refers to the intent of

a sentence. Based on a categorization of a sample of

100 titles, 69% had a declarative mood, describing an

undesirable aspect of the software, as in UI is non-

responsive for a long time. These could be labeled

bugs. About 23% were noun phrases with no mood, as

in compile failure in drivers/scsi. About 5% were

imperative, requesting some feature, as in Add more

detailed descriptions for errors and 3% were

subjunctive, describing a desire, as in Introduce

parameter should work for locals. Mood was a matter

of choice: for example, we found four reports for the

same problem, each using a different mood: F1 help

missing, Add F1 help, Should have F1 help, and F1 help.

The other role that verbs played was to indicate

some computational task, such as add, open, build,

update, find, use, set, select, show, remove, create, load,

get, save, run, hang, install, click, try, change, display,

appear, move, crash and freeze. These 25 verbs and their

conjugations alone accounted for 20% of verbs used in

the dataset, meaning that these verbs and the 9 in Table

4 accounted for 45% of all verbs used. The remaining

55% were more specific. In some cases, these verbs

were no more informative than their more general

synonyms. For example, mod_rewrite disrupted by

URLs with newlines could have used fails instead.

Other specific verbs, however, concisely identified

qualities of a behavior that would otherwise have been

cumbersome to specify generally. For example, to

rephrase location bar desynchronizes when closing

tabs would have required a lengthy and inaccurate

wording such as “does not occur at the same rate.”

4.2 Adverbs

Only 28% of the titles contained an adverb. Among

these, there were 1,751 distinct adverbs, but based on

hand-inspection of these, 13% were misspellings and

60% were misclassified because the sentence contained

some higher level punctuated structure. For

comparison, there are 6,137 adverbs in NOAD.

The remaining 476 words that were actually

adverbs served to characterize the inadequacy of some

entity (by modifying an adjective) or behavior (by

modifying a verb). The most common adverbs not, up,

only, too, correctly, properly, and always, accounted for

58% of adverbs used and indicated some behavioral

inadequacy, as in method completion doesn’t always

trigger or Dialog too big. The adverb not occurred in

15% of titles. Other adverbs helped to characterize the

kind of entity, as in unable to search for deeply

overridden method. These adverbs helped to reduce the

scope of the entity being specified by attributing it

some unique characteristic. The least common use of

an adverb indicated some quality attribute, like those in

Table 2. For example, adverbs such as slowly signified

a performance issue, and quickly generally signified a

usability issue.

4.3 Adjectives

About 48% of titles contained an adjective. Of the

17,034 distinct adjectives in the dataset, and the 5037

that consisted of lowercase letters, only 2,447 occurred

more than once. There were 2,695 hyphenated,

application-specific properties such as non-ascii. For

comparison, there are 21,316 adjectives in NOAD.

Adjectives served two purposes. The first was to

help identify an entity, by attributing a characteristic to

a noun phrase, as in large file Downloads size wrong.

The most common of these included same, other,

multiple, empty, first, different, and current, which

accounted for 6% of the adjectives used. Almost all

uses of these common adjectives indicated some part

of a data structure that the software was processing

incorrectly. About 84% of the adjectives used were

rarely used domain-specific characteristics, such as

multicolumn, and misspellings.

The second purpose of an adjective was to identify

the problem by characterizing an entity or behavior’s

inadequacy, as in improper warning for varargs

argument. The most common type of inadequacy was

wrong, for which there were at least twenty synonyms;

these accounted for 8% of adjectives used. The other

problems identified by adjectives, which accounted for

about 2% of adjectives used, referred to quality

attributes like those in Table 2. For example, the word

slow indicated a performance problem.

Table 4. The nine most common verbs, the percent of

titles in which each occurred, and examples of each.

word % example
is
are
be

13
Port specified in doc is incorrect
PNG icons are not transparent
BufferedLogs can't be disabled

does
do 6

Autocaption preview does not update
Tables do not import correctly from MS Word

using 2 Apache using 100% cpu

add 2 add ability to unzip into separate folders

fails 2 ScriptAlias fails with tilde in pattern

has 1 Export to PDF has no options

0-7695-2586-5/06 $20.00 © 2006 IEEE 130

 6/14/06

4.4 Conjunctions and Prepositions

 About 69% of the titles in our dataset used at least

one conjunction or preposition. There were several

outliers: 871 titles had five or more, and one had

fifteen:

after a few months of use, downloading or saving
of files or pictures from web pages results in
slowing of mozilla to the point of computer
lockup for up to 30 seconds or more.

In this section, we focus on conjunctions and

prepositions that occurred in more than 1% of titles in

our corpus, which represented 93% of those used

throughout all titles in the dataset.

The conjunctions and prepositions in the dataset

served two roles. The first was to attribute one of the

ten properties shown in Table 5 to an entity or

behavior. For example, the words and and or served to

group entities, and the words with, without, and that

helped to indicate some trait (or missing trait) of an

entity. These properties generally helped indicate the

type of data types on which some computation failed.

The words from, under, and at indicated some visual

location, helping to specify a particular part of a user

interface. The word of helped to select some smaller

part of a larger entity, as in explanation of 'proxy'.

The word for described the purpose of some entity,

and was generally used to clarify large classes of

entities, as in Beep for typos. The other five types of

information were less common, so we do not discuss

them in detail.

The second role of conjunctions and prepositions

was to describe the context of a problem. There were

generally three types of context, which we list in Table

6. The most common type of context was some entity.

The words in, on, of, by, under, and between all helped

to indicate the entity that exhibited some problem. For

example, Typo in the error message indicates that the

error message entity that contained the Typo problem.

The other common problem context was some event.

The words when, after, if, during, at, on, and and while

all indicated some situation or action which seemed

related to the problem. For example, Firefox freezes

after reading PDF indicates that the reading PDF action

led to Firefox freezes. The last type of context was

contrast, which was indicated with the words but and

than. These words presented some property or behavior

of an entity, and then indicated some way in which it

should differ. For example, Exporter error but saves

correctly indicates that the Exporter gives some error

message that is inconsistent with its actual behavior.

Conjunctions and prepositions were central to

determining the structure of a report title. For example,

consider the structure of kernel panic when copying big

file from cdrom. The when clearly defines the structure

of the sentence as a kernel panic that occurs during the

copying big file from cdrom event. The from indicates

that the cdrom is the source of the big file. Of course,

there is some ambiguity in the precedence of the

various words because usage can vary. For example, in

the title above, when has the highest precedence, but in

the title Custom styles in CSS when embedded in

multiple DIVs don’t track, the when has lower

precedence than the verb don’t, because it is used like

the word that to indicate some characteristic of the CSS.

In general, however, the usage of the these words

seemed fairly consistent, so tools that attempt to do

basic parsing based on conjunctions and prepositions

may be accurate most of the time.

Table 5. Properties attributed to entities and behaviors,

the words used for each type, the percent of titles

containing each word (based on a sample of 100 titles),

and an example of each in use.

property word % example
and 7 breakpoints in archives and files

group
or 2 xconfig or gconfig not working

with 8 doesnt save files with long names

without 1 CVS timeout on project without tags trait
that 1 Word file that is borked in OO.o.

from 2 segfault on search from toolbar

under 1 Border isn't removed under tab place
at 1 font changes at end of line

owner of 9 improve explanation of 'proxy'

purpose for 8 Beep for typos

source from 2 panic when copying file from cdrom

type as 2 inserting charts as links

amount by 2 last modified dates off by an hour

scale at 1 Pages not tiled at low zoom level

action by 1 breakpoint by double-click off by 1

Table 6. Information used to contextualize a problem,

the words used for each type, the percent of titles

containing each word (based on a sample of 100 titles),

and an example of each in use.

context word % example
in 20 Typo in the error message

on 10 error saving file on samba share.

of 9 no PDF export of graphics

by 2 Path explosed by multiple ' in url

under 1 junit tag under 1.5 gives errors

entity

between 1 Rendering problems between rows
when 10 image shrinks when protecting sheet

after 3 Firefox freezes after reading PDF

if 2 poweroff fails if "lapic" forced on

during 1 Toolbar displays during slideshow

at 1 xerces error at startup

on 1 initrd refuses to build on raid0

and 1 Manager accesses drive and freezes

event

while 1 freezes while opening this document
but 1 Exporter error but saves correctly

contrast
than 1 i need more than 32000 rows

0-7695-2586-5/06 $20.00 © 2006 IEEE 131

 6/14/06

5. Discussion

The regularities in the structure and content of the

problem descriptions in our dataset have a variety of

implications for software engineering tools. What

follows are several potentially tractable design ideas

that are motivated by our results.

5.1 Soliciting More Structured Titles

One implication of our results is that bug report

forms could be redesigned to structure the information

that reporters naturally include in report titles, making

it easier for tools to analyze reports. Our results

indicate that the content of these redesigned forms

should consist of descriptions of (1) a software entity

or an entity behavior, (2) a relevant quality attribute (3)

the problem, (4) the execution context, and (5) whether

the report is a bug or feature request. For example, the

natural language title toolbar tooltips take too long

to appear when hovering could have been reported in a

more structured manner as follows:

(1) entity/behavior: toolbar tooltips appearing

(2) quality: usability

(3) problem: slow

(4) context: when hovering

(5) bug or feature: bug

Soliciting reports in this way essentially places the

burden of parsing on the reporter, in order to simplify

analyses of the report. Our results point to a number of

ideas that could offset this burden. For example, the

quality could be a pre-defined list of software quality

attributes commonly used in software engineering

practice. The problem could be a list of common

adjectives that refine the type of quality specified.

Furthermore, given the diversity of descriptions of

entities and behaviors, the entity or behavior and

context should just be free form text, to allow reporters

to accurately describe the subject and context. These

fields could then suggest similar phrases based on past

reports as reporters type, to help both reporters and

tools more easily identify duplicate reports.

5.2 Parsing Report Titles

An alternative to soliciting more structured reports

from reporters is to instead parse the natural language

titles, inferring their structure. The benefit of this

approach is that it would generate a more detailed

structure than that discussed in the previous section,

while not imposing any burdens on reporters. The extra

detail could make it easier to identify different types of

context and individual noun phrases in report titles,

among other things.

Our results show that many of the titles were not

grammatical, so we could not use research on natural

language “chunkers”, which rely on proper grammar to

parse. Instead, to test parsing we implemented a

custom recursive scanning parser, where each scan of a

title looks through a ranked list of parts of speech to

split on, splits on the first kind found, and then

recursively scans the resulting parts in a similar

manner. Our results suggested a particular ranking.

First the scanner checks for punctuated sentences, such

as Performance: slow object effects on solaris. Next,

it checks for verbs indicative of a declarative structure

(such as is and does). Then, the scanner checks for

conjunctions and prepositions, because they helped

structure noun phrases. The last step splits on common

verbs, with the resulting word sequences representing

the noun phrases. To test the accuracy of our parser,

randomly sampled 100 titles, and compared our

parser’s top-level structure against the top-level

structure of our own hand-parsing of the titles. This

showed the parser achieving 89% accuracy. This could

easily be improved by increasing the accuracy of the

part of speech tags (which had at least 3% error and

likely more), which would be done by retraining the

tagger on the report titles. There may also be a better

ranking than the one used by our algorithm.

5.3 Identifying Problems and Requests

An important part of managing report databases is

separating problem reports from requests. Our results

suggest that one way to perform this classification

automatically is to use the mood of the report title as an

indicator. To investigate this, we analyzed the 38,325

OpenOffice reports, which included reporters’ hand-

classifications of reports as a “defect” or some types of

request. We applied a standard decision tree algorithm

to classify each report as a defect or not, using only

features of the title that indicate the mood of a

sentence, such as past tense and active verbs. This led

to an average test accuracy of 79%, which is 3% higher

than the baseline incidence of a defect in the dataset of

76%. Although this is only a marginal increase, the

classifier could be further improved by improving the

part of speech tag accuracy, as described above.

Features based on the structure of the report titles,

derived by the parsing described in the previous

section, could lead to further gains. Of course, one

issue with this approach is that what reporters

described as bugs or requests may not correspond to

the developers’ perspective, because opinions are

likely to differ on what the software’s intended

behavior is or should be. Mood may also be culturally

specific, and so studies should investigate for what

types of problems automate detection could be useful.

0-7695-2586-5/06 $20.00 © 2006 IEEE 132

 6/14/06

5.4 Identifying Quality Attributes

A common software engineering practice is to

create a ranked list of quality attributes for a project in

order to prioritize development and maintenance

efforts. Therefore, a tool that could automatically

classify reports by the quality attribute to which they

correspond would be extremely helpful. The results of

our analyses provide many insights for the design of

such a tool. First, although only a fraction of the report

titles explicitly referred to quality attributes, about 62%

of the titles contained at least one adverb or adjective

that may have referred to a software quality, such as

slow or slowly. In addition to suggesting the feasibility

of such a classification tool, our results also suggest

several features that might be helpful in performing the

classification. Many adjectives had specific usage. For

example, slow always indicated a performance

problem, and the more common adjectives, such as

same, different, first and empty typically indicated

some failure on a particular configuration of data.

Titles with references to conventional user interface

components, such as buttons and toolbars typically

identified some usability problem or user interface

defect. Future studies could perform an investigation

into these common usages in order to identify suitable

features for classification.

5.5 Assigning Reports to Developers

Another difficulty in managing reports is how to

determine the most qualified developer for each report.

There have been attempts to automatically match

developers with reports, based on the full report text

and to whom reports have been assigned in the past [3].

Although these approaches show promise, their

accuracy ranged from 6-64%. One possible reason for

this is that the “appropriateness” of a report for any

given developer depends on what functionality the

report regards and what functionality the developer has

expertise in. Perhaps the full text reports used by these

systems contained too many words that were irrelevant

to the functionality being discussed in the report,

distracting the classifier from detecting the

functionality. Our results suggest that noun phrases

that may be less noisy than the full report text, because

they tended to correspond to system functionality.

5.6 Identifying Duplicate or Similar Reports

Problem reporters are typically responsible for

finding similar or duplicate reports to associate with a

new report, which can be very time consuming [10].

Our results suggest that tools could be designed to

extract and cluster noun phrases and execution contexts

from existing reports’ titles, and present reports in the

cluster most similar to the reporter’s current

description of the problem. Then, rather than having to

do a raw text search for related reports, similar reports

could be presented to the reporter based on the title

they supplied. Furthermore, the reporter would also be

able to get a sense for the types of phrases are already

being used to describe various entities and behaviors,

indirectly improving the clustering algorithms.

5.7 Asking Questions about Problems

The Whyline [9] has been shown to reduce

debugging time by allowing programmers to ask

questions about program output. In generalizing the

Whyline to more professional languages and more

types of software, however, it is important to have a

detailed understanding of the full range of questions

that people ask about software behaviors.

Our results point to many new requirements. For

example, temporal context was often specified in our

dataset, using words such as when, during, and after, in

order to indicate the situation in which a problem

occurred. Therefore, the Whyline should offer

techniques for selecting a segment of an execution

history to specify the time or event after which some

problem occurred, allowing the tool to generate more

specific answers.

The Whyline currently only allows questions about

the most recent execution of an output statement, but

many of the behaviors described in our dataset

represented computations or system actions that

executed over time or executed repeatedly. Therefore,

new techniques must be designed to allow questions

about multiple executions of an output statement, or

even patterns of output, in order to help developers

refer to higher-level behaviors in their questions.

The Whyline is also limited to questions about a

single entity. However, based on our investigation of

conjunctions and prepositions, there are a number of

common ways that entities were identified relative to

other entities, such as by group, location, source, and

action. Future tools should allow questions about

multiple objects, allowing users to specify one of the

various types of relationships listed in Table 5. For

example, a user should be able to ask, “Why didn’t

data from this object appear after this click event?”

Our results regarding the various quality attributes

that users referred to also suggest the need for a whole

new class of debugging tools for investigating different

software qualities. Current debugging tools only focus

on helping developers deal with correctness and

performance issues. Future work should consider what

kinds of tools would help developers debug qualities

such as consistency, robustness, and visibility.

0-7695-2586-5/06 $20.00 © 2006 IEEE 133

 6/14/06

5.8 Are Hand-Written Reports Necessary?

One way to think about problem reports is as a

concise, but imprecise representation of a set of

program executions in which a particular entity had an

inappropriate characteristic or behavior. Whoever

reports the problem must translate these executions

into a description, and whoever handles the

description, such as a tester or software developer,

must translate the description back into the set of

executions that originally inspired the description. If

reporters had tools that allowed them to capture these

executions, they would only have to supply a

description of the expected behavior, annotating the

captured data with the problematic entities and context

(through direct manipulation as described before). If

such tools were integrated into the software itself, even

end users would be able to generate precise reports

with little effort. Given our evidence that nearly all

entities were identified via something on-screen, one

could imagine tools that allow users to point to an

object to identify the entity. Testers and software

developers might then be able to use these reports to

automatically determine the relevant source code, like

the concept of a concern [13].

6. Limitations

There are several limitations of our data and results.

We were unable to include any reports from closed

source projects, which may have stricter standards than

the projects that we studied. We do not know whether

the reports in our data were created by developers or

users, so we cannot describe the population of people

who created our dataset. It is also possible that the

reports did not include “in the moment” problems that

developers encountered while developing, and such

problems may be described in different ways. We do

believe that some of these probably were included,

given evidence that many reports are written as

reminders or because a problem turns out not to be the

developer’s responsibility to fix.

7. Conclusion

This study is just the beginning of a larger effort to

better understand how software problems are

described, and how tools might help everyone involved

in software engineering to better manage and utilize

bug reports. In our future work, we hope to investigate

many of the analyses and tool ideas presented in this

paper, and analyze higher level issues in bug reporting

processes, such as the difference between intended,

expected, and actual behavior.

8. Acknowledgements

We would like to thank the contributors to the open

source projects that we studied, and also the reviewers

for their thorough and insightful reviews.

This work was supported by the National Science

Foundation, under NSF grant IIS-0329090, by the

EUSES consortium under NSF grant ITR CCR-

0324770, and by an NDSEG fellowship.

9. References

[1] P. B. Anderson, B. Holmqvist, and J. F. Jensen, The

Computer as Medium. Cambridge: The Cambridge

University Press, 1993.

[2] G. Antoniol, H. Gall, M. D. Penta, and M. Pinzger,

Mozilla: Closing the Circle, Technical University of

Vienna, Vienna, Austria TUV-1841-2004-05, 2004.

[3] J. Anvik, L. Hiew, and G. Murphy, Who Should Fix this

Bug?, ICSE 2006, Shanghai, China, 361-368.

[4] A. Begel and S. L. Graham, Spoken Programs, VL/HCC

2005, Dallas, Texas, 99-106.

[5] M. Fischer, M. Pinzger, and H. Gall, Analyzing and

Relating Bug Report Data for Feature Tracking, WCRE

2003, 90-99.

[6] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T.

Dumais, The Vocabulary Problem in Human-System

Communication, CACM, 30, 964-971, 1987.

[7] H. Gall, M. Jazayeri, and J. Krajewski, CVS Release

History Data for Detecting Logical Couplings, IWPSE

2003, 13.

[8] D. M. German, An Empirical Study of Fine-Grained

Software Modifications, ICSM 2004.

[9] A. J. Ko and B. A. Myers, Designing the Whyline: A

Debugging Interface for Asking Questions about

Program Behavior, CHI 2004, Vienna, Austria, 151-

158.

[10] D. M. Nichols and M. B. Twidale, Usability Discussions

in Open Source Development, HICSS 2005, 198-207.

[11] J. F. Pane, C. A. Ratanamahatana, and B. A. Myers,

Studying the Language and Structure in Non-

Programmers' Solutions to Programming Problems,

IJHCS, 54, 2, 237-264, 2001.

[12] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,

J. Sun, and B. Wang, Automated Support for

Classifying Software Failure Reports, ICSE 2003,

Portland, Oregon, USA, 465-475.

[13] M. P. Robillard, Representing Concerns in Source Code,

Department of Computer Science, University of British

Columbia, Vancouver, Canada, November 2003.

[14] J. Sandusky, L. Gasser, and G. Ripoche, Bug Report

Networks: Varieties, Strategies, and Impacts in an OSS

Development Community, MSR 2004, Edinburgh,

Scotland.

[15] J. Stylos, Designing a Programming Terminology Aid,

VL/HCC 2005, Dallas, Texas, 347-348.

[16] K. Toutanova, D. Klein, C. Manning, and Y. Singer,

Feature-Rich Part-of-Speech Tagging with a Cyclic

Dependency Network, HLT-NAACL 2003, 252-259.

0-7695-2586-5/06 $20.00 © 2006 IEEE 134

