
Debugging by Asking Questions About Program Output
Amy J. Ko

Human-Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh PA 15218
ajko@cs.cmu.edu

ABSTRACT
One reason debugging is the most time-consuming part of
software development is because developers struggle to map their
questions about a program’s behavior onto debugging tools’
limited support for analyzing code. Interrogative debugging is a
new debugging paradigm that allows developers to ask questions
directly about their programs’ output, helping them to more
efficiently and accurately determine what parts of the system to
understand. An interrogative debugging prototype called the
Whyline is described, which has been shown to reduce debugging
time by a factor of eight. Several extensions and generalizations to
it are proposed, including plans for evaluating their effectiveness.

Categories and Subject Descriptors
D.2.5. [Testing and Debugging]: Debugging aids, H.5.2. [User
Interfaces]: Interaction styles, user-centered design

General Terms
Reliability, Human Factors.

Keywords
Debugging, Whyline, slicing, questions, assumptions, hypotheses,
direct manipulation, errors, faults, program understanding,
program comprehension.

1. INTRODUCTION
Numerous studies have shown that half or more of all software
development effort is spent debugging [4, 5, 7, 9]. One reason for
this may be that commercial debugging tools have not changed
substantially for over 30 years: developers’ primary tools for
finding errors are still breakpoint debuggers and print statements.
Recent efforts in automated debugging [1] are very powerful, but
they require both successful and failed runs and do not support
programs with interactive input. Other more interactive
approaches such as slicing [10] and query languages [8] have
potential, but none have been shown to significantly reduce
debugging time relative to existing tools. I have done several
studies [2, 3, 4, 5] that suggest this is because debugging always
begins with a question about a program’s behavior, and to use
these tools, developers must map their question onto a tool’s
support for analyzing code.

I propose to remove this hurdle by allowing developers to directly
ask the questions they naturally want to ask. This paper
summarizes my approach, called interrogative debugging (ID),
which aims to allow developers to ask questions about a
program’s output using direct manipulation (not natural
language), and obtain answers in terms of the execution events
and code that were responsible the behavior in question. In this
paper I describe the claims behind ID in detail, and then describe
a prototype that I have developed, called the Whyline [2]. I then
propose several extensions and generalizations to the Whyline,
and plans to evaluate their effectiveness.

2. INTERROGATIVE DEBUGGING
The central claim of ID is that support for asking questions about
a program’s output, instead of about code, will significantly
reduce debugging time relative to existing tools. Why would this
be true? To use current tools, developers must guess what code is
responsible for a program’s failure in order to place a breakpoint,
to insert a print statement, to request a static or dynamic slice [10],
or to form a query [8]. When the guess is wrong, the time spent
investigating the false hypothesis is essentially lost (although
there may be some side benefit from the understanding gained
while investigating). Across several empirical studies of
developers of varying expertise, I have demonstrated several
trends that contribute to this lost time:

• Developers generally form multiple false hypotheses about
what code caused a failure before forming a correct
hypothesis [4], each taking considerable time to investigate.

• False hypotheses that go unchecked result in an incorrect
understanding of the program that impacts future tasks [3].

• As part of investigating false hypotheses, developers
mistakenly modify code that is not broken. In one study,
about half of all errors were inserted for this reason [5].

How could a tool help developers make more accurate judgments
about program behavior? The insight behind ID is that developers
are more accurate in identifying inappropriate behavior itself than
they are in identifying the causes of inappropriate behavior [5].
Therefore, ID tools allow developers to specify a program’s
inappropriate output. Then, the tool performs program analyses on
the specified output in order to determine a set of relevant code
fragments for the developer to examination. This set should prove
to be more relevant than the set of fragments a developer would
have determined by guessing. As part of these analyses, the tool
also reveals any assumptions that the developer made in asking
the question. For example, if a developer asks why something
didn’t happen when in fact it did, the tool can point out the
discrepancy, synchronizing the developer’s understanding of a
program’s execution with its actual execution.

Copyright is held by the author/owner(s).
ICSE'06, May 20-28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

989 Most up-to-date version: 06/07/2021

ID tools must have several characteristics to be successful. First,
they should support both “Why did...” and “Why didn’t...”
questions, because programs fail by either not doing something
they are supposed to do, or doing something they are not supposed
to do [5]. Second, studies of how people describe software
problems suggest that the ability to specify the context of a
behavior is important [6]. Third, developers should be able to
choose a question from a set of questions, rather than have to
construct a question. This avoids the numerous issues with
introducing a new query language [8] or developing a natural
language interface. Fourth, the answer presented by an ID tool
should directly associate the output in question with the code and
the execution history responsible for causing or preventing the
output. This is central to helping developers understand the causal
relationships between code and behavior, which in turn will help
developers conceive of more accurate repairs to the program.

3. THE WHYLINE
To test the feasibility of this approach, I developed the Whyline
for Alice (www.alice.org) [2], shown in Figure 1. Alice is an
object-oriented, multithreaded, imperative language and
development environment for creating 3D simulations and games.

The example in Figure 1 shows a question being asked by a
developer, who was implementing a Pac Man game and trying to
get PacMan (the yellow sphere) to resize when he touches the
Ghost (the blue sphere). When an Alice program is being
executed, as in Figure 1a, the developer can ask a question by
pressing the “Why” button, which pauses the program. The menu
shown at the top of Figure 1b appears, which allows the developer
to choose from a set of “Why did” and “Why didn’t” questions
that correspond to output statements in the program (which, in
Alice, are animations such as resize and move). The questions are
sorted by the objects that they refer to and the arguments they use.
As the developer hovers over questions in the menu, the Whyline
highlights the output statement in the program that corresponds to

the question. In this example, the developer expected PacMan to
resize after intersecting the Ghost, so he asks, “Why didn’t
PacMan resize 0.5?” When the developer chooses the question,
the area shown at the bottom of Figure 1c appears, providing a
textual answer to the question as well as a timeline visualization
of the chain of execution events that caused or prevented the
output statement from executing. In this case, the
BigDot.isEaten flag was true, which prevented the resize
animation from executing.

In another example (not shown), a developer placed two
conditionals inside of a DoTogether construct (which allows
statements to execute concurrently): one to make PacMan “eat”
the BigDot by setting its isShowing flag to false, and one to
shrink PacMan if he touches the Ghost without having eaten the
BigDot. When the developer tested the code, PacMan ate the
BigDot, but also shrank when he touched the Ghost. The
developer asked, “Why did PacMan resize 0.5?” and the Whyline
showed that he touched the Ghost while the BigDot isShowing
was true. This confused the developer, and so he asked, “Why
didn’t BigDot isShowing change to false?” The Whyline
responded by combining the answers to the two questions,
revealing that the two conditionals had been interleaved.

In a study comparing Alice to Alice with the Whyline, developers
with the Whyline spent a factor of 8 less time debugging and got
40% further through their tasks [2]. These gains were due largely
to the fact that developers without the Whyline generated multiple
false hypotheses about what code was causing failures, and spent
considerable time investigating them, often inserting new errors in
the program as they tried to fix existing ones. Developers with the
Whyline simply asked about the output they expected, and were
led directly to the code responsible for the output or lack thereof.
This saved the time that would have been spent investigating false
hypotheses, as well as the time spent repairing any errors that
would be been inserted.

Figure 1. The Whyline prototype, implemented in the Alice 3D programming environment. When developers see failures at
runtime, they can press the “Why” button (a) and get a menu of “Why did...” and “Why didn’t...” questions (b) that correspond to
output statements in the program. When a question is chosen, an answer (c) is provided in terms of the runtime events that caused
or prevented the behavior from happening and the Whyline points out any assumptions the developer may have made.

990

4. GENERALIZING THE WHYLINE
Although the Whyline for Alice demonstrated the feasibility of ID
in the small, it raised several important issues regarding its
applicability to more general-purpose languages and more
complex programs. In particular, what is “output” in the general
case? Can a reasonably sized question menu be generated for
programs, in general? What kinds of “Why didn’t” questions can
be answered effectively? How large are the answers to questions
about more complex programs?

To address these issues, my thesis work will involve designing
and building a Whyline for desktop Java programs. My proposed
solution is illustrated in Figure 2. The solution treats a developer’s
question as a query on a program’s output statements and output
history. The system analyzes the statements and execution events
resulting from the query to produce chains of causality that are
based on the program’s execution history. In the rest of this
section, I discuss the challenges posed in each of these steps and
offer preliminary design ideas and their tradeoffs.

4.1 Tracing the Execution History
In order to allow developers to ask questions about a program’s
output in a general way, the tool must record a complete history of
every “output” statement executed. Furthermore, to accurately
answer questions about causality, we must record the data
dependencies in the program’s execution. Although recorded
execution histories can be very large, recent projects have begun
to address this issue by using compression and by only recording
unrecoverable runtime state [10]. I also expect to develop new
optimizations that are specific to any analyses that I develop.

4.2 Generating an Output History
Once an execution history is available, the tool needs to extract
the “output” produced by the program. For Alice, there is a
limited set of animations and properties for each object that have a
visible effect or representation on-screen. In the general case,
however, a developer might interpret any code fragment as
producing “output,” depending on the behavior being debugged.

I will first focus on supporting questions about the most general
forms of output, namely, graphical primitives (shapes, lines,
rectangles, etc.) and text (such as debug statements printed to a
console) since they constitute nearly all of a typical desktop
program’s output. For Java, I could trace all calls on instances of
java.io.PrintStream and java.awt.Graphics2D (such as
println and fillRect). I can then use these output histories to
reconstruct an interactive history of the graphical and textual
output produced by the program. These reconstructed histories
will (1) allow developers to freely navigate the output history
produced by the program, simulating reverse execution, and (2)
provide a user interface foundation for querying output.

In addition to these basic forms of output, I will also allow
developers to customize the meaning of “output” and build their
own interfaces for navigating and interrogating the output. For
example, if a team debugging a web application wants to ask
about queries sent to a database, they could have the Whyline

instrument the method call that sends the query and build a
custom interface for interrogating histories of queries. One
problem with this approach is that developers are poor at guessing
what to inspect because of the sheer number of possible
explanations for a problem [5]. For example, the problem might
not be with queries themselves, but with the transmission, or the
database’s interpretation of the queries, which are both
independent of the query formation.

4.3 Asking Questions
Once the system has an output history, how can a developer ask a
question about it? I performed a linguistic analysis of how people
describe software problems [6] in order to determine the various
ways that developers restrict the domain of their questions:

• Why did or why didn’t? This determines the type of causality
analysis to be formed, and also allows the tool to point out
assumptions about what did or did not occur.

• Referential scope. A question might refer to all circles
painted by a program, all circles painted by statement s, or
the circle painted by statement s at time t.

• Relative scope. A question may be phrased relative to input
events or other output events (“Why didn’t a circle paint after
this click?”).

• Argument scope. Each type of output has different features
that a developer may want to use to restrict a question’s
domain (“Why wasn’t this circle green?”).

In the Alice version of the Whyline, many of these scopes were
ignored: each question referred to the most recent execution of a
specific output statement, and questions could not be asked
relative to other events. In the prototype I envision, each of these
different scopes will be specified using direct-manipulation. For
example, developers could specify the referential scope by
clicking on a graphical or textual primitive displayed in the
interactive history of output (this would not work for “Why
didn’t” questions, however, since they refer to code that was not
executed; instead, these can be formed through hierarchical menu
as in the Whyline for Alice, or by demonstrating the desired
behavior). Developers could ask questions relative to an input
event by clicking on a visual representation of the input event in
the interactive history, dragging a time cursor to the time of
interest, and then supplying other arguments for the question.

4.4 Applying Queries
Once a developer supplies a question, the system will use its
scoping arguments to select a set of the output statements from the
program and a set of execution events from output history. These
statements and events will be analyzed in the next step to produce
an answer to the developer’s question.

At this point, the tool will also check for any false assumptions
implicit in the developer’s question. For example, if the developer
asks, “Why didn’t anything paint after this click?” when in fact
something did, part of the tool’s answer will reveal the output that
the developer did not notice.

Figure 2. Actions performed by the user and the system in an ID tool, and the data produced at each step.

991

4.5 Analyzing Causality
The goal of this step is to produce one or more causal chains of
execution events for the developer to inspect (like the one shown
in Figure 1c). For each of the output events that is the subject of a
“Why did” question, the system will determine what caused the
event to occur. To perform these analyses, I will utilize the
existing techniques, primarily slicing algorithms [10].

For each output statement that is the subject of a “Why didn’t”
question, the system will determine the execution events that
prevented the output statement from executing, or executing with
the desired arguments. In some cases, this is trivial to answer. For
example, in the Whyline for Alice, an analysis simply determined
the predicate that prevented the queried output statement from
executing. This same analysis can work in the Java version, with
added support for analyzing the reachability of the method that
contains the predicate. For situations where an output statement
was executed, but not with the appropriate values or at the
appropriate time, I will devise new analyses that can identify
alternate histories that could have resulted in the correct values.

4.6 Aggregating Chains
If the previous step resulted in multiple chains of causality, it is
likely that many will have been executed in similar contexts and
will have produced similar output. It would be helpful to
aggregate and summarize them, to minimize the amount of
information that a developer must understand to interpret the
answer. These could then be presented as different situations in
which the queried output did or did not occur.

4.7 Presenting Answers
The final step is to present the situations produced in the previous
step in a user interface that helps the developer conceive of a
modification that can correct the program’s failure. The Whyline
for Alice offered several features to this end: (1) a time cursor,
which, when moved, changes the code shown and the state of the
output history, to help developers relate the code to the behavior
that it caused, and (2) support for asking elaborative questions
about an answer, which combined multiple answers. Because the
answers for larger more complex programs are likely to be larger
and more complex themselves, new interaction techniques will be
necessary to help developers efficiently navigate the information:

• Incremental answer navigation, which would allow dynamic
slices to be computed incrementally and on demand,
affording more immediate answer feedback.

• Situation workspaces, which maintain state for each situation
such as its time cursor position, the visible code, and the
interactive state of the chain visualization. This way,
developers could stop inspecting a situation and return to it
later without having to remember where they were.

• Multiple selection of answer elements, which would allow
developers to compare multiple program states and code
fragments side by side.

5. EVALUATION
To evaluate the effectiveness of the prototype, I will perform an
experimentally controlled comparison of the debugging efficiency
and effectiveness of Java developers using my prototype, against
Java developers using breakpoint debuggers and state of the art
research prototypes, such as those by Clevel and Zeller [1] and
Lencevicius et al. [8]. The test programs that developers debug in

the experiment will be varied in size, and the failures that they
diagnose will be naturally occurring, rather than artificially
created. In order to determine what particular features of the
prototype contribute to its effectiveness, I may include conditions
in the experiment involving crippled versions of the prototype.
For example, one such version might only allow developers to ask
about code, and not output, in order to assess the importance of
asking about output. I also plan to widely deploy the prototype for
Eclipse in order to gather data on long-term use and effectiveness.

6. CONCLUSION
Debugging and program understanding are fundamental
bottlenecks in software development, largely because developers
struggle to effectively translate their questions about program
behavior into primitive analyses of code. Interrogative debuggers
will allow developers to inquire directly about program behavior,
helping them to more quickly and accurately determine the
relevant code fragments in a system, as compared to existing
debugging tools. This work will have several other contributions,
including new interaction techniques for interrogating program
output, new program analyses for answering “Why didn’t”
questions about program output, and new techniques for
identifying similar “situations” in an execution history.

7. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
NSF grant IIS-0329090 and the EUSES consortium under NSF
grant ITR CCR-0324770. The author is also supported by an
NDSEG fellowship.

8. REFERENCES
[1] H. Cleve and A. Zeller, Locating Causes of Program

Failures, ICSE 2005, St. Louis, MI.
[2] A. J. Ko and B. A. Myers, Designing the Whyline: A

Debugging Interface for Asking Questions about Program
Behavior, CHI 2004, Vienna, Austria, 151-158.

[3] A. J. Ko, B. A. Myers, and H. Aung, Six Learning Barriers in
End-User Programming Systems, VL/HCC 2004, Rome,
Italy, 199-206.

[4] A. J. Ko, H. Aung, and B. A. Myers, Eliciting Design
Requirements for Maintenance-Oriented IDEs: A Detailed
Study of Corrective and Perfective Maintenance Tasks, ICSE
2005, St. Louis, MI, 126-135.

[5] A. J. Ko and B. A. Myers, A Framework and Methodology
for Studying the Causes of Software Errors in Programming
Systems, JVLC, 16, 1-2, 41-84, 2005.

[6] A. J. Ko, B. A. Myers, and D. H. Chau, A Linguistic
Analysis of How People Describe Software Problems in Bug
Reports, Submitted for publication 2006.

[7] T. LaToza, G. Venolia, and R. DeLine, Maintaining Mental
Models: A Study of Developer Work Habits, ICSE 2005,
Shanghai, China, to appear.

[8] R. Lencevicius, U. Holzle, and A. K. Singh, Dynamic Query-
Based Debugging of Object-Oriented Programs, J. of
Automated Soft. Engr., 10, 1, 367-370, 2003.

[9] G. Tassey, The Economic Impacts of Inadequate
Infrastructure for Software Testing, National Institute of
Standards and Technology RTI Project Number 7007.011,
2002.

[10] X. Zhang and R. Gupta, Cost Effective Dynamic Program
Slicing, PLDI 2004, Washington, D.C.

992

