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This study intended to investigate two areas of end-user programming: the influence

of individual differences on success and whether or not groups of programming, testing,

and debugging style would naturally cluster together and provide predictive value.

Eighty-six participants, from backgrounds of computer science, psychology, engineering

and humanities completed at battery of psychological tests and attempted to complete a

timed programming task and testing and debugging task in Stata, a statistical

programming environment intended for use by individuals with no programming

experience. General intelligence and programming experience were good predictors of

programming success. Three types of programming strategies were found: (1) the

programmers group used their background knowledge to solve the programming task

with little effort; (2) the lost/unmotivated group tended to exhibit repetitive and shallow

problem solving; (3) the lost/motivated group tended to search for more information and

exhibit more guess and check behavior. There were three types of testing and debugging

strategies, but no good predictors of success: (1) the curious/distracted group ignored the

task and became distracted; (2) the hesitant/focused group sought little information and

made few attempts to debug; (3) the active/focused group sought much information and

made many attempts to debug. Future work on the data presented here is proposed.
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Individual Differences in Programming, Testing, and
Debugging Strategies in a Statistical End-User

Programming Environment

Introduction

In the past decades, personal computers have become common and pervasive.

Accountants rely on computer software to manage constantly changing tax laws, teachers

use computers to help children overcome subtle learning disorders, and the growing

presence of the Internet foreshadows dramatic changes in interpersonal communication.

Many of computers contributions to productivity have come in the form of automation.

Yet now, many users are realizing that further productivity gains—whether or not such

gains are real—may require further knowledge about computers. The accountants who

want to write smarter spreadsheets must learn visual basic. The professors who want to

make customized instructional software have to learn some kind of programming

language. Each has reached a ceiling: without programming skills, such professionals

must rely on the software industry to understand and meet their demands. This requires

time and money, not to mention the patience and drive of the professionals to learn new

software.

Possibly these so-called end users are actually wasting time and resource by trying to

program. In fact, there has been evidence that end-user computing has failed to show the

productivity gains that some hoped computers would provide (Alavi, 1985). Further, end

users may also be wasting time asking others for help with software that does not

increase productivity anyway. These issues are worth investigating further.
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Yet an issue looms which poses a larger threat. Numerous studies show that

spreadsheets, one of the most used forms of end-user programming, contain numerous

faults (logic errors), previously undetected by their users and creators (Panko, 1998).

Financial professionals often make important hiring and business decisions with

spreadsheets, while teachers often track grades with spreadsheets. Even considering only

these isolated cases, the difficulty of programming spreadsheets (and the tendency of end

users to do it poorly) has the potential to have great impact on their decisions. Thus not

only can the difficulty of programming cause inefficiencies in our society, but also the

outcomes and success of our commerce. Quite possibly, end users are experience

difficulty in other domains as well, affecting similar outcomes.

This problem poses a number of challenges to researchers. How can we make

programming a task that is:

ü Easier to learn,

ü Less prone to faults, and

ü More approachable?

In order to inform our approach to solving these problems, the logical first step is to

understand the phenomenon of end-user programming.

Exploratory Research in End-User Programming

It is important to note that much of the exploratory and descriptive research on end

users and computers focuses more on general computing rather than programming

specifically. Nevertheless, the research is important in framing the context of end-user

programming, particularly with regard to characteristics of end users themselves. For
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example, user attitudes were reported to be a major factor in the success of MIS (Zmud,

1979); more recent studies by Howard and Smith (1986) and Igbaria and Parasuraman

(1989) have found that computer anxiety was closely related to the success of end-user

computing in business. Possibly a more anticipated result, Rivard and Huff (1988) found

that computer background had significant effects on the success of end-user computing;

such results are supported by (Cheney et al., 1986; Delone, 1988; Igbaria et al., 1989), all

of which report on the same factors of success in end-user computing. From a personality

perspective, Zmud (1979) and Matta & Kern (1991) found that locus of control,

ambiguity and extroversion/introversion can predict the success of computer information

systems. The research seems to indicate that with regard to general software use in the

workplace, psychological and background characteristics of users seem to be the best

predictors of successful software use.

One of the more comprehensive descriptions of the problem of end-user programming

is Bonnie Nardi’s A Small Matter of Programming. Nardi argues utilizing users’

knowledge of their domain may be the most effective way to facilitate end users. This

suggests that new interaction techniques such as visual programming (Chang, 1980) or

developing artificially intelligence programming systems such as programming by

demonstration (Cypher, 1993) may not be the most effective solutions.

It is obvious even from this brief summary of exploratory research that end-user

programming research still lacks a basic understanding of an appropriate way to approach

making programming an easier, less error-prone, and more approachable task. Nardi

makes a case for domain-specific programming, but there is little evidence to show that

Chang and Cypher are wrong about visual programming and programming by
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demonstration. Despite the lack of evidence to suggest the efficacy of any particular

approach, there have been numerous attempts to test each thoroughly. We will discuss

selected examples of such research and assess the impact of each on our understanding of

end-user programming.

The Psychology of Programming

Newell and Card argued early on that programming languages often make

programming more difficult than necessary by ignoring a variety of human-computer

interaction issues (1985). For example, in the C programming language a missing semi-

colon can generate a slough of error messages that often have nothing to do with the

original error. Such a situation is potentially confusing for an end user trying to learn the

language, not to mention distracting for a professional programmer.

Thus one approach to understanding end-user programming has been to research how

people program. Lewis and Olson (1987) were some of many to describe programming as

the process of transforming a mental plan that is in familiar terms into one that is

compatible with the computer. This definition was later clarified by Green and Petre

(1996), through the concept termed closeness of mapping. A number of studies have

identified important problems in current programming languages based on this concept.

For example, Hoc & Nguyen-Xuan (1990) have shown that bugs and difficulties often

arise because the distance between the mental plan and the required computer

representation is too large. Another such study found that the looping controls provided

by modern programming languages do not match the natural strategies that most

individuals used (Bonar & Soloway, 1989).
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Green (1977, 1983) has demonstrated the importance of notations, arguing that every

notation highlights some kinds of information at the expense of obscuring other kinds.

For example, if a language highlights dataflow, it may obscure control flow. Sinha (1992)

and Vessey (1992) showed that when seeking information in programming systems, there

must be a cognitive fit between the mental representations and the external

representations.

A number of other significant findings have scoped the problem of the psychology of

programming: Brooks (1977) described program design in terms of mapping the problem

domain to the program domain, suggesting the difficulty of dealing with entities in the

programming domain that do not have corresponding entities in the problem domain. In

terms of understanding the program, Anderson (1984) showed that novices need an

environment where it is easy to check a program fragment before programming further.

Though this is a just a sample of the findings in the area of psychology of

programming, the findings are prescriptive: programming environments for end users

require a close mapping of the problem to the program, of the problem domain to the

program domain, and of the notations used to communicate to the computer to the

concepts in the end users mind. Even still, there are a number of questions that still have

great importance. As most of the studies mentioned involved skilled programmers or

programming languages designed for professional programmers, we must ask if and how

end users and end-user programming environments differ. Furthermore, much of the

research has focused on the programming language alone and has ignored the

environmental support for learning about a programming environment through online

help systems, as well as support for testing and debugging programs. Finally, these
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studies have grouped all users into one category in search for universal maxims. Might

individual differences play a role in how end users learn about an environment, what

strategies they use to program, test, and debug?

Syntax and Naturalness

Early attempts at actually making programming easier were not driven by the

empirical results from the area of psychology of programming, but rather by intuition.

Developers of HyperTalk (Goodman, 1987) and Cobol (Sammet, 1981), for example,

made the language syntax seem more like natural language. These languages still have

many of the problems identified earlier (Thimbleby, Cockburn, & Jones, 1992). Another

common phenomena in end-user programming is that end users will use natural language

to converse with the computer (Pea, 1986), a phenomenon which Nardi (1993) argues

may in fact make it more difficult for the user to understand computer’s limitations.

More recent attempts at involving some level of “naturalness” in programming

languages have been to study the language that end users do use. For example, Pane,

Ratanamahatana, and Myers (2001) investigated the language that end users naturally use

to express solutions to programming problems (in this study, the problem of

programming the videogame Pac Man), finding that event-based and constraint

statements were much more common than imperative statements. Such data is useful in

guiding the approach to developing new language syntax. Further study yet is required to

reveal whether or not their findings are applicable to all end users, or whether there are

types of end users that prefer employ different methods of expression. Furthermore, as



19

the study focused on a single domain of programming the game Pac Man, it is not known

if their findings are applicable to all domains.

Testing and Debugging

There has been little effort to investigate the problem of debugging in programming

languages in general, let alone end-user programming environments (Lieberman, 1997),

but recent attempts show promise in solving this problem. For example, the Zstep95

system (Ungar, 1997) keeps a complete history of computation so that execution can be

run backwards; many data visualization systems (Myers, 1980; Myers, 1988; Rojansky,

1997) have provided professional programmers the ability to view run time data in order

to aid in debugging programs. There have also been significant attempts by Rothermel,

Burnett, and Cook (Rothermel, 2000) to bring visual testing of spreadsheets to

professional programmers, and recently, end users.

Yet there are still important gaps in testing and debugging research, most notably the

lack of empirical data on end users and such systems. Do end users test and debug in a

natural environment? If so, how do they go about doing it, with what do they succeed and

fail? Furthermore, if systems are in place for testing and debugging, are they

approachable, intuitive, and effective for end users?

Important Gaps in End-User Programming Research

Despite numerous attempts to create tools and theories to making programming easier,

less prone to faults, and more approachable, it is clear that the end-user programming
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community is still in a descriptive, exploratory phase of research. We still know little

about why programming is difficult, and more importantly, what can be done to ease this

difficulty. To summarize the gaps in the descriptive data on the problem of end-user

programming,

ü There has been little research in how end users go about learning about a new

programming environment;

ü Little is known about how end users create code in a novel environment;

ü Little is known about how end users test and debug existing code;

ü It has not been shown that end users and skilled programmers are or are not

different in any qualitative ways; and

Though no single study can answer all of these questions, the study presented here

attempts to at least explore the questions and provide descriptive data on each of these

gaps in current end-user programming research.

ü How do individual differences influence programming, testing, and debugging

performance?

ü Are there distinct strategies that end users use to learn about an environment?

ü Are there distinct strategies that end users use to program in an environment?

ü Are there distinct strategies that end users use to test and debug in a

programming environment?

ü How do individual differences influence programming, testing, and debugging

strategies?

ü Is there cause to believe that skilled programmers and end users use the same

programming, testing, and debugging strategies?
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By investigating these questions, we can identify key issues in improving end-user

programming.
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Method

In order to answer the research questions posed above, an exploratory experiment was

designed in which participants would be given a typical textual end-user programming

environment to solve a program construction problem and a program testing and

debugging problem. In other words, all participants were exposed to the same

experimental condition, with the only variation among participants’ backgrounds and

experience.

Participants

Participants were recruited from undergraduate computer science and psychology

courses, as well as introductory courses in statistical hypothesis testing. Students were

recruited at the beginning of their course lectures. A brief description of the experiment

and the benefits of participation were given and a signup sheet was passed around.

Participants were offered extra credit in their class and entry into a raffle for a $100 prize

in exchange for their participation. As the study spanned two academic quarters, a raffle

was held for each quarter to increase the participants’ perceived chances of winning the

raffle. Eight of the participants, all psychology students, were required by their instructor

to participate as part of the course requirements. They did not receive extra credit, but

were entered into the raffle.

The original sample consisted of 86 participants, but those who did not comprehend

the experimental materials because of poor English skills or misunderstanding were

removed from the sample, leaving 75 participants. Background characteristics are listed
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in Table 1. Two-sample unpaired t-tests were performed to test for differences in self-

reported ability and experience, statistical knowledge, and performance on the vocabulary

and cognition scales (a was set to .05). Participants whose native language was not

English performed significantly lower than native English speakers (p = .004); females

had significantly less self-reported experience and ability with mathematics (p < .05),

programming (p < .001), and software (p < .05); finally, computer science majors

reported higher ability and greater experience with mathematics (p < .01) and

programming (p < .01).

Major Psychology Computer
Science

Other Total

Gender Male Female Total Male Female Total Male Female Total Male Female Total

Count 8 12 20 21 3 24 12 19 31 41 34 75

Vocab27
.59

(.09)
.57

(.10)
.58

(.10)
.62

(.12)
.68

(.21)
.63

(.13)
.60

(.15)
.58

(.11)
.59

(.12)
.61

(.12)
.59

(.12)
.60

(.12)

VCog I
.57

(.09)
.51

(.10)
.53

(.10)
.54

(.15)
.68

(.20)
.55

(.16)
.48

(.16)
.52

(.18)
.50

(.17)
.52

(.15)
.53

(.16)
.53

(.15)

Statistics Test
.25

(.15)
.33

(.21)
.30

(.18)
.36

(.16)
.27

(.15)
.35

(.16)
.34

(.11)
.34

(.17)
.34

(.15)
.33

(.15)
.33

(.18)
.33

(.16)

Age
20.6
(1.3)

22.4
(3.6)

21.7
(3.0)

25.4
(8.2)

26.7
(7.4)

25.6
(8.0)

24.3
(3.9)

26.1
(6.7)

25.4
(5.7)

24.2
(6.5)

24.9
(5.9)

24.5
(6.2)

Sleep
5.88

(1.89)
6.83

(1.27)
6.45

(1.57)
7.00

(1.22)
6.33

(2.08)
6.91

(1.31)
6.75

(1.22)
7.05

(1.75)
6.94

(1.54)
6.71

(1.40)
6.92

(1.58)
6.80

(1.48)
Mathematics
Experience

3.91
(1.52)

2.96
(1.43)

3.34
(1.51)

5.55
(.99)

5.25
(.66)

5.51
(.95)

4.96
(2.28)

4.71
(1.39)

4.81
(1.76)

5.05
(1.65)

4.14
(1.60)

4.64
(1.68)

Statistics Software
Experience

1.25
(1.34)

1.93
(1.08)

1.66
(1.21)

1.08
(.99)

2.25
(.75)

1.23
(1.02)

2.15
(.98)

1.26
(1.33)

1.60
(1.27)

1.43
(1.14)

1.59
(1.24)

1.50
(1.18)

Programming
Experience

.58
(.85)

.31
(.91)

.42
(.88)

4.24
(1.16)

3.39
(.92)

4.13
(1.15)

2.19
(1.89)

.96
(1.09)

1.44
(1.55)

2.97
(1.99)

.91
(1.29)

2.03
(1.97)

Computer Experience
5.44

(1.45)
5.50

(1.11)
5.48

(1.09)
6.12
(.71)

5.83
(1.26)

6.08
(.76)

6.04
(.72)

5.66
(1.21)

5.80
(1.05)

5.96
(.83)

5.62
(1.15)

5.81
(1.00)

Experiment Attitudes
4.72
(.92)

4.52
(.95)

4.60
(.92)

5.36
(.97)

4.14
(.63)

5.24
(.97)

4.88
(.66)

4.83
(1.12)

4.85
(.96)

5.09
(.90)

4.69
(1.02)

4.91
(.97)

Computer Attitudes
4.28

(1.45)
3.88

(1.19)
4.04

(1.28)
6.45
(.46)

6.17
(.63)

6.42
(.48)

5.48
(.96)

4.89
(1.07)

5.11
(1.05)

5.74
(1.20)

4.64
(1.26)

5.24
(1.34)

Statistics Attitudes
2.81

(1.18)
2.77

(1.58)
2.78

(1.40)
3.43
(.93)

3.83
(.88)

3.48
(.91)

3.98
(.88)

3.32
(1.31)

3.57
(1.19)

3.47
(1.02)

3.17
(1.39)

3.33
(1.20)

Mathematics Attitudes
3.63

(1.74)
3.67

(1.84)
3.65

(1.75)
5.36

(1.21)
5.25

(1.15)
5.34

(1.18)
5.10

(1.63)
4.43

(1.51)
4.69

(1.56)
4.95

(1.56)
4.24

(1.64)
4.62

(1.63)

Table 1. Mean (and standard deviations in parentheses) of participant
background characteristics by major and gender.
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Testing Instruments and Psychometric Properties

A number of tests were used to illustrate participants’ background, experience, and

abilities. Efforts were made to assess the psychometric properties of the instruments used,

thus as the very least, Cronbach’s alpha is provided for each applicable test.

Introduction to Stata

Stata is a commercially available statistical package designed for research

professionals such as economists, political scientists, epidemiologists, and other health

scientists. Stata was chosen as a typical end-user programming environment because of

its traditional textual command line interface and limited environmental support for

programming and debugging. A typical user view of Stata can be seen in Figure 1. Stata

for Windows was used in the study.
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In terms of graphical user interfaces, Stata provides a main window which contains a

variables window, which shows the variables in the current data set being used, a review

window that shows a history of user-generated and computer-generated commands, an

output window, that shows a history of textual output generated by Stata, and a command

window in which users enter textual commands. When graphs are generated, Stata

displays the graph in a simple resizable, non-interactive window. Stata also provides a

spreadsheet-like data editor with limited functionality (see Figure 2).

Figure 1. A typical user view of Stata.
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Figure 2. The Stata editor window, providing a spreadsheet-like
interface for inserting and deleting data and variables.

Creating a data set in Stata consists of setting a system variable that specifies the

number of objects in a data set to the desired size; such a command would look like “set

obs 1000,” for a data set consisting of 1000 objects. To create variables within this data

set, the generate command is used; for example, the command “generate height = 5”

would create a variable named height, which has the value 5 for all 1000 objects. Stata

provides a number of functions that can be used in conjunction with the generate

command; for example, the command “generate height = uniform()” creates a variable

named height in which each observation is a value between  0 and 1 selected from a

uniform distribution of random numbers.

Stata provides an online help system with descriptions and limited examples of

command use. The online help can be reached through the commands “help” or

“search”—in which case help is displayed in the output window or through the help menu
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in the main Stata window, in which case the help text is displayed in a graphical,

resizable window. See Figure 3 and Figure 4 for examples of each interface respectively.

Regardless of the interface used, a request for help for the word p-value, for example,

would return an error message  “help for p-value not found. Try help contents or search

p-value.” A search on text will return a list of matches, akin to a web search (see Figure

4), while a failed search will provide no feedback unless the search in the menu is used.

See www.Stata.com for more information about Stata.

Figure 3. Textual help in the output window for the t-test command.
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Figure 4. A view of the graphical help window, showing search results
on the keyword 'p-value'

Vocab27

The Vocab27 test consisted of 27 multiple-choice questions that present a word and

asked the participant to choose the word from the list of choices that has the most similar

definition. The test was intended to be a coarse measure of IQ. No time limit was placed

on the test, but if participants took more than 20 minutes, the experimenter asked them to

finish. This only occurred twice in the sample. Cronbach’s alpha for this sample was .75,

which suggests fairly good reliability.
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VCog I

Vcog I consisted of 50 items, equally divided into five sections of 10 items each. In

the first section, the participant was asked to determine the next number in a series of

numbers. For example, the sequence “1, 2, 4, 8, __” would be provided and the

participant would fill in the next number in the series. In the second section, participants

were given a word pair that has an unidentified relationship and are asked to choose two

words from a list that have the same relationship. For example, the word pair “house,

window” would be presented, and the participant would circle two words from the list

“body, x-ray, engine, screw, knife” that have the same relationship; the correct answer in

this case would be body and x-ray, since an x-ray lets one see into a body just like a

window lets one see into a house. In the third section, participants were asked to choose

two words from a list that have the most similar meaning; for example, participants

would choose two words from the list “home, hole, house, car, cave,” the right answer in

this example being house and home. In the fourth section, participants choose two words

form a list that have the most opposite meanings; for example, from the list “berate,

argue, rebuke, yell, stomp” the correct answer would be berate and rebuke. In the final

section, participants were given a sequence of pictograms and asked to choose the next

pictogram in the series from a list. Patterns in this final section were based on the

rotations and reflections of pieces of the pictograms.

The test was intended to be a measure of verbal, spatial, and mathematical ability, and

was used in this study to measure the general intelligence of the participants. Participants

were given 20 minutes to complete the test and were told when they had 10 minutes
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remaining. Cronbach’s alpha for this sample was .78, suggesting a solid reliability for the

test.

Statistics Test

The statistics test, created specifically for this study, consists of 10 multiple-choice

questions (varying from three to five choices) that covered material from typically

offered in introductory statistics and hypothesis testing courses. An initial item pool of 20

items was formed from publicly available statistics tests administered by instructors in

the OSU Department of Statistics. One example item from the test is given in Figure 5.

The original set of items was administered to three volunteers who were asked to identify

confusing and difficult items. The final 10 items were chosen and revised according to

these early administrations. Participants were given 10 minutes to complete the test and

were told when they had five minutes remaining.

Ignoring twins and other multiple births, assume babies born at a hospital are independent events with the probability
that a baby is a boy and the probability that a baby is a girl both equal to 0.5. The probability that the next five babies
are girls is

a. 0.00098
b. 0.03125
c. 0.25
d. 0.5
e. 1.0
Figure 5. A question from the statistics test given to participants to

measure knowledge of statistics.

Cronbach’s alpha for this test was .21, which by all standards condemns the usefulness

of the measure. As can be seen in Table 1, there was a very low ceiling placed on the test,

resulting in very poor performances. Despite the poor psychometric properties of the test

and since the questions for this were taken from introductory statistics courses, we can
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conclude with some confidence the sample as a whole has a poor understanding of

statistical concepts.

Background Questionnaire

The background questionnaire was administered to gather basic information about

participants’ age, major, native language, as well as participant-reported experience and

ability with statistics, mathematics, computer software, and programming. The

questionnaire also measured participants’ attitudes towards these areas of knowledge and

the experiment itself. Each of the experience and attitude questions followed the typical

Likert format and can be seen in Figure 6, and Figure 7, respectively. Participants were

not given a time limit for this questionnaire.

I have a lot of difficulty doing algebra � 1 2 3 4 5 6 7
I have a lot of difficulty doing trigonometry � 1 2 3 4 5 6 7
I have a lot of difficulty doing geometry � 1 2 3 4 5 6 7
I have a lot of difficulty doing calculus � 1 2 3 4 5 6 7
I am very effective in using spreadsheet software � 1 2 3 4 5 6 7

I am very effective in using statistical software � 1 2 3 4 5 6 7
I am very effective in using word processors � 1 2 3 4 5 6 7
I am very effective in using database software � 1 2 3 4 5 6 7
I am very effective in using internet browsers � 1 2 3 4 5 6 7
I am very effective in using StatGraphics � 1 2 3 4 5 6 7

I am very effective in using Stata � 1 2 3 4 5 6 7
I am very effective in using StatView � 1 2 3 4 5 6 7
I am very effective in using SPSS � 1 2 3 4 5 6 7
I have a lot of experience programming in C � 1 2 3 4 5 6 7
I have a lot of experience programming in C++ � 1 2 3 4 5 6 7

I have a lot of experience programming in Java � 1 2 3 4 5 6 7
I have a lot of experience programming in JavaScript � 1 2 3 4 5 6 7
I have a lot of experience programming in BASIC � 1 2 3 4 5 6 7
I have a lot of experience programming in HTML � 1 2 3 4 5 6 7
I have a lot of experience programming in Lisp � 1 2 3 4 5 6 7
I have a lot of experience programming in Visual Basic � 1 2 3 4 5 6 7

Figure 6. The experience questions asked on the background
questionnaire. The scale included “I’ve Never Used It” on the far
left, and from “Strongly Disagree” to “Strongly Agree” from left to
right.
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I am excited about doing this experiment 1 2 3 4 5 6 7
I enjoy using computers 1 2 3 4 5 6 7
I enjoy doing statistics 1 2 3 4 5 6 7
I struggle with mathematics 1 2 3 4 5 6 7
I enjoy or think I would enjoy computer programming 1 2 3 4 5 6 7

I am a good mathematics problem solver 1 2 3 4 5 6 7
I am a good computer problem solver 1 2 3 4 5 6 7
I enjoy using statistics to test hypotheses 1 2 3 4 5 6 7
I am nervous about this experiment 1 2 3 4 5 6 7
I think this experiment will be boring 1 2 3 4 5 6 7

I consider computers a useful tool 1 2 3 4 5 6 7
I am a good statistics problem solver 1 2 3 4 5 6 7
I am comfortable around this experimenter 1 2 3 4 5 6 7
I enjoy doing mathematics 1 2 3 4 5 6 7
I will not use statistics in my everyday life 1 2 3 4 5 6 7
I have confidence in my math abilities 1 2 3 4 5 6 7

Figure 7. The attitude questions asked on the background questionnaire,
ranging from “Strongly Disagree” to “Strongly Agree”, left to right.

Experience and ability self-reports were divided into four categories: software,

mathematics, statistics, and computer programming. Cronbach’s alpha for each of these

scales respectively was .67, .97, .60, and .80, suggesting that each of these groups of

questions form relatively strong measures of experience. Attitude questions were divided

into four categories: computers, statistics, mathematics, and the experiment. Cronbach’s

alpha for each of these scales respectively was  .80, .76, .93, and .60.

Post-Session Questionnaire

The post-session questionnaire was administered immediately following the

completion of the second problem and was intended to gather information about the

participants experience with the software (see Figure 8) and their perception of the

strategies they used to solve the problems and learn to use Stata (see Figure 9). Six free

response questions were also included in order to gather anecdotal data on their

experiences. The data from the post-session questionnaire was mainly used to confirm the

validity of the data extracted from user interactions.



33

I enjoyed using this software 1 2 3 4 5 6 7
I am confident that I could learn to use this software 1 2 3 4 5 6 7
I was comfortable using the software 1 2 3 4 5 6 7
I was confused about how to use the software 1 2 3 4 5 6 7
I was curious about how to use the software 1 2 3 4 5 6 7

I was frustrated with the software 1 2 3 4 5 6 7
I didn’t know how to learn about the software 1 2 3 4 5 6 7
The software is intimidating 1 2 3 4 5 6 7
The software was difficult to use 1 2 3 4 5 6 7
Using the software was intuitive 1 2 3 4 5 6 7

Figure 8. Questions about participants’ experience with Stata following
the problem solving sessions. The scale ranged from “Strongly
Disagree” to “Strongly Agree”, left to right.

Used resources within Stata, such as help and search 1 2 3 4 5 6 7
Wrote down thoughts and ideas on scratch paper 1 2 3 4 5 6 7
Drew pictures on scratch paper to help me think 1 2 3 4 5 6 7
Thought to myself 1 2 3 4 5 6 7

Began to learn about one aspect of Stata, then broke it down into smaller pieces to learn individually 1 2 3 4 5 6 7
Learned about smaller aspects of Stata, then combined what I learned to understand larger aspects 1 2 3 4 5 6 7
Guessed about how to do something, tried it, failed, and repeated until I was successful 1 2 3 4 5 6 7
Explored the Stata program without any strategy in mind 1 2 3 4 5 6 7

Took a specific case in Stata and generalized about how something worked 1 2 3 4 5 6 7
Used similar examples to generalize to the task I needed to perform 1 2 3 4 5 6 7
Clarified or rephrased information that I found about Stata 1 2 3 4 5 6 7
Used simpler cases I found in Stata to understand more complicated cases 1 2 3 4 5 6 7

Figure 9. Questions asked following the problem solving sessions about
the strategies participants used to solve the problems. The scale
ranged from “Strongly Disagree” to “Strongly Agree”, left to right.

Tutorial

Participants were given a 10-minute tutorial on how to write Stata commands, how to

create a data set of a certain size, how to create a variable, how to list the data in a data

set, and how to get help from the Stata command line. Rather than provide the knowledge

necessary to succeed at the two problems, the intention of the tutorial was to allow

participants to become accustomed to the environment and the basic features the

environment provided. The philosophy was that the participants should use their own

strategies to learn about the environment rather than strategies the experimenter could

provide, in order to facilitate the observations of the strategies participants would use in a

natural setting.
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The experimenter followed a tutorial script, provided in Figure 10, to ensure that each

participant received the same instructions. Participants were told they may ask questions

during the tutorial, but only regarding the topics covered in the tutorial itself. If

participants asked questions about material not covered in the tutorial, they were told to

investigate their question during the problem solving sessions. The tutorial typically

lasted about 10 minutes.

ü As we go through this tutorial, if you don't understand something, of if you need me to slow down, please interrupt me.
ü Before we use the computer, let's first do a brief review about statistics by starting with a scenario.
ü Suppose you're interested in the differences in the height and hair length of men and women.
ü We can use statistics to tell us whether or not there are differences in the average height and average hair length between men and women.

These days, we can use statistics software like Stata to help us do this.
ü The basic idea behind any statistics software like Stata centers on three concepts, which we can see in our scenario.
ü The first is that of the objects that we observe and make measurements on. In our scenario, these objects are people. Assume that we’ve

recruited 10 people and measured their height and hair length. How would we begin to analyze the data with Stata?
ü Go ahead and wake up the computer, and open up Stata. Find the Stata command window at the bottom of the screen. [wait for participant

to complete task]
ü Stata begins with 0 objects, so to tell Stata that we have 10 objects, or people, we type "set obs 10" and press enter.
ü Notice that some text appeared in the window in response to your command, telling you that the number objects was 0 and has been set to 10.

Do you see the green text in the black area? [wait for participant response]
ü Also notice that the command you typed appeared in the upper left window entitled "review." You can use this window to review the

commands that you've entered and remind yourself what to type later.
ü The second concept is that of a variable. In our scenario, we have two variables: height and hair length. Let's say that the ten people we made

measurements on were very similar, and all were 6 feet tall. To tell Stata this information, we need to type a command that creates data for
each object. So let’s type "generate height = 6" and press enter. [wait for participant to enter command] Notice this makes a variable called
"height" and it lists this below the review window in the window called variables. Now, Stata knows that for all ten people, the variable "height"
is equal to 6.

ü What about hair length? Let's say that since they were all very similar, that all had a hair length of 1 foot. This time, instead of typing the whole
word, we can type “gen hair = 1” and press enter. Now, a new variable named "hair" has appeared in the "variables" window, along with
"height", and now, Stata knows that for all ten people, the variable "hair" is equal to 1.

ü Let's say we were also interested in their total height-the height of their body plus the length of their hair. To create a variable that stored these
numbers, type "generate total = height + hair" and press enter. [wait for participant to enter command] Now, there is a variable called "total"
that equals the height plus the hair length of each person we made measurements on.

ü To see all of this information, we can type the command "list" and press enter and Stata will show a table of all three variables and all ten
people. [wait for participant to enter command]

ü By looking at this table, we can see the third concept, which is that of an observation. Notice that for person 1, we have three observations:
person 1's height, person 1's hair length, and person 1's total height including hair length.

ü Also notice in this table, that for the variable hair, we have ten observations: one hair length measurement for each person. So the concept of
an observation is really just that of a single measurement, such as the hair length of person 6, or the total height of person 2.

ü Although Stata has many more commands that allow you to do many things, such as calculate the mean hair length or graph the hair length
versus the height, our data isn’t very interesting. Let's clear the system of all of our observations, variables, and people by typing “clear” and
pressing enter. [wait for participant to enter command]

ü This sets the number of objects to 0 and removes all of the variables.
ü If you ever need help with something, you can use the commands “help” and “search” in the Stata command window, followed by a word, and

Stata will give you help on that word. For example, let’s see the help on the command “list”  by typing “help list.”
ü To continue scrolling through the help, simply press the space bar. Go ahead and go all the way down to the bottom.
ü Let’s go back into the help for the list command and practice quitting. [if they need help, remind them to type “help list”] So to quit the help,

press ‘q’. The “break” in the output window means that you have quit the help.
ü Lastly, also notice there is also a help menu at the top of the Stata window in the menu bar.

Figure 10. The tutorial script followed by the experimenter,
introducing the participants to basic features of Stata’s
environment. Italicized statements surrounded by square brackets were
instructions for the experimenter and were not read aloud.
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Problems

Participants were given two problems in the experiment, intended to evaluate their

ability to construct commands and to debug commands written by someone else.

Problem 1. The first asked participants to created a data set of 1000 objects, create two

variables with uniformly distributed random numbers between zero and one, to perform a

two-sided unpaired t-test to compare the means of the two lists of data, and to report the

p-value returned by the t-test to the experimenter (see Figure 11 for the description

participants received). The solution consisted of a command to set the number of objects

to 1000 (“set obs 1000”), two commands that used the uniform function in conjunction

with the generate command (“generate var1 = uniform()”), and the use of the t-test

command to compare the two lists of data (“ttest var1 = var2, unpaired”). Participants

were given 30 minutes to complete the problem and were told that they would not receive

their extra credit if they gave up with time remaining. There was no consequence for

running out of time.
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Problem 1

Using STATA, perform the following tasks:

ü Create a data set with 1000 objects.
ü For this data set, create two variables that each has a uniformly distributed set (and specifically uniform, not normal

or any other type of distribution) [ask participant “do you know what I mean by uniform?” and define it if not
using the statement “you probably know what a bell curve is; there are many data points at the mean and
not many at the edges; a uniform distribution is one where there are just as many of one number as there
are another, just like a flat histogram.”] of random numbers between 0 and 1. [Ask participant “do you know
what I mean by random?” and define it if not using the statement “random means that every number is
different and there are no patterns”] In other words, you will have two sets of 1000 numbers that all have
different numbers such as 0, 0.235 or 0.834. [Explain to the participant that this means they will have 2000
numbers in all, across to variables]

ü With this data, perform a two-sided, unpaired t-test on the two variables to help determine if their means differ.
[Ask participant “Do you know what a t-test is?”] A t-test is a statistical equation that will suggest whether or
not the means of two sets of numbers are significantly different. The t-test will give a number called a p-value,
which is between 0 and 1. [Remind participant of the meaning of these numbers: “if the two sets are really
different, the p-value is very close to zero; if they are very similar, the p-value is closer to one”]

ü Report the p-value to Andy.

YOU HAVE 30 MINUTES. REMEMBER TO think aloud!
Figure 11. The description of problem 1 that participants received.

Italicized statements surrounded by square brackets were read aloud
by the experimenter by were not included on participant copies.

Problem 2. In the second problem, participants were given a short sequence of Stata

commands, called a do-file in Stata (see Figure 12 for a view from Stata, and see Figure

13 for a listing of the do-file text). The purpose of the do-file was to create a graph that

visualized the influence of increasingly large outliers on the p-value from a t-test.  The

do-file created a data set of 1000 objects with two variables with random values between

zero and one, and looped ten times, each time changing five of the values in the first

variable to increasingly large outliers from 1 to 10. As these outliers increase from 1 to

10, the means of the two lists of data should become increasingly different, and thus the

p-value from the t-test between these two lists should become smaller. The graph listed

the outlier values from one to ten on the x-axis, and the p-value generated by the t-test for

each value of the outliers on the y-axis. See Figure 14 for a listing of the problem

description that participants received.
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Figure 12. The participants’ initial view of the do-file used for problem 2.
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* This script will generate two sets of 1000 observations of uniformly ;
* distributed numbers, and place an outlier in the first five observations ;
* of the first set. The goal is to graph the p-values of unpaired ;
* two-sample t-tests as this outlier changes from 1 to 10. Here is ;
* the basic order of execution: ;
*  - clear all variables from the system ;
*  - set the number of observations to 1000 ;
*  - generate two variables with random numbers from 0 to 1 ;
*  - generate a variable to store all of the p-values ;
*  - loop from 1 to 10 and ;
*     - change the outliers in the first set to the current value ;
*     - execute the t-test between the two sets ;
*     - put the resulting p-value into the p-value variable in the ;
*       current row ;
*  - generate a variable that contains the values from 1 to 10 ;
*  - graph the p-values against the values 1 to 10 ;

* Tell the system that every command ends with a semi-colon ;
#delimit ;

* Clear the system before we start! ;
clear;

* First we set the number of observations ;
set obs 1000;

* Generate two variables for which all observations are a random ;
* number from 0 to 1 ;
generate rand1 = uniform();
generate rand2 = uniform();

* Next, we need to generate a variable to store the p-values in. ;
* We put 0's in every observation for now. ;
generate pvalues = 0 in 1/100;

* Then we need to loop through outlier values from 1 to 10,;
* at intervals of 1. First, we update the first five observations ;
* of variable rand1. Then, we run an unpaired t-test between the ;
* two variables. Finally, we place the p-value in the pvalues ;
* variable, in the current row. ;
for num 10/1: replace rand1 = X in 1/5 \ ttest rand1 = rand2, unpaired \ replace pvalues = r(p) in X;

* Generate a variable that contains 1 through 10 ;
generate valueofoutlier = _n in 1/10;

* Graph the results, pvalues versus valueofoutlier ;
graph valueofoutlier pvalues, title(p-values of a t-test as the magnitude of outliers increase) connect(l);

Figure 13. The source code provided to participants for problem 2. The
four bugs are highlighted in grey.
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Problem 2

This do-file graphs the influence of having several increasingly large outliers in your data set; [ask participant if they
know what an outlier is; if not, use this statement to describe it: “an outlier is like a ten foot man in a group of
six foot mean; his height doesn’t fit with the rest of the data; it stands out and influences the mean by making
it much larger than it should be”] it plots the p-value calculated by the t-test of two variables as you change five
observations in one of the variables into outliers (in real-life data sets, such outliers are often caused by data entry
errors).  The example highlights undue influence on your conclusions due to a few outliers.  The do-file does this
demonstration in the following way:

ü It makes two variables with 1000 observations of random numbers between 0 and 1, just like in the previous
problem.
ü As you recall from the previous problem, the means of the two variables should be fairly equal when there are no

outliers, and so the p-value of a t-test should be closer to 1 than to 0. [Instruct the participant to look at the table
in the output window in Stata from the previous problem, and observe that the t test on the two data sets,
which had very similar means, is closer to zero]
ü The do-file is supposed to change the first five observations of the first variable into increasingly large outliers.  The

change is done in a series of 10 steps: for the first step, the outliers are set to 1, for the second step the outliers are
set to 2, and so on until the last step when the outliers are set to 10.
ü At each step, after the observations are changed, a t-test is performed and the p-value is stored.
ü When the value of the outlier put into the first variable is 1, the means of the two variables should be pretty close.

But when the value of the outlier put into the first variable is really high, like 10, the means should be pretty different,
because the outlier makes the mean bigger.
ü As the outlier gets bigger, the means of the two variables get more different, and so the p-value from a t-test should

become smaller, indicating that the means differ more and more.
ü The resulting graph should look something like this: [“like something on your paper”]

ü 
value of outlier

ü But, the do-file has many problems! There are many things it’s supposed to do, as described above, that it doesn’t
do correctly!
ü Analyze the do-file, find as many of the problems as you can, and fix them. None of the problems are major ones,

and only require small changes. When you think you've fixed all of the problems and you think you see the correct
results, let Andy know. [Explain to the participant: “So basically, this file does everything on this description;
there is no need to create the commands to perform this operations]

YOU HAVE 20 MINUTES. REMEMBER TO think aloud!
Figure 14. The description of problem 2 that participants received.

Italicized statements surrounded by square brackets were read aloud
by the experimenter by were not included on participant copies.

The resulting graph was supposed to be a smooth curve with ten data points as shown

in Figure 15. However, four bugs were inserted into the do-file that the participants

received (highlighted in Figure 13) which changed the graph produced. The effect of

these four bugs was a graph with inverted axes and 90 extra p-values with values of zero

(see Figure 16). Participants were told to find out what was wrong with the do-file and
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change the commands in it so that the correct graph was produced; once they thought

they had the correct graph and had found all of the bugs they were to notify the

experimenter. Participants were given 20 minutes to complete the problem and were told

that they would not receive their extra credit if they gave up with time remaining. There

was no consequence for running out of time.

Figure 15. The graph that the do-file was supposed to create.

Each of the bugs had a specific rationale:

ü The bug starting on the line “for num 10/1: replace rand…” simply changed

the order of execution of the iteration, which did not affect the data or the

graph. This bug was inserted to see if participants would exert effort to change

a bug that did not corrupt the output of the do-file.

ü The bug in the line “generate pvalues = 0 in 1/100;” only required the “1/100”

to be changed to “1/10,” because only ten p-values were being calculated. The

extra p-values cause the vertical line in Figure 16 to appear. This bug required

an understanding of the syntax in “1/100.”  This bug was contrasted with the
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bug in the line “generate valuesofoutlier = 0 in 1/100;” in which the only

difference is that the latter command is accompanied by a comment above it

that specifically says “generate a variable that contains 1 through 10.” These

bugs were inserted to observe the magnitude to which the comment would aid

participants in identifying the bug.

ü The final bug was in the last line of the file, which graphs the data. The two

variables listed in the command are reversed: the pvalues variable should come

before the valueofoutlier variable, as stated in the comment above the

command. As the only way to detect this bug was to inspect the output of the

program, it was inserted to see the degree to which participants would analyze

the graph the do-file produced.

Figure 16. The graph produced by the do-file in problem 2 without any
modifications. The straight vertical line comes from the zeros in the
pvalues variable.
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Experimental Setting

Participants were tested in one of three environments, two of which were vacant

faculty offices and one of which was a small computer lab. All three environments

housed multiple personal computers, windows, and chairs. Throughout each session, only

the experimenter and the participant were present in the room. Experiment sessions

occurred through the summer and fall months of 2002.

Procedures

An experiment protocol was written for the experimenter to follow so that each

participant received the same information and in the same order; though it is not listed

here, it is summarized in detail. Participants were tested individually and arrived at the

beginning of a scheduled 2-hour block. Participants were asked to sit down in the chair in

front of their personal computer and the experimenter briefly described the purpose of the

experiment. Following any questions the participant had about the experiment, the

experimenter administered the Vocab27 test notifying the participant of the 10-minute

time limit. After this test, the experimenter administered the VCogI test, notifying the

participant of the 20-minute time limit; the experimenter cued the participant after 10

minutes had elapsed. Finally, the experimenter administered the Statistics test and

notified the participant of the 10-minute time limit; the experimenter cued the participant

after 5 minutes had elapsed.

Following the battery of tests, participants were given the option of a 5-minute

bathroom break. Following the optional break, participants were given the background



43

questionnaire and told there was no time limit. Once they completed the questionnaire,

the experimenter began the Stata tutorial, which covered the creation of a data set, of

variables, and how to find help within Stata. Participants were given the opportunity to

answer questions about anything covered in the tutorial, but told to avoid other questions.

Next, the experimenter reminded the participant that they would be working on two

problems within Stata and that there would be three rules regarding the problem solving

sessions: (1) they were not allowed to ask the experimenter questions, (2) they were not

allowed to use the Internet to solve their problems, and (3) they were to work until they

solved the problem or time expired. Participants were told that if they gave up, they it

“would be considered not completing the problem and [they] would suffer whatever

consequences there were.” Once the participants expressed their understanding, the

experimenter gave the participant a copy of problem one’s description and read it aloud.

Participants were allowed to ask for clarification while the description was read, and the

experimenter also offered clarification if he sensed it was necessary. Once the problem

was understood, participants began problem one once the experimenter started the

recording devices.

During the problem solving session, if questions were asked the experimenter would

answer “I’m sorry but I can’t answer your questions” except in three circumstances: the

participant asked how much time remained, asked the experimenter to clarify some text

in the problem description, or asked the experimenter to clarify one of the three rules

regarding the problem solving sessions.

Following problem one, participants were given the solution (seen in Figure 17) if the

participant had not completed the problem in its entirety. If they completed part of the
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problem, the experimenter started from that point in the solution. The effect of providing

the solution to those participants who failed was hopefully to bring the level of

understanding about the environment to that of those participants who succeeded.

Next, problem two’s description was given to the participant, and it too was read

allowed, during which clarification was offered. Once the problem was understood,

participants began problem two once the experimenter started the recording devices.

ü Set the number of objects to 1000
ü Search for help on generating random numbers
ü Go the help for generate, which is the third search result
ü Read the description of the generate command
ü Follow the link to the help for functions
ü Read the description of the uniform function
ü Read the introduction in the functions help on how to use functions
ü Generate two variables following the syntax examples
ü Search for help on t-tests
ü Follow the third search result for help on the ttest command
ü Follow the example in the help for the ttest command
ü Choose the appropriate p-value

Figure 17. The most efficient solution to problem 1, given to
participants following the first problem solving session. After each
instruction was given, participants were given help when necessary
and questions about the solution were answered.

Once the participant was done with problem two or time expired, the solution was

offered if the participant desired it and the post-session questionnaire was administered

with no time-limit. Regardless of whether the participant had given up on either problem,

their name was entered in the raffle on the condition that details about the experiment

would not be shared with classmates.

Data Acquisition

Participants used a desktop PC with Windows 2000, a 17” monitor, and a basic two-

button mouse and keyboard. The screen resolution was set to 800 by 600 pixels and color
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depth to 256 colors. During the extent of the problem solving sessions, the only window

visible to participants was the main Stata window.

During each of the problems, screen capturing software was used to capture

participants interaction with Stata at 12 frames per second at the same resolution that

participants viewed the screen in (800 by 600 pixels); the small screen configuration was

chosen so that the screen capture software would not interfere with participants’

interaction with Stata. In order to capture audio and interactions with the external

environment, a Sony Digital8 camcorder was used to videotape participants over the

shoulder. A microphone was attached to the monitor in order to get a clear recording of

what participants said during the problem solving sessions. The videotape was digitized

and, along with the screen capture videos, burned onto compact disc.

The non-quantitative videotapes and screen captures went through two phases of

quantification that are described in detail below.

Coding Procedures

In order to convert the videotape and screen captures into a form that could be

quantified, a coding scheme was developed to capture and describe the fundamental

aspects of interaction with Stata and used to create transcripts for each participant’s

interaction. The coding scheme is listed in Table 2. Each row represents an action that the

participant could perform in external environment or within Stata, while the italicized

words following the action represent the information that was coded in participant

transcripts; the source field typically includes the window the action was performed in,

the info field typically includes information that was provided by the user, and the context
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field typically includes contextual information about the action. A four-digit string that

represented the number of minutes and seconds into the interaction also preceded each

action. For example, if a participant moved the help window off screen five minutes and

three seconds into the problem, the action “0503 WIN H MV <off the screen to the

right>” would be recorded. An excerpt from a transcript is provided in Figure 18.

Action Source Info Context Description of the Action
Actions Extracted from Videotape (External Environment)

U words Participant speaks words
ME words Experimenter speaks words
WR words Writes words on paper
RE Reads the problem description
DR description Draws description on paper
EX window Examines window

Actions Extracted from Screen Capture
WIN window window operation <context> Performs window operation on window
BAR window direction <context> Scrolls in window in direction near <context>
MEN window menu name menu item Clicks on menu item in menu name menu in window
BUT window button name Clicks button name in window
CUR window text <context> Points to text with cursor in window near <context>
LINK window link <context> Clicks link in window near <context>
INS window text <context> Inserts text from window near <context>
DEL window text <context> Deletes text from window near <context>
SEL window text <context> Selects text from window near <context>
COP window text <context> Copies text from window near <context>
PAS window text <context> Pastes text to window near <context>
CUT window text <context> Cuts text from window near <context>
H window keyword Gets help on keyword from window
S window keyword Searches on keyword from window
SP <context> Presses the space or enter key to scroll output to <context>
Q <context> Quits the help in the output window near <context>
RUN Runs a do-file by clicking on the run button
C keystrokes Types keystrokes in command window
COM command Enters command in command window
ERR error <context> Error message error becomes visible, described by <context>

Miscellaneous Actions
ST comment A comment on the participant’s state by the coder
START problem Starts problem number problem
STOP problem Stops problem number problem

Legend

window
One of the following windows in Stata: REV (review), OUT (output), VAR (variables), DO (do-file),

COM (command), GRA (graph), H (help), STA (main Stata), DIA (dialog box), ED (editor)
window operation C (close), MIN (minimize), MAX (maximize), RE (resize), MV (move), FR (bring to front)
direction U (up), D (down), L (left), R (right)

keystrokes Keystrokes recorded in the “C” action included the ‘~’ character, which represents a backspace, and
the ‘@’ character which represents a keystroke of the enter key, which executes the command.

Table 2. A list of the actions that were coded for the videotape and
screen captures for each participant.
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0401 WIN DO FR
0403 BAR DO L <back to left of the file>
0407 BAR DO R <to see the right of the screen>
0412 BAR DO L <back to the left of the file>
0423 CUR DO <the gen valueofoutlier command and comments>
0431 CUR DO replace rand1 = X in 1/5 <in for loop>
0432 BAR DO R <to see rest of for loop>
0434 BAR DO L <back to left of file>
0440 DEL DO 0 <to make gen pvalues 1/10 instead of 1/100>
0444 RUN
0445 WIN GRA FR
0445 ST The graph looks good except for axes, and one p value dips down a bit.
0450 CUR GRA <traces the curve>
Figure 18. An excerpt from a participant’s transcript, portraying the

information that was coded from screen captures and videotape.

The process of coding was performed by two individuals trained to comply with the

coding scheme defined in Table 2. After the videotape was digitized, the two coders

followed this procedure to create the transcripts:

ü Code the external environment actions from the digitized videotape. The

majority of these actions were users own words but care was taken to observe

when participants’ attention moved from the computer monitor to paper

materials in the environment.

ü Code the Stata environment actions from the screen captures. In order to

ensure the accuracy of the timestamps, the screen capture videos were

advanced manually and stopped each time the participant performed an action.

If at any time a coder perceived that the participant misunderstood the goal of the

problem or was severely inhibited by a lack of English comprehension, the coding was

discontinued and the two coders came to consensus on whether or not the participant was

confused. If the two coders agreed on confusion, the participant’s data was dropped from

the study; in no cases did the coders disagree. As mentioned earlier, 11 participants were

dropped from the study for this reason. The coders each reported an accuracy of time
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stamps of within 2 seconds. One coder coded 16 of the 75 participants’ interactions and

the other coded 61.

After transcripts were created for each participant, two separate transcripts existed for

each participant: one containing videotape actions and one containing screen capture

actions. In order to merge the two transcripts, verify the compliance to the coding

scheme, remove typing and spelling errors, and obtain single transcripts for each

participant and each problem, the Perl programming language was used to automate the

following operations on the original transcripts:

ü Both the videotape and screen capture transcripts were split into two files, each

containing the actions for problems 1 and 2 separately. Any problems

identified at this point were fixed by hand.

ü Using the coding scheme in Table 2 as a syntax definition, each individual

action’s compliance to the coding syntax was confirmed. If syntax errors were

identified, such as misspelled actions, missing information, or mismatched

brackets, problems were fixed by hand in order to maintain accurate and valid

data.

ü As participants would frequently alternate between looking at the screen and

looking at the problem description, strict alternation between “RE” and “EX”

actions was confirmed. If problems were identified, the original videotape

source was checked to correct the error.

ü Every action that always leads to a help or search, such as selecting the help or

search menu item, was checked for a corresponding “H” or “S” action, in order

to ensure that every help and search participants performed would be visible in
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the data. If an “H” or “S” was missing, the original screen capture source was

used to correct the error.

ü Some of the transcripts were coded from the original videotape so many of the

initial time stamps were greater or less than time zero (the counters did not

start at zero). This discrepancy was used to normalize the transcript to an initial

starting time of zero.

ü Time stamps were checked to ensure that time was always increasing; any

errors were corrected by hand by referencing the videotape or screen captures

from which the error originated.

ü Quite often, participants would type a portion of a command and finish it

minutes later, making the distinction between “C” and “COM” actions

important. “COM” actions were not coded manually by the coders, so “C”

actions were transformed: ~ in the command string removed a single preceding

character and @ represented the execution of a command.

ü During experiment sessions, the camcorder and the screen capture software

rarely started at the same time. In order to put each transcript on the same time

scale, each pair of videotape and screen capture was compared and the time

discrepancy estimated in seconds. The videotape and screen capture transcripts

were then synchronized and merged together, according to time stamp.

The final data set, after transcripts were created, checked for errors, merged, and split

into problems 1 and 2 for each participant, totaling over 33,000 lines of text.
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Data Extraction

As manually extracting data from over 33,000 lines of text would be highly prone to

errors, not to mention impractical, Perl programs were also written to extract data from

the 150 transcripts automatically. A simple language was created to define metrics with,

so that variables could be quickly and accurately defined. A parser was also written in

Perl in order to interpret these metric definitions and gather data. The grammar for this

metric definition language is provided in Figure 19.

METRIC #(ACTION) | ft(ACTION) | lt(ACTION) | totaldur(ACTION) | meandur(ACTION) | mindur(ACTION) |
maxdur(ACTION) | distrib(ACTION) | first(ACTION) |
totalchar(ACTION regexp) | meansize(ACTION) | morethanone(ACTION)

ACTION ATYPE WIN INFO CONTEXT | seq( ACTION { DISCREP ACTION } ) | =( ACTION { ACTION } ) |
pair(ACTION ACTION) | cluster(ACTION) | byhand(ACTION)

ATYPE action | regexp | any
WIN STA | REV | VAR | DO | COM | OUT | DIA | H | any | regexp
INFO STRING | WINOP | DIR
STRING regexp | any
WINOP MIN | MAX | RE | MV | FR | C
DIR U | D | L | R
DISCREP seconds | inf
CONTEXT regexp | any
Figure 19. A grammar for the metric definition language used to extract

data from transcripts. Bold words are non-terminals, non-bold words
are terminals, and italicized words are terminals with special
meaning.

The basic premise behind the language was that a metric is a quantification of various

properties for a subset of actions in a transcript. For example, to calculate the metric

“number of commands executed” for each participant would involve finding the subset of

“COM” actions (commands executed), and then calculated the size of the subset. The

were numerous ways to identify a subset of the actions in a transcript through the

ACTION non-terminal:

ü Matches a single definition of an action, comprised of the type of action, and

the source, info, and context fields. For example, the ACTION “WIN H MV
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any” would match actions in which the help window was moved, regardless of

the CONTEXT.

ü seq: Matches one or more ACTIONs are provided and separated by a

specified number of seconds (or alternatively, an infinite number of seconds).

This type of ACTION matches sequences of actions separated by specified

amounts of time.

ü =: Matching any action that matches any of the ACTIONs listed.

ü pair: Matches pairs of alternating actions, such as those of reading the problem

description and examining the computer monitor, irrespective of time between

actions.

ü cluster: Matches all actions matching the provided ACTION and clusters

together actions that are equivalent; effectively makes a list of distinct actions,

removing duplicates. For example, a cluster on help actions would remove all

of the duplicate searches for help.

ü byhand: If a metric was too difficult or impossible to define using the

language, this type of action could be used to allow each action to be selected

on criteria external of the definition.

Each metric was applied to the actions that matched a subset of each participant’s

transcripts, as defined by the metric. As seen in the grammar, there were numerous types

of metrics that could be defined:

ü #: A simple count of the number of matching actions (i.e., the number of

commands executed).
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ü ft, lt: The time stamp of the first or last action matched (i.e., the time of the

first use of a button).

ü totaldur, meandur, mindur, maxdur: The total, mean, maximum, or

minimum time between a pair of alternating actions (i.e., the total, mean,

maximum, or minimum time spent reading the problem description). This

metric requires that the action match pairs of actions.

ü distrib: A non-numerical list of all of the matching actions.

ü first: The non-numerical literal first matching action.

ü totalchar: The total number of characters in matching the given regular

expression in the info field of the action.

ü meansize: The mean size of a cluster of commands

ü morethanone: Returns 1 if the size of a cluster of commands is more than 1,

and zero otherwise.

The italicized terminals in the grammar have special meanings: action represents any

action valid name, such as “C” or “WIN,” regexp represents any valid Perl regular

expression, and seconds represents a numerical number of seconds. The “any” terminal

means to match anything—including nothing—while the “inf” terminal means a limitless

number of seconds, used exclusively in the sequence matching action.

With the data extraction system in place, the two coders brainstormed about metrics

that might be useful in describing participants’ interaction with Stata during the two

problems, as well as useful in differentiating those who succeeded and those who seemed

to have different strategies. The metrics eventually used are listed in Table 3, Table 4,
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and Table 5. These metrics comprised the final set of data that was used to investigate the

research questions posed earlier.

After defining the metrics, each metric was tested to ensure that the definition was

capturing the data intended. As regular expressions are often overly specific, care was

taken to define the metrics to overmatch the data and then specify until the definitions

were gathering exactly what was intended.

Name Definition Description
Spoken Word Metrics
TALKATV totalword(U none any none /.*/) Talkativeness
SIGHS #(U none /.*\[sigh\.*]/ none) Tendency to sigh
CUSSING totalword(U none /.*(fuck|shit|damn|crap|dammit|damn it).*/ none

/(fuck|shit|damn|crap|dammit|damn it)/)
Tendency to cuss

TIMEREM #(U none /.*time.*left.*/ none) Questions about time remaining
FONTCOM #(U none /.*font.*/ none) Comments about the font
LAUGHS #(U none /.*\[laugh\].*/ none) Tendency to laugh
INQUIS totalchar(U none /.*\?.*/ none /\?/) Inquisitiveness
The External Environment
READPD #(RE none none none) References to problem description
READPDT totaldur(pair(RE none none none EX any none none)) Time spent reading problem description
WRITE #(WR none any none) Use of paper to write things down
DRAW #(DR none any none) Use of paper to draw pictures
Writing Commands
TYPOS totalchar(C none /.*~.*/ none /~/) Typos
QHATTMP #(COM none /q$/ none) Unnecessary attempts to quit help
REPCOM morethanone(cluster(COM none any none)) Repeated Commands
GUESSYN #(ERR none /invalid syntax/ none) Tendency to guess syntax
VARSYN #(byhand(COM none any none)) Attempts at variations of command syntax
COMDIVR #(cluster(COM none any none)) Command diversity
COMVOL #(COM none any none) Command volume
ERRORS
HNOTFND #(seq(ERR none /help for .* not found/ none 15 =(H any any none S

any any none)))
 Tendency to get help or search after help not found
error

UNMAERR #(ERR none /[\(|\)].*required.*/ none)   Prevalence of unmatched parentheses error
ERRLINK #(LINK OUT any /.*error) Use of error description links
DUPERR morethanone(cluster(ERR none any none))  Prevalence of duplicate error messages
Getting Help
USENL4H #(byhand(/(H|S)/ any any none)) Use of natural language for help
FORGETQ #(Q none none any) Tendency to use "q" to break
USETUT #(BAR /(REV|OUT)/ U /.*tutorial.*/)  Use of tutorial examples
HELPTIM totaldur(pair(=(S any any none H any any none WIN H FR none)

=(WIN /(REV|VAR|DO|COM|OUT|DIA)/ FR none C none any none
/(INS|DEL)/ DO any any))

Time using help screens

HLPLIST #(COM none /help list/ none) Use of "help list" command
USEEXAM #(CUR /(OUT|H)/ any /.*example.*/) Use of examples in help files
HELPREL totaldur(pair(any H any any any

/(REV|OUT|VAR|DO|COM|GRA|STA|DIA|ED)/ any any))
Reliance on help window

OUTREL totaldur(pair(any OUT any any any
/(REV|H|VAR|DO|COM|GRA|STA|DIA|ED)/ any any))

Reliance on output window

SBUT #(BUT H /search/ none) Use of search button in help window
COMMENU #(MEN STA /help command/ none)  Use of "Stata command" menu item
SEARCHS #(S any any none) Tendency to search
MSRLSPD meandur(pair(BAR /(H|OUT|DO)/ any any

/(WR|RE|DR|EX|WIN|MEN|BUT|CUR|LINK|INS|DEL|SEL|COP|PAS|C
UT|H|S|SP|Q|RUN|C|ERR|COM)/ any any any))

Speed of scrolling in help pages

HELPS #(H any any none) Tendency to get help
DUPHELP morethanone(cluster(H any any none)) Prevalence of duplicate helps
DUPSRCH morethanone(cluster(S any any none)) Prevalence of duplicate searches
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Name Definition Description
HELPDIV #(cluster(H any any none)) Diversity of helps
SRCHDIV #(cluster(S any any none)) Diversity of searches
Window Management
WINOFF #(WIN any MV /.*off.*/) Tendency to move windows off screen
WINARR #(WIN any MV any) Tendency to arrange windows systematically
Use of Graphical User Interface Elements
INSPBUT #(CUR /(STA|DO)/ any /.*button.*/) Inspection of buttons at the top of the Stata window
INSPMEN #(CUR /(STA|DO)/ any /.*menu.*/) Inspection of Stata menus
VARWIN totaldur(pair(any VAR any any any

/(REV|OUT|H|DO|COM|GRA|STA|DIA|ED)/ any any))
Use of variables window

REVWIN totaldur(pair(any REV any any any
/(VAR|OUT|H|DO|COM|GRA|STA|DIA|ED)/ any any))

Use of review window

BUTUSE #(BUT any any none) Use of buttons
LINKUSE #(LINK any any any) Use of links
DUPLINK morethanone(cluster(LINK any any any)) Links followed multiple times
RETBAR #(BAR any any /.*back.*/) Tendency to return scroll bar to original position

Table 3. Metrics defined to extract data from both problems.

Name Definition Description
Setting the Number of Objects
USEQSET  #(COM none /set.*=\s?\d+/ none) Use of "=" in set commands
USEOBJ  #(COM none /set obj.*/ none) Tendency to use obj instead of obs in set commands
SETWAST  #(ERR none /obs was 1000, now 1000/ none) Tendency to set the number of objects unnecessarily
GENOBS  #(COM none /gen ob.*/ none) Use of generate command to set the number of objects
SET1000  #(COM none /set 1000/ none) Tendency to type "set 1000"
TUTSET  #(seq(BAR /(REV|OUT)/ U /.*tutorial.*/ 30 COM none /set ob.*/ none)) Use of tutorial examples to write "set obs 1000"
Using Generate
GENPAUS  #(C none /gen(erate)? .+\s?=\s?$/ none) Tendency to type "generate varname = " and pause
SET4GEN  #(COM none /set (?!obs).*\s?=\s?/ none) Use of set command to generate variables
GENUSE  #(COM none /gen / none) Use of gen instead of generate
Guessing How to do Random
RNDLTGT  #(COM none /gen(erate)? .+\s?=\s?.*[<>].*/ none) Use of "<" and ">" to get random numbers
RNDIN  #(COM none /gen(erate)? .+\s?=\s?.* in .*/ none) Use of the word "in" to get random numbers
RND01  #(COM none /gen(erate)? .+\s?=\s?.*0,\s?1.*/ none) Use of string "0,1" to get random numbers
GENTO  #(COM none /gen(erate)? .+\s?=\s?.* to .*/ none) Use of the word "to" to get random numbers
GENCONS  #(COM none /gen(erate)? .+\s?=\s?\d+/ none) Tendency to generate variables with a uniform value
GENRAND  #(COM none /gen(erate)? .+\s?=\s?.*rand(om)?.*/ none) Use of the word random to get random numbers
*NL4RND  #(byhand(COM none /.*gen.*/ none)) Use of natural language to get random numbers
Finding the Uniform Function
USESAMP  #(COM none /sample.*/ none) Use of "sample" command
GENEXAM  #(seq(H any /generate/ none 120 CUR any any /.*example.*/)) Use of examples in the help for generate
FUNEXAM  #(seq(H any /function(s)?/ none 120 CUR /(H|OUT)/ any

/.*example.*/))
Use of examples in the help for functions

USEFUNC  #(H any /function(s)?/ none) Use of the help on functions
UNIFMLY  #(/(H|S)/ any /uniformly/ none) Searches for the word "uniformly"
SRNDNUM  #(/(H|S)/ any /.*random.*numbers.*/ none) Searches on the phrase "random numbers"
FNINTRO  #(seq(H any /function(s)?/ none 120 CUR /(H|OUT)/ any /.*intro.*/)) Use of the introduction heading in the help for functions
HCONTEN  #(H any /contents/ none) Use of the help contents
Using the Uniform Function
PARENSP  #(COM none /.*uniform \(.*/ none) Tendency to ignore parentheses for uniform function
INPAREN  #(COM none /.*uniform\(.+\).*/ none) Tendency to put something between parentheses in

uniform function
INVNORM  #(COM none /.*invnorm.*/ none) Use of "invnorm()"
UNICNT  #(COM none /.*uniform.*/ none) Attempts to type "uniform()"
LISTAFT  #(seq(COM none /gen.+=\s?uniform()/ none 30 COM none /list/

none))
Use of "list" command to see observations after
successful use

Executing the T Test
STTST  #(S any /.*t[ -]?test.*/ none) Use of searches to get help on t-test command
PAIRED  #(COM none /ttest .+=.+,\s?unpaired/ none) Execution of paired t-test
TTSTEXA  #(seq(H any /t[ -]?test/ none 30 /(CUR|BAR|SP)/ any any

/.*example.*/))
Use of examples in t-test help to create command

TDTEST  #(COM none /.*t-test.*/ none) Tendency to call t-test "t-test" in commands
TTEST  #(COM none /.*ttest.*/ none) Tendency to call t-test "ttest" in commands
FRGTCOM  #(COM none /ttest .+=\s?[a-zA-Z0-9]+ unpaired/ none) Tendency to forget the comma in the t-test command
TTSTUNI  #(seq(COM none /gen(erate)?.*=\s?\d+/ none inf COM none /ttest.*/

none))
Tendency to execute a t-test with uniform data
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Name Definition Description
Picking a P-value
SPVALUE  #(S any /.*p-?value.*/ none) Searches on help for p-value
CHPWHLP  #(seq(COM none /ttest .+=.+,\s?unpaired/ none inf /(H|S)/ any /.*p-

?value.*/ none))
Use of help to choose p-value

HAFTTST  #(seq(COM none /ttest .+=.+,\s?unpaired/ none /(H|S)/ any any
none))

Help after successful t-test

Strategies
USECLR  #(COM none /clear/ none) Use of clear command
REPTUT  #(COM none /gen.*=\s?.+\+.+/ none) Duplication of tutorial sequence, adding two sets of

data
USEED  totaldur(pair(WIN ED FR none =(WIN ED C none WIN

/(REV|OUT|VAR|DO|COM|GRA|STA|DIA|H)/ FR none)))        Use of
the edit or browse window

TOTREAD  totaldur(pair(RE none none none EX any none none)) Use of the problem description
SETSEED  #(COM none /set seed.*/ none) Use of the set seed command
Window Management
MVW2SEE  #(byhand(WIN H MV any)) Do they position the help window so that they can see

the command and output windows too?
Performance Variables
GAVEUP  #(byhand(STOP none /1/ none)) Did they give up?
PGENUNI  #(COM none /gen(erate)? [a-zA-Z0-9]+\s?=\s?uniform\(\)/ none) Did they generate a uniform variable?
PTTEST  #(COM none /ttest .+\s?=\s?.+,\s?unpaired/ none) Did they get the t-test to work?
PSETOBS  #(COM none /set obs 1000/ none) Did they set the number of objects?
TIME  totaldur(pair(START none /1/ none STOP none /1/ none)) Time to complete

Table 4. Metrics defined to extract data from problem 1.

Name Definition Description
Comments
EDITCOM totalchar(DEL DO any any /./) Editing of comments
COMTIME totaldur(pair(CUR DO any /.*comment.*/

/(WR|RE|DR|EX|WIN|MEN|BUT|BAR|LINK|INS|DEL|SEL|COP|PAS|C
UT|H|S|SP|Q|RUN|C|ERR|COM)/ any any any))

Time spent reading comments

COMOUT #(INS DO /\*/ any) Tendency to insert comments
TOPCOM #(BAR DO U /.*top comment.*/) Use of the comments at the top of the do-file
MODCOMW #(DEL DO /[a-zA-Z]+/ /.*comment.*/) Modification of words in comments
MODCOMN  #(DEL DO /\d+/ /.*comment.*/) Modification of numbers in comments
The Delimit Command
DELTIME totaldur(pair(CUR DO any /.*delimit.*/

/(WR|RE|DR|EX|WIN|MEN|BUT|BAR|LINK|INS|DEL|SEL|COP|PAS|C
UT|H|S|SP|Q|RUN|C|ERR|COM)/ any any any))

Time spent on the delimit command

DELMOD #(DEL DO any /.*delimit.*/) Tendency to modify the delimit command
The For Loop
FORTIME totaldur(pair(CUR DO any /.*(for|loop).*/

/(WR|RE|DR|EX|WIN|MEN|BUT|BAR|LINK|INS|DEL|SEL|COP|PAS|C
UT|H|S|SP|Q|RUN|C|ERR|COM)/ any any any))

Time spent on the for loop

LPLINE #(byhand(INS DO any /.*(for|loop).*/)) Tendency to put for loop commands on individual lines
REPLNUM #(seq(DEL DO /num/ any 10 INS DO /X/ any)) Was "num" changed to "X"?
REPLX #(seq(DEL DO /X/ any 10 INS DO /num/ any)) Was  "X" changed to "num"?
ROFPHLP #(/(S|H)/ any /(r\(p\)|r|p)$/ none) Tendency to search for help on "r(p)" or "p" or "r"?
X2Y #(seq(DEL DO /X/ any 10 INS DO /Y/ any)) Was "X" changed to "Y" in the for loop?
CHNFOR5 #(DEL DO /5/ /.*for.*/) Tendency to change the "5" in "replace rand1 = X in

1/5"
Generate Rand Commands
GRNDTIM totaldur(pair(CUR DO any /.*gen.*rand.*/

/(WR|RE|DR|EX|WIN|MEN|BUT|BAR|LINK|INS|DEL|SEL|COP|PAS|C
UT|H|S|SP|Q|RUN|C|ERR|COM)/ any any any))

Time spent on the commands generating the two data
sets

CONFGRN #(seq(CUR DO any /.*gen.*rand.*/ 30 BAR REV U /.*tutorial.*/)) Were the generate rand commands confirmed?
The Set Obs Command
SETTIME totaldur(pair(CUR DO any /.*set obs.*/

/(WR|RE|DR|EX|WIN|MEN|BUT|BAR|LINK|INS|DEL|SEL|COP|PAS|C
UT|H|S|SP|Q|RUN|C|ERR|COM)/ any any any))

How much time was spent on the set obs command?

CONFSET #(seq(CUR DO any /.*set obs.*/ 30 =(BAR REV U /.*tutorial.*/ CUR
OUT any /.*set obs.*/)))

Was the set command confirmed?

The Generate P-Values Command
GNPTIME totaldur(pair(CUR DO any /.*gen.*p-?val.*/

/(WR|RE|DR|EX|WIN|MEN|BUT|BAR|LINK|INS|DEL|SEL|COP|PAS|C
UT|H|S|SP|Q|RUN|C|ERR|COM)/ any any any))

Time spent on the gen pvalues command
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/(WR|RE|DR|EX|WIN|MEN|BUT|BAR|LINK|INS|DEL|SEL|COP|PAS|C
UT|H|S|SP|Q|RUN|C|ERR|COM)/ any any any))

GNP210 #(byhand(/(DEL|INS)/ DO any /.*gen.*p-?val.*/)) Was 10 inserted into the gen pvalues command?
GNP2TH #(byhand(/(DEL|INS)/ DO any /.*gen.*p-?val.*/)) Was 1000 inserted into the gen pvalues command?
GNPCH #(byhand(/(DEL|INS)/ DO any /.*gen.*p-?val.*/)) Tendency to change the 100 in 1/100
The Generate Value of Outlier Command
GVLTIME totaldur(pair(CUR DO any /.*gen val.*/

/(WR|RE|DR|EX|WIN|MEN|BUT|BAR|LINK|INS|DEL|SEL|COP|PAS|C
UT|H|S|SP|Q|RUN|C|ERR|COM)/ any any any))

Time spent on the generate valueofoutlier command

REMUNDR #(DEL DO /_/ /.*gen val.*/) Was the underscore removed?
GVL210 #(byhand(/(DEL|INS)/ DO any /.*gen(erate)? val.*/)) Was 10 inserted into the gen valueofoutlier command?
GVL2TH #(byhand(/(DEL|INS)/ DO any /.*gen(erate)? val.*/)) Was 1000 inserted into the gen valueofoutlier

command??
GVLCH #(byhand(/(DEL|INS)/ DO any /.*gen(erate)? val.*/)) Tendency to change the 100 in 1/100
The Graph Command
GRPTIME totaldur(pair(CUR DO any /.*graph com.*/

/(WR|RE|DR|EX|WIN|MEN|BUT|BAR|LINK|INS|DEL|SEL|COP|PAS|C
UT|H|S|SP|Q|RUN|C|ERR|COM)/ any any any))

How much time was spent on the graph command?

GRPTIT #(DEL DO any /.*graph.*title.*/) Was the titled changed?
GRPCOM #(DEL DO any /.*graph.*comment.*/) Was the graph comment changed?
Running the Do-File
DOUSE #(BUT DO /do/ none) Use of the do button
RUNUSE #(RUN none none none) Use of the run button
IGNERR #(seq(RUN none none none 30 ERR none any none)) Tendency to see errors soon after running
ERRS #(ERR none any none) Tendency to see errors
IMPAT #(seq(RUN none none none 7 RUN none none none)) Tendency to run repeatedly, impatiently
The Graph
GRATIME totaldur(pair(WIN GRA FR none =(WIN GRA C none WIN DO FR

none)))
Time spent viewing the graph

T2VGRP ft(WIN GRA FR none) Eagerness to view the graph
SIZEGRA #(WIN GRA RE any) Tendency to resize the graph window
TRACEGR #(CUR GRA any /.*trace.*/) Tendency to trace the curve of the graph
Strategies
T2VDO ft(WIN DO FR none) Eagerness to edit the file
FIXSEMI #(INS DO /;/ any) Tendency to correct semi colons
SAVEDO #(BUT DO /save/ none) Tendency to save the file
REPCHNG morethanone(cluster(INS DO any any)) Tendency to repeat the same changes
CHNUM #(DEL DO /\d+/ any) Tendency to change numbers
CHWORD #(DEL DO /[A-Za-z]+/ any) Tendency to change words
EXMAN #(COM none /(set|gen|ttest|for|graph|delimit)/ none) Tendency to execute commands manually from Stata
NCHB4R #(seq(INS DO any any inf INS DO any any inf RUN none none none)) Number of times >=2 changes made before run
TINDO totaldur(pair(WIN DO FR none WIN

/(ED|REV|OUT|VAR|COM|GRA|STA|DIA|H)/ FR none))
Time in do file

LOOKDAT #(=(COM none /list/ none WIN ED FR none)) Tendency to inspect data with "list" or edit window?
TRYCLR #(COM none /clear/ none) Tendency to clear data set
Reading the File
SEELEN #(seq(START none /2/ none inf WIN DO FR none 60 BAR DO D

/.*very.*bottom.*/))
Do they go to the bottom real fast to see how long it is?

Getting Help
HLPGR #(/(H|S)/ any /.*graph.*/ none) Did they search for help on the graph command?
HLPFOR #(/(H|S)/ any /.*for.*/ none) Did they search for help on the for command?
HLPGEN #(/(H|S)/ any /.*generate.*/ none) Did they search for help on the generate command?
HLPTTST #(/(H|S)/ any /.*t[ -]?test.*/ none) Did they search for help on the ttest command?
HLPDEL #(/(H|S)/ any /.*delimit.*/ none) Did they search for help on the delimit command?
HLPSLSH #(/(H|S)/ any /[\\\/]/ none) Did they search for help on / or \?
HLPDO #(/(H|S)/ any /.*do.*/ none) Did they search for help on do files?
Performance Variables
PAXES #(byhand(STOP none /2/ none)) Did they fix the axes?
PFOR #(byhand(STOP none /2/ none)) Did they fix the for-loop bug?
PGNPVL byhand(STOP none /2/ none)) Did they fix the range on the "generate pvalues" bug?
PGNVAL #(byhand(STOP none /2/ none)) Did they fix the range on the "generate valueofoutlier"

bug?
TIME totaldur(pair(START none /2/ none STOP none /2/ none)) Time to complete

Table 5. Metrics defined to extract data from problem 2.
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Results

There were two areas of participants’ interactions that this experiment intended to

explore: the influence of individual differences on success, and whether or not groups of

programming, testing, and debugging style would naturally cluster together and provide

predictive value. Overall performance on the programming and testing and debugging

problem is considered first.

Overall Performance

Participants overall performance on problems 1 and 2 is provided in Table 6. Nearly

every participant succeeded in creating the data set for problem 1, but only half of the

participants created the two variables of uniformly distributed numbers and executed the t

test to compare the two variables. In problem 2, we can see that over two thirds of the

participants found the bug in the “generate valueofoutlier” command (which had a

comment immediately above it that basically identified the bug). Only a third of the

participants found the nearly identical bug in the “generate pvalues” command, which did

not have a comment identifying the bug. A third of the participants also changed the for

loop iteration range, despite its lack of impact on the data or the graph. Finally, only

about 20 percent of the participants noticed the inverted axes in the graph.
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Milestone Success Failure % Success
Problem 1

Creating a data set of 1000 objects 70 5 93.3
Creating two sets of uniformly distributed random numbers 38 37 50.7
Executing a t test to compare the two data sets 34 41 45.3

Problem 2
Correcting the inverted axes in the graph 16 59 21.3
Changing the for loop iteration range from “10/1” to “1/10” 25 50 33.3
Changing the observation range in the generate pvalues command to “1/10” 28 47 37.3
Changing the observation range in the generate valueofoutlier command to “1/10” 47 28 62.7
Table 6. Frequency of success, failure, and percent of participants

succeeding on each milestone in problems 1 and 2.

Tabulated detail about problem 1 milestones is presented in Table 7 reveals more

detail about the nature of the performance on the problem. Most individuals did one of

the following:

ü Succeeded only at generating the data set of 1000 objects (29)

ü Succeeded at the whole problem (28)

ü Succeeded at generating the data set of 1000 objects and creating the two sets

of uniformly distributed random numbers (8)

A small number executed the t test without the random numbers; a smaller number

failed at all tasks. In general, participants solved the problem in sequence and did not

work out of sequence.

Executed the T Test
Generated the Data
Set of 1000 Objects

Created Two Sets of Uniformly
Distributed Random Numbers Failure Success

Failure Failure 3 0
Success 1 1

Success Failure 29 5
Success 8 28

Table 7. Tabulations of success on the three milestones in problem 1.

Similar data is provided for problem 2 by each bug in Table 8. Most individuals did

one of the following:

ü Did not fix any bugs (14)
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ü Fixed the observation range in the generate valueofoutlier range (10)

ü Fixed the observation range in the generate valueofoutlier and generate

pvalues range (10)

ü Fixed only the for loop iteration range (7)

ü Fixed the generate valueofoutlier range and the for loop iteration range (7)

ü Fixed the generate pvalue range and the for loop iteration range (6)

The few participants who fixed the inverted axes tended to also fix the observation

range in the generate valueofoutlier range but failed to fix the for loop iteration range.

Changing the For Loop Iteration
Range

Changing the observation range
in the generate valueofoutlier

command

Changing the
Observation Range in

the generate
pvalues command

Correcting the Inverted
Axes in the Graph Failure Success

Failure Failure Failure 14 7
Success 1 0

Success Failure 4 1
Success 1 0

Success Failure Failure 10 7
Success 5 3

Success Failure 10 6
Success 5 1

Table 8. Tabulations of success on the four bugs in problem 2.

Individual Differences and Performance

The performance data provided in Table 6 hides the individual differences behind

successful completion of the problems. For the following analyses various individual

differences were compared with performances on each problem. Initial, coarse analyses

are presented in Table 9. Measures of intelligence (VCog I and Vocab27), experience

with statistics, mathematics, programming, and computer use (from the statistics test and
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the background questionnaire), and attitudes towards mathematics, computers, statistics,

and the experiment itself (from the background questionnaire), were correlated with

overall performance on problems 1 and 2. Overall performance was calculated by taking

a mean of the dichotomous performance variables.

For problem 1, higher intelligence, more experience with mathematics, computer

programming, and computers, as well as more positive attitudes towards computers and

mathematics were all significantly correlated with success on the first problem. It should

be noted that performance on the statistics test as well as self-reported statistics

experience showed absolutely no relationship, suggesting that the background knowledge

supposedly necessary for completing the task (which we have seen was in general poor),

was unnecessary. For problem 2, more experience with mathematics, and more positive

attitudes towards mathematics and computers were associated with higher overall

performance. Intelligence, programming experience, and statistical knowledge had little

relationship to success.

Characteristic Problem 1
Performance

Problem 2
Performance

VCog I  .452  .143
Vocab27  .318  .034
Statistics Test -.058  .016
Self-reported math abilities  .510  .352
Self-reported statistics abilities -.062 -.011
Self-reported programming experience  .522  .202
Self-reported computer experience  .301  .116
Attitudes toward the experiment -.174  .038
Attitudes towards computers  .617  .272
Attitudes towards statistics  .211  .189
Attitudes towards mathematics  .443  .274

Table 9. Correlations between measures of intelligence, experience, and
attitudes with overall performance on both problems. Correlations
significant at an a of .05 are highlighted in bold.

In order to unearth the true relationships between success and major, gender,

intelligence, experience, and attitudes, multivariate ANOVAs for each measure of
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intelligence, experience, and attitudes were performed by major, gender, and each

milestone for problem 1 and 2.Intelligence, experience, and attitudes will be considered

in turn, each with major, gender, and each of the performance milestones for problems 1

and 2.

Intelligence, Major, Gender, and Performance

Measures of verbal IQ, general problem solving intelligence, and statistics

competency are presented by major, gender, and milestone in Table 10. At this level of

detail, it is clear that there were few strong predictors of success. There was a significant

interaction effect between major and creating the data set of 1000 objects for the

Vocab27 test, showing that the computer science majors who did not succeed at this

milestone tended to have higher verbal intelligence. However, this data is unlikely to

have any validity given the small number of individuals who failed at this task. Main

effects for creating the random numbers were found for the Vocab27 and VCog I test,

showing that more intelligent participants succeeded. A significant interaction effect

between major and executing the t test was found for VCog I, showing that psychology

and other majors who succeeded were more intelligent, while computer science majors

who succeeded were less intelligent. A significant interaction effect between gender and

executing the t test was found for the statistics test, suggesting that females who failed at

executing the t test were slightly less competent in statistics. Finally, a main effect on the

statistics test was also found for executing the t test, showing that those failing at

executing the t test were slight more competent in statistics.
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Competency (percent correct)

Created
Data Set

Created
Random
Numbers

Executed
T Test

Fixed
Axes

Fixed gen
pvalues

Fixed gen
valueof…

Fixed
Loop

Range
Maj. Sex No Yes No Yes No Yes No Yes No Yes No Yes No Yes

Vocab27 Psy m 0.00 0.57 0.52 0.65 0.52 0.70 0.57 0.00 0.58 0.54 0.58 0.56 0.56 0.58
f 0.00 0.51 0.51 0.00 0.52 0.37 0.50 0.63 0.50 0.53 0.56 0.44 0.51 0.00

Tot. 0.00 0.53 0.51 0.65 0.52 0.59 0.53 0.63 0.53 0.53 0.56 0.50 0.53 0.58
CS m 0.85 0.52 0.41 0.57 0.62 0.52 0.56 0.47 0.51 0.58 0.57 0.52 0.54 0.53

f 0.00 0.68 0.00 0.68 0.00 0.68 0.68 0.00 0.78 0.63 0.78 0.63 0.81 0.61
Tot. 0.85 0.54 0.41 0.58 0.62 0.54 0.58 0.47 0.53 0.59 0.60 0.53 0.57 0.54

O m 0.49 0.47 0.39 0.56 0.44 0.56 0.42 0.56 0.50 0.44 0.43 0.49 0.46 0.57
f 0.37 0.53 0.46 0.59 0.47 0.63 0.52 0.55 0.53 0.51 0.49 0.55 0.50 0.56

Tot. 0.46 0.51 0.44 0.58 0.46 0.60 0.48 0.55 0.52 0.48 0.47 0.52 0.48 0.56
Tot. m 0.58 0.52 0.44 0.58 0.50 0.54 0.53 0.51 0.52 0.53 0.54 0.52 0.51 0.55

f 0.37 0.54 0.49 0.61 0.50 0.62 0.53 0.56 0.53 0.53 0.54 0.53 0.52 0.57
Tot. 0.54 0.53 0.47 0.59 0.50 0.57 0.53 0.53 0.53 0.53 0.54 0.52 0.51 0.56

VCog I PSY m 0.00 0.59 0.54 0.68 0.57 0.65 0.59 0.00 0.58 0.62 0.57 0.60 0.57 0.63
f 0.00 0.57 0.57 0.00 0.57 0.50 0.56 0.64 0.57 0.56 0.61 0.51 0.57 0.00

Tot. 0.00 0.58 0.56 0.68 0.57 0.60 0.57 0.64 0.58 0.58 0.60 0.56 0.57 0.63
CS m 0.72 0.61 0.57 0.63 0.69 0.61 0.64 0.57 0.60 0.65 0.63 0.62 0.62 0.61

f 0.00 0.68 0.00 0.68 0.00 0.68 0.68 0.00 0.70 0.67 0.70 0.67 0.88 0.58
Tot. 0.72 0.62 0.57 0.64 0.69 0.62 0.65 0.57 0.61 0.65 0.64 0.62 0.65 0.61

O m 0.47 0.64 0.49 0.71 0.54 0.73 0.55 0.68 0.60 0.60 0.55 0.62 0.58 0.69
f 0.56 0.59 0.52 0.65 0.54 0.68 0.57 0.63 0.59 0.58 0.57 0.59 0.57 0.61

Tot. 0.50 0.60 0.51 0.68 0.54 0.70 0.56 0.65 0.59 0.59 0.56 0.61 0.57 0.63
Tot. m 0.54 0.62 0.53 0.66 0.58 0.63 0.60 0.62 0.60 0.63 0.59 0.61 0.60 0.63

f 0.56 0.59 0.55 0.66 0.56 0.66 0.58 0.63 0.59 0.59 0.60 0.58 0.58 0.61
Tot. 0.54 0.60 0.54 0.66 0.56 0.64 0.59 0.62 0.59 0.61 0.59 0.60 0.59 0.62

Statistics PSY m 0.00 0.25 0.22 0.30 0.25 0.25 0.25 0.00 0.25 0.25 0.13 0.32 0.32 0.13
f 0.00 0.33 0.33 0.00 0.35 0.10 0.29 0.70 0.34 0.30 0.40 0.22 0.33 0.00

Tot. 0.00 0.30 0.29 0.30 0.31 0.20 0.27 0.70 0.30 0.28 0.32 0.27 0.32 0.13
CS m 0.50 0.35 0.40 0.35 0.53 0.33 0.32 0.45 0.33 0.40 0.43 0.33 0.32 0.39

f 0.00 0.27 0.00 0.27 0.00 0.27 0.27 0.00 0.40 0.20 0.40 0.20 0.30 0.25
Tot. 0.50 0.34 0.40 0.34 0.53 0.32 0.31 0.45 0.34 0.36 0.43 0.31 0.32 0.37

O m 0.27 0.37 0.30 0.38 0.30 0.43 0.34 0.34 0.36 0.32 0.37 0.33 0.35 0.30
f 0.60 0.32 0.35 0.32 0.38 0.25 0.34 0.33 0.38 0.27 0.29 0.37 0.34 0.33

Tot. 0.35 0.34 0.33 0.35 0.35 0.32 0.34 0.33 0.37 0.29 0.31 0.36 0.35 0.32
Tot. m 0.33 0.33 0.30 0.35 0.32 0.34 0.31 0.40 0.32 0.35 0.34 0.33 0.33 0.33

f 0.60 0.32 0.34 0.31 0.36 0.24 0.31 0.40 0.36 0.27 0.34 0.31 0.33 0.31
Tot. 0.38 0.33 0.32 0.34 0.35 0.31 0.31 0.40 0.34 0.31 0.34 0.32 0.33 0.32

Table 10. Mean scores on tests of intelligence and statistics by
gender, major, and success on milestones of problems 1 and 2. Dark
cells represent a main effect, medium-colored cells an interaction
effect of gender or major by performance, and the lightest cells an
interaction effect between major, gender, and performance (alpha less
than .01).CS = Computer Science, PSY = Psychology, and O = Other.



63

With regard to problem 2, there were few significant individual difference predictors

of success. There was an interaction effect between major and fixing the inverted axes for

the statistics test, showing that computer science and psychology majors who succeeded

were much more competent in statistics whereas there was no such difference in other

majors. Finally, there was a main effect of fixing the inverted axes for the statistics test

showing that participants who were successful at this task had higher statistics

competency. It should also be noted that the insignificant results are also interesting. For

example, statistics competency and intelligence seemed to have no influence on success

at fixing the bugs in problem 2.

Self-Reported Experience, Major, Gender, and Performance

Similar results are provided for self-reported experience by major, gender, and

performance in Table 11. There was a main interaction effect for creating the data set and

major; computer scientists who failed at the task had slightly less programming

experience whereas other majors who failed at the task had slightly higher programming

experience. There was an interaction effect of mathematics experience for creating

random numbers and major; psychology and other majors who succeeded at the task had

more math experience but computer science majors who succeeded tended to have less

mathematics experience. There was also a significant interaction effect between creating

random numbers and gender for math experience; in general, males and females tended to

have higher math experience if successful on creating the random numbers. Though there

was a visible different overall on math experience and creating random numbers, it was

not significant. There was a main interaction effect on programming experience and
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creating the random numbers: participants successful at this milestone had more

programming experience. Finally, there was a significant main effect for executing the t

test and statistics software experience; those who were successful had slightly less

experience.

Self-Reported Experience (0 = none, 1 = least, 7 = most)

Created
Data Set

Created
Random
Numbers

Executed
T Test

Fixed
Axes

Fixed gen
pvalues

Fixed gen
valueof…

Fixed
Loop

Range
Maj. Sex No Yes No Yes No Yes No Yes No Yes No Yes No Yes

Math PSY m 0.00 3.91 3.35 4.83 3.83 4.13 3.91 0.00 3.79 4.25. 2.67 4.65 4.30 3.25
f 0.00 2.96 2.96 0.00 2.80 4.75 3.00 2.50 2.94 3.00 2.93 3.00 2.96 0.00

Tot. 0.00 3.34 3.07 4.83 3.16 4.33 3.38 2.50 3.30 3.42 2.85 3.83 3.35 3.25
CS m 5.75 5.54 5.88 5.47 5.58 5.54 5.47 5.75 5.44 5.72 5.50 5.57 5.78 5.34

f 0.00 5.25 0.00 5.25 0.00 5.25 5.25 0.00 4.75 5.50 4.75 5.50 5.00 5.38
Tot. 5.75 5.50 5.88 5.44 5.58 5.50 5.43 5.75 5.39 5.68 5.39 5.56 5.70 5.35

O m 4.08 5.25 3.33 6.58 4.06 6.75 4.11 6.15 4.82 5.15 3.25 5.53 4.70 6.25
f 6.75 4.60 4.25 5.22 4.44 5.29 4.63 5.00 5.17 3.93 4.19 5.09 4.50 5.07

Tot. 4.75 4.81 3.91 5.77 4.30 5.88 4.47 5.64 5.04 4.44 3.93 5.29 4.59 5.33
Tot. m 4.50 5.11 4.02 5.65 4.25 5.63 4.73 5.93 4.89 5.33 4.23 5.40 5.05 5.06

f 6.75 4.06 3.55 5.23 3.69 5.23 4.08 4.50 4.30 3.88 3.67 4.56 3.78 5.14
Tot. 4.95 4.62 3.74 5.52 3.92 5.51 4.41 5.48 4.63 4.66 3.91 5.07 4.42 5.09

Statistics PSY m 0.00 1.25 0.75 2.08 1.17 1.50 1.25 0.00 1.00 2.00 0.92 1.45 1.80 0.33
f 0.00 1.94 1.94 0.00 1.91 2.25 1.93 2.00 2.22 1.38 2.00 1.85 1.94 0.00

Tot. 0.00 1.66 1.59 2.08 1.65 1.75 1.64 2.00 1.70 1.58 1.68 1.65 1.90 0.33
CS m 0.00 1.14 1.13 1.07 1.00 1.10 0.88 1.58 1.21 0.88 1.13 1.07 1.28 0.91

f 0.00 2.25 0.00 2.25 0.00 2.25 2.25 0.00 3.00 1.88 3.00 1.88 1.50 2.63
Tot. 0.00 1.28 1.13 1.25 1.00 1.26 1.11 1.58 1.34 1.08 1.39 1.16 1.30 1.17

O m 1.92 2.22 2.17 2.13 2.22 2.00 2.11 2.20 2.14 2.15 2.08 2.17 2.10 2.38
f 0.00 1.33 1.50 1.00 1.21 1.38 1.15 1.69 0.90 1.89 1.25 1.27 1.27 1.25

Tot. 1.44 1.63 1.75 1.45 1.60 1.63 1.45 1.97 1.36 2.00 1.48 1.68 1.65 1.50
Tot. m 1.44 1.43 1.42 1.43 1.63 1.28 1.27 1.86 1.41 1.45 1.31 1.47 1.71 0.98

f 0.00 1.64 1.74 1.31 1.53 1.73 1.56 1.75 1.50 1.73 1.69 1.50 1.60 1.56
Tot. 1.15 1.53 1.61 1.39 1.57 1.41 1.41 1.83 1.45 1.58 1.53 1.48 1.66 1.19

Programming PSY m 0.00 0.58 0.67 0.44 0.56 0.67 0.58 0.00 0.78 0.00 0.00 0.93 0.67 0.44
f 0.00 0.31 0.31 0.00 0.33 0.00 0.33 0.00 0.40 0.13 0.52 0.00 0.31 0.00

Tot. 0.00 0.42 0.41 0.44 0.41 0.44 0.44 0.00 0.56 0.08 0.37 0.47 0.41 0.44
CS m 3.17 4.29 4.25 4.24 5.06 4.10 4.07 4.67 4.49 3.83 4.31 4.21 4.42 4.08

f 0.00 3.39 0.00 3.39 0.00 3.39 3.39 0.00 2.33 3.92 2.33 3.92 3.83 3.17
Tot. 3.17 4.17 4.25 4.11 5.06 4.00 3.95 4.67 4.33 3.85 4.02 4.18 4.36 3.94

O m 1.56 2.41 1.83 2.56 2.00 2.58 2.10 2.33 2.88 1.23 3.56 1.74 2.13 2.50
f 3.00 0.84 0.30 1.69 0.60 1.72 0.99 0.83 0.92 1.02 0.83 1.05 0.67 1.45

Tot. 1.92 1.36 0.88 2.03 1.13 2.07 1.34 1.67 1.64 1.11 1.58 1.36 1.33 1.69
Tot. m 1.96 3.03 2.09 3.41 2.03 3.56 2.68 3.61 3.20 2.46 3.04 2.88 2.75 3.20

f 3.00 0.88 0.30 2.11 0.48 2.05 0.99 0.67 0.79 1.19 0.79 1.07 0.62 1.83
Tot. 2.17 2.02 1.03 3.00 1.12 3.12 1.85 2.69 2.12 1.87 1.76 2.19 1.69 2.71
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Computers PSY m 0.00 5.44 5.20 5.83 5.33 5.75 5.44 0.00 5.67 4.75 4.50 6.00 5.60 5.17
f 0.00 5.50 5.50 0.00 5.55 5.00 5.41 6.50 5.56 5.38 5.71 5.20 5.50 0.00

Tot. 0.00 5.48 5.41 5.83 5.47 5.50 5.42 6.50 5.61 5.17 5.35 5.60 5.53 5.17
CS m 6.50 6.10 6.25 6.09 5.33 6.25 6.13 6.08 5.96 6.38 6.08 6.13 6.15 6.09

f 0.00 5.83 0.00 5.83 0.00 5.83 5.83 0.00 7.00 5.25 7.00 5.25 6.00 5.75
Tot. 6.50 6.07 6.25 6.05 5.33 6.19 6.08 6.08 6.04 6.15 6.21 6.03 6.14 6.04

O m 6.00 6.06 5.92 6.17 5.81 6.50 6.00 6.10 6.21 5.80 6.33 5.94 6.15 5.50
f 6.00 5.64 5.15 6.22 5.42 6.17 5.57 6.00 5.63 5.71 5.25 5.95 5.54 5.86

Tot. 6.00 5.78 5.44 6.20 5.57 6.30 5.70 6.06 5.84 5.75 5.55 5.95 5.82 5.78
Tot. m 6.13 5.95 5.77 6.08 5.56 6.25 5.92 6.09 5.96 5.97 5.75 6.05 6.04 5.84

f 6.00 5.61 5.34 6.13 5.48 5.95 5.53 6.10 5.67 5.54 5.56 5.67 5.54 5.83
Tot. 6.10 5.79 5.51 6.09 5.51 6.16 5.73 6.09 5.83 5.77 5.64 5.90 5.79 5.84

Table 11. Mean self-reported responses on experience with math,
computers, statistics software, and programming by gender, major, and
success on milestones of problems 1 and 2. Dark cells represent a
main effect, medium-colored cells an interaction effect of gender or
major by performance, and the lightest cells an interaction effect
between major, gender, and performance (alpha less than .01).CS =
Computer Science, PSY = Psychology, and O = Other.

Again, there were few significant individual difference predictors of success at fixing

the bugs in problem 2. There was a main effect for math experience on fixing the

generate valueofoutlier bug; successful participants had more mathematics experience.

There was also a significant interaction effect between gender and the generate pvalues

bug; males who had less programming experience were more successful at this bug while

females who had more experience were more successful. Again, some of the negative

findings are important: computer, programming, and statistics software experience had no

relationship to success on fixing problem 2 bugs.

Attitudes, Major, Gender, and Performance

Finally, results are provided for attitudes by major, gender, and performance in Table

12. There was a significant interaction effect between major and the creation of the data

set of 1000 objects; other majors who failed at the task had slightly higher opinions of

computers. There was also a main effect on creating the random numbers; participants
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successful at this task had more positive attitudes about computers. Also for the create

random numbers milestone, there was a significant interaction effect with attitudes

towards mathematics: psychology and other majors who succeeded had slightly more

positive attitudes of mathematics while computer science majors who succeeded had

slightly more negative attitudes towards mathematics.

Attitudes (1 = negative, 7 = positive)

Created
Data Set

Created
Random
Numbers

Executed
T Test

Fixed
Axes

Fixed gen
pvalues

Fixed gen
valueof…

Fixed
Loop

Range
Maj. Sex No Yes No Yes No Yes No Yes No Yes No Yes No Yes

Experiment PSY m 0.00 4.74 4.55 5.00 4.63 5.00 4.72 0.00 4.79 4.50 4.00 5.15 4.95 4.33
f 0.00 4.52 4.52 0.00 4.52 4.50 4.52 4.50 4.81 3.94 4.64 4.35 4.52 0.00

Tot. 0.00 4.60 4.53 5.00 4.56 4.83 4.61 4.50 4.80 4.13 4.45 4.75 4.65 4.33
CS m 3.75 5.44 5.44 5.34 5.67 5.31 5.40 5.25 5.46 5.19 5.25 5.40 5.38 5.34

f 0.00 4.42 0.00 4.42 0.00 4.42 4.42 0.00 3.75 4.75 3.75 4.75 5.00 4.13
Tot. 3.75 5.30 5.44 5.20 5.67 5.18 5.24 5.25 5.34 5.10 5.04 5.32 5.34 5.15

O m 4.33 5.06 4.46 5.29 4.50 5.63 4.71 5.10 4.89 4.85 4.75 4.92 4.93 4.63
f 3.50 4.90 4.58 5.11 4.62 5.29 4.68 5.38 4.71 5.04 4.88 4.80 4.65 5.14

Tot. 4.13 4.95 4.53 5.18 4.57 5.43 4.69 5.22 4.78 4.96 4.84 4.85 4.77 5.03
Tot. m 4.19 5.19 4.75 5.29 4.75 5.33 5.06 5.18 5.15 4.98 4.81 5.21 5.11 5.06

f 3.50 4.72 4.55 4.94 4.57 4.95 4.59 5.20 4.70 4.65 4.70 4.67 4.60 4.92
Tot. 4.05 4.97 4.63 5.18 4.65 5.22 4.83 5.19 4.95 4.83 4.75 5.00 4.86 5.01

Computers PSY m 0.00 4.28 3.90 4.92 3.83 5.63 4.28 0.00 4.75 2.88 3.58 4.70 4.40 4.08
f 0.00 3.88 3.88 0.00 3.93 3.25 3.86 4.00 4.38 2.88 4.11 3.55 3.88 0.00

Tot. 0.00 4.04 3.88 4.92 3.90 4.83 4.04 4.00 4.54 2.88 3.95 4.13 4.03 4.08
CS m 6.50 6.45 6.38 6.47 6.50 6.44 6.43 6.50 6.48 6.41 6.63 6.38 6.60 6.32

f 0.00 6.17 0.00 6.17 0.00 6.17 6.17 0.00 5.50 6.50 5.50 6.50 6.25 6.13
Tot. 6.50 6.41 6.38 6.43 6.50 6.40 6.39 6.50 6.41 6.43 6.46 6.40 6.57 6.29

O m 5.17 5.58 4.92 6.04 5.06 6.31 5.29 5.75 5.57 5.35 5.33 5.53 5.48 5.50
f 6.00 4.82 4.20 5.64 4.54 5.63 4.75 5.38 4.73 5.14 4.28 5.32 4.77 5.07

Tot. 5.38 5.07 4.47 5.80 4.74 5.90 4.92 5.58 5.04 5.23 4.57 5.41 5.09 5.17
Tot. m 5.50 5.77 4.97 6.19 4.88 6.35 5.59 6.16 5.84 5.58 5.54 5.83 5.71 5.80

f 6.00 4.60 4.02 5.77 4.26 5.55 4.56 5.10 4.63 4.65 4.28 4.96 4.40 5.31
Tot. 5.60 5.22 4.41 6.06 4.52 6.12 5.08 5.83 5.30 5.15 4.82 5.49 5.06 5.62

Statistics PSY m 0.00 2.81 2.10 4.00 2.38 4.13 2.81 0.00 2.83 2.75 2.17 3.20 2.80 2.83
f 0.00 2.77 2.77 0.00 2.59 4.75 2.80 2.50 3.19 1.94 2.89 2.60 2.77 0.00

Tot. 0.00 2.79 2.57 4.00 2.51 4.33 2.80 2.50 3.04 2.21 2.68 2.90 2.78 2.83
CS m 3.25 3.44 3.63 3.38 2.92 3.51 3.48 3.29 3.31 3.63 3.25 3.50 3.75 3.14

f 0.00 3.83 0.00 3.83 0.00 3.83 3.83 0.00 3.75 3.88 3.75 3.88 3.00 4.25
Tot. 3.25 3.49 3.63 3.45 2.92 3.56 3.54 3.29 3.34 3.68 3.32 3.54 3.68 3.31

O m 3.67 4.08 3.92 4.04 3.94 4.06 3.82 4.20 3.82 4.20 3.17 4.25 3.98 4.00
f 3.50 3.31 3.33 3.31 3.29 3.38 3.13 4.00 2.94 3.96 2.88 3.64 3.65 2.75

Tot. 3.63 3.56 3.55 3.60 3.54 3.65 3.35 4.11 3.26 4.06 2.95 3.91 3.80 3.03
Tot. m 3.56 3.46 3.23 3.61 3.21 3.66 3.38 3.70 3.34 3.70 2.96 3.68 3.65 3.19
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f 3.50 3.16 3.02 3.44 2.97 3.65 3.08 3.70 3.07 3.33 2.94 3.38 3.20 3.08
Tot. 3.55 3.32 3.11 3.55 3.07 3.65 3.23 3.70 3.22 3.53 2.95 3.56 3.43 3.15

Math PSY m 0.00 3.63 2.80 5.00 3.25 4.75 3.63 0.00 3.63 3.63 2.75 4.15 4.25 2.58
f 0.00 3.67 3.67 0.00 3.52 5.25 3.86 1.50 3.88 3.25 3.96 3.25 3.67 0.00

Tot. 0.00 3.65 3.41 5.00 3.43 4.92 3.76 1.50 3.77 3.38 3.60 3.70 3.84 2.58
CS m 5.25 5.36 5.94 5.22 5.83 5.28 5.18 5.79 5.21 5.59 5.25 5.40 5.53 5.20

f 0.00 5.25 0.00 5.25 0.00 5.25 5.25 0.00 4.25 5.75 4.25 5.75 5.00 5.38
Tot. 5.25 5.35 5.94 5.23 5.83 5.27 5.19 5.79 5.14 5.63 5.11 5.44 5.48 5.23

O m 3.58 5.61 4.13 6.08 4.63 6.06 4.50 5.95 4.89 5.40 3.67 5.58 4.90 6.13
f 6.75 4.31 3.65 5.31 4.13 5.08 4.33 4.81 4.65 4.07 3.72 4.95 4.42 4.46

Tot. 4.38 4.74 3.83 5.62 4.32 5.48 4.39 5.44 4.74 4.63 3.70 5.24 4.64 4.83
Tot. m 4.00 5.05 4.17 5.39 4.35 5.36 4.61 5.86 4.76 5.27 4.23 5.24 5.02 4.83

f 6.75 4.16 3.66 5.29 3.85 5.15 4.25 4.15 4.33 4.08 3.86 4.57 4.08 4.67
Tot. 4.55 4.63 3.86 5.36 4.06 5.30 4.43 5.33 4.57 4.71 4.02 4.98 4.55 4.77

Table 12. Mean responses on attitudes towards math, programming,
statistics, and the experiment by gender, major, and success on
milestones of problems 1 and 2. Dark cells represent a main effect,
medium-colored cells an interaction effect of gender or major by
performance, and the lightest cells an interaction effect between
major, gender, and performance (alpha less than .01). CS = Computer
Science, PSY = Psychology, and O = Other.

There were few differences in attitudes that predicted success on fixing problem 2

bugs. There was a significant interaction effect between major and fixing the generate

pvalues bug for attitudes towards computers: psychology majors who fixed this bug had

much lower opinions of computers. There was also a main effect on math attitudes for

fixing the generate valueofoutlier bug; participants who fixed this bug had higher

attitudes towards mathematics.

Programming Strategies

In order to characterize the programming strategies used by participants to solve

problem one, each of the variables defined for problem 1 (shown in Table 3 and Table 4)

was assessed by the two coders and placed in one or more groups, which defined an

aspect of the problem. Table 13 lists these groups, the variables that each group consists

of, the Cronbach’s alpha of the standardized variables (meaning that each variable was
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transformed from its original scale to a standard normal scale), and a description of what

the group is attempting to capture. For example, the first group listed, “GUESS AND

CHECK”, consists of nine of the variables extracted from participants’ transcripts, and

attempts to capture the degree to which participants’ commands are derived through an

iterative guess and check process. The reliability of this group, .82, indicates that each of

the variables in the group is closely related to the other variables in the group, suggesting

that the group is a strongly unitary construct.

Name Variables in the Group a Includes Variables That Reflect
the Degree to Which…

Guess and Check GUESSYN, COMDIVR, COMVOL, RNDLTGT, RNDIN,
RND01, GENTO, GENRAND, UNICNT

.82 solutions are derived iteratively

Frustration SIGHS, CUSSING, TIMEREM, FONTCOM, LAUGHS,
USEED

.61 confusion is explicitly expressed through words
or behavior

Window Management WINOFF, WINARR .81 windows are managed systematically
Use of Specification READPD, READPDT, UNIFMLY, SRNDNUM, TDTEST,

TOTREAD
.86 descriptions and problem boundaries are

referenced and used
Desire to Seek
Information

READPD, READPDT, WRITE, DRAW, HNOTFND,
ERRLINK, HELPTIM, HELPREL, SBUT, COMMENU,
SEARCHS, HELPS, HELPDIV, SRCHDIV, LINKUSE,
SRNDNUM, HCONTEN, STTST, SPVALUE, CHPWHLP,
HAFTTST,

.83 information is pursued

Attention to Feedback HNOTFND, ERRLINK, OUTREL, MSRLSPD, LISTAFT .47 feedback from Stata is attended to and used
Syntax Confusion GUESSYN, COMDIVR, COMVOL, UNMAERR, DUPERR,

HLPLIST, USEQSET, USEOBJ, GENOBS, SET1000,
GENPAUS, SET4GEN, PARENSP, INPAREN, INVNORM,
UNICNT, PAIRED, FRGTCOM, USEED

.65 syntax is improperly constructed or interpreted

Use of GUIs HELPREL, SBUT, COMMENU, INSPBUT, INSPMEN,
BUTUSE, USEED

.72 GUIs are relied on to reach solution

State Comprehension QHATTMP, FORGETQ, VARWIN, REVWIN, RETBAR,
SETWAST, LISTAFT, TTSTUNI, USECLR

.51 the state of artifacts in Stata are understood

Cyclic Behavior COMDIVR, COMVOL, DUPERR, DUPHELP, DUPSRCH,
DUPLINK, UNICNT, USECLR

.80 solutions and methods are repeated
unnecessarily

Use of Examples USETUT, USEEXAM, TUTSET, GENUSE, GENCONS,
GENEXAM, USEFUNC, FNINTRO, TTSTEXA, REPTUT,
SETSEED

.66 examples from tutorial and online help are
references and used

Verbalization TALKATV, CUSSING, TIMEREM, LAUGH, INQUIS .61 thoughts about problem and solutions are
verbalized

Table 13. Groups of variables used to characterize strategies used by
participants to solve problem 1. Cronbach’s alphas are reported in
the third column, indicating the “relatedness” of the group of
variables.

To calculate a quantity to represent each of the groups based on the variables

contained within the group, the first principle component from a factor analysis of the

variables was extracted, resulting in a standardized variable that placed weights on each

component in order to achieve maximum variance. If any of the variables used in the
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factor analysis were constant, it was removed from the factor analysis and thus did not

contribute to the standardized variable.

What Programming Strategies are Successful?

The first question investigated for problem 1 was how these groups of variables would

describe participants that were successful on problem 1 and those who were not. Because

each participant began with the same information, but took his or her own path

throughout the problem solving session, two methods of exploring this question were

used. The first was to compare successful and unsuccessful participants along six evenly

divided time intervals of five minutes, to see how the measures changed over time (this

data is hereon referred to as “interval data”). Figures showing the standardized measure

for each group of variables versus the six time intervals are shown in Figure 20. Each

graph represents the average group measure of successful participants (for example, the

“Guess and Check” measure) relative to unsuccessful participants. Success in this case

was defined as creating the two data sets of uniformly distributed random numbers.

Participants who were successful in this sense were not included in intervals following

their success.
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By interpreting the graphs, we can see many trends. Successful participants:

ü Exhibited more guess and check behavior as time ran out;

ü Were on the whole, less frustrated throughout the problem solving session;

ü Performed more window management in the beginning;

ü Read the problem specification much less early on;

ü Sought more information early on;

ü Attended less to errors, likely because fewer errors were made;
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Figure 20. Measures of successful participants relative to unsuccessful
participants by intervals of 5 minutes. Positive points mean that
successful participants exhibited more of the measure while negative
means successful participants exhibited less.
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ü Struggled with syntax early on but overcame it later;

ü Used fewer graphical user interfaces throughout the problem;

ü Exhibited less cyclic problem solving behavior, but more in time;

ü Referenced fewer examples; and

ü On the whole, verbalized their thoughts.

The second method used to describe the strategies of successful participants looked at

each participants interaction from the beginning until they created the two sets of

uniformly distributed random numbers or ran out of time (this data is hereon referred to

as “milestone data”). This data, shown in Figure 21 as descriptions of failing participants

relative to successful participants, paints a slightly different picture.
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Figure 21. Mean group measures of failing participants relative to
successful ones. Values for each group represent the degree to which
participants who failed exhibited more of each group behavior.
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From this graph, we see that participants who failed to create the two sets of random

numbers

ü Did slightly more guessing and checking;

ü Were slightly more frustrated;

ü Did slightly more window management;

ü Referenced the specification much more;

ü Sought more information;

ü Attended more to feedback regarding errors and such;

ü Exhibited more syntax confusion;

ü Used graphical user interfaces more;

ü Demonstrated comprehension of the environment’s state;

ü Showed much more cyclic behavior;

ü Referenced more examples; and

ü Verbalized their thoughts more.

Distinct Programming Strategies

To detect distinct programming strategies regardless of success, a hierarchical cluster

analysis was performed on the grouped variables listed in Table 13. As seen in the earlier

analysis of these variables with respect to success, interval data as well as data up until

the first milestone seemed to generate interest results, albeit different ones. Thus both of

these sets of data were used in the cluster analysis. However, only the first five minutes

of the interval data was used, since it was likely that in the following 25 minutes,

participants were diverge greatly on their strategies and subtasks.
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As cluster analysis is largely a non-statistical exploratory tool, care was taken to

choose the appropriate distance measure and linkage rule for the type of data being used.

Euclidian distance (as opposed to squared Euclidian distance) was chosen as the distance

measure in order to lessen the impact of outliers on the clustering. Of each linkage rule

tested, Ward’s method (which attempts to minimize the sum of squares of any two

(hypothetical) clusters that can be formed at each step) generated the cleanest hierarchical

clustering. As the technique of hierarchical cluster analysis does not provide any

guidelines for interpreting the number of clusters from the results, results of 2, 3, 4, 5, 6,

and 7 clusters were generated and compared. The membership counts for each cluster for

all six results and both the interval and milestone data are provided in Table 14.
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Milestone Data First Interval Data
Solution Size Cluster # Size Percent Size Percent

1 41 54.7 15 20.02
2 34 45.3 60 80.0
1 41 54.7 13 17.3
2 23 30.7 60 80.03
3 11 14.7 2 2.7
1 41 54.7 13 17.3
2 21 28.0 13 17.3
3 11 14.7 47 62.7

4

4 2 2.7 2 2.7
1 41 54.7 13 17.3
2 12 16.0 13 17.3
3 9 12.0 42 56.0
4 11 14.7 5 6.7

5

5 2 2.7 2 2.7
1 41 54.7 13 17.3
2 12 16.0 12 16.0
3 9 12.0 42 56.0
4 6 8.0 1 1.3
5 5 6.7 5 6.7

6

6 2 2.7 2 2.7
1 41 54.7 13 17.3
2 9 12.0 12 16.0
3 9 12.0 36 48.0
4 6 8.0 6 8.0
5 5 6.7 1 1.3
6 2 2.7 5 6.7

7

7 3 4.0 2 2.7
Table 14. Sizes of clusters and percent of participants in each cluster

for cluster analyses return 2 to 7 clusters.

In choosing the appropriate number of clusters, it is important to consider the size of

each cluster in each of the solutions in Table 14. For example, all of the solutions using

the first interval data, except for the solution with two clusters, has very small clusters of

size less than five. Such solutions, though they may be meaningful, are hardly helpful in

distinguishing participants. In order to analyze the solutions further, correlations between

solutions were calculated, shown in Table 15.
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Milestone Data First Interval Data
Solution

Size 3 4 5 6 7
Solution

Size 3 4 5 6 7

2 .902 .870 .852 .805 .792 2 .694 .686 .569 .463 .391
3 .921 .918 .891 .799 3 .884 .861 .802 .735
4 .975 .970 .849 4 .956 .852 .777
5 .987 .819 5 .957 .905
6 .822 6 .977

Table 15. Correlations between solution sizes 2 through 7 from cluster
analyses on milestone data for problem 1. All correlations were
significant at the .01 level.

All of the milestone data solutions correlate well with each other whereas some of the

first interval solutions have weaker correlations. This is likely because of the many

solutions with small cluster sizes. Finally, correlations between the solutions generated

from milestone data and first interval data were calculated to see if the solutions shared

anything in. As seen in Table 16, only the solutions with more clusters have significant

relationships, suggesting a small level of detail not captured by the solutions with fewer

clusters.

First Interval Data
Solution

Size
2 3 4 5 6 7

2 .187 .316.325.388.436.438
3 .137.199.163.214 .282.299
4 .154.199.184.217 .266.269
5 .169.166.163.203 .258.275
6 .132.121.122.162.213 .228

M
ile

st
on

e 
D

at
a

7 .070 .232.220 .266.307.305
Table 16. Correlations between the interval and milestone data, by each

solution. Bold correlations are significant at the .05 level.

In attempt to choose a simple, constructive categorization, the three-cluster solution

generated from milestone data was chosen as the best candidate. None of the cluster sizes

were unreasonably small, and the information gained by increasing the number of

clusters was arguably small (see Table 15). Descriptions of these clusters are shown in

Figure 22.
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Figure 22. Standardized measures for each cluster, showing
relative differences between clusters.

As shown, participants in cluster p1 fell approximately one half standard deviation

below the average of all participants for all measures, showing less frustration, guess and

check behavior, less use of the problem specification, and so on. Cluster p2 showed

above average use of the problem specification, graphical user interfaces, attention to

feedback, cyclic behavior, and use of examples. Cluster p3 showed above average

measures of syntax confusion, guess and check behavior, window management, and

cyclic behavior.
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Predictive Power of Programming Strategies

The final question is whether or not these clusters have predictive value. Chi-Squared

tests were performed on categorical variables to determine if the clusters were related to

performance on problem 1, major, or gender. As seen in Table 17, the three clusters

predicted performance on generating random numbers and executing the t-test, as well as

major. Those in cluster p1 tended to be computer science majors and successful on the

problem; those in cluster p2 tended to be non-computer science majors and largely

unsuccessful on the problem; finally, cluster p3 tended to be non-computer science

majors and somewhat successful on the problem.

Cluster # Created the
Data Set

Generated
Random
Numbers

Executed the
T Test

Major Gender

True False True False True False Psych. Comp.
Sci.

Other Female Male

p1 28 3 34 7 28 13 5 21 15 15 26
p2 21 2 1 22 3 20 12 2 9 12 11
p3 11 0 3 8 3 8 3 1 7 7 4

Table 17. Frequencies of performance variables, major, and gender, by
the three clusters. Chi-squared tests were used to test for
differences among the groups; shaded variable columns were
significant at the .01 level.

The clusters were also related to continuous background variables, as shown in Table

18. Cluster p1 tended to be more intelligence, have greater self-reported experience and

ability with mathematics and computer programming, as well as more positive attitudes

towards mathematics and computer programming. Cluster p2 tended to be of less

intelligence and of lower experience and attitudes towards mathematics and computer

programming; finally, cluster p3 tended to be of higher intelligence, of average

mathematics experience, of much less programming experience and neutral attitudes

towards computers and computer programming.
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Cluster Number
p1 p2 p3

Background Characteristic Mean (Standard Deviation)
Percent Correct

Vocab27 .58 (.13) 0.42 (.15) 0.56 (.14)
Vcog I .64 (.12) 0.51 (.09) 0.63 (.09)
Statistics Test .35 (.15) 0.27 (.17) 0.36 (.17)

Self-reported experience (0=none, 1=least, 7=most)
Mathematics experience 5.35 (1.25) 3.39 (1.60) 4.59 (1.82)
Statistics Software Experience 1.31 (1.02) 1.73 (1.45) 1.73 (1.07)
Programming Experience 2.80 (1.85) 1.24 (1.95) 0.79 (.97)
Computer Experience 6.05 (.84) 5.50 (1.15) 5.55 (1.04)

Attitudes Towards… (1=negative, 7 = positive)
Experiment 5.01 (1.08) 4.77 (.88) 4.80 (.77)
Computers 5.82 (1.21) 4.46 (1.22) 4.73 (1.01)
Statistics 3.30 (1.17) 3.16 (1.15) 3.82 (1.43)
Mathematics 5.23 (1.30) 3.61 (1.78) 4.50 (1.41)

Age (years) 24.46 (4.89) 23.04 (5.24) 27.55 (10.6)
Sleep (hours) 6.85 (1.51) 6.78 (1.70) 6.64 (.81)

Table 18. Means and standard deviations of measures of individual
differences by the three clusters. Shaded rows are significant at the
.01 level as evidenced by one-way ANOVAs.

Finally, frequencies of combinations of success at the three milestones in problem 1

for each cluster are given in Table 19. Cluster p1 tended to be composed of participants

who succeed at the whole problem. Cluster p2 tended to have individuals who were

successful only at creating the data set of 1000 objects. Cluster p3 tended to be similar to

cluster p2, but had a higher proportion of participants successful at the whole problem.

Cluster

Created the Data Set
of 1000 Objects

Created Two Uniformly
Distributed Sets of
Random Numbers

Executed the
T Test p1 p2 p3

Failure Failure Failure 1 2 0
Success 0 0 0

Success Failure 1 0 0
Success 1 0 0

Success Failure Failure 5 17 7
Success 6 1 1

Success Failure 1 3 1
Success 26 0 2

Table 19. Frequencies of each combination of milestone success for each
cluster.
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Testing and Debugging Strategies

In order to explore the testing and debugging strategies participants used in problem 2,

the same process used for problem 1 was used to generate groups of variables that

attempted to measure various aspects of participants’ problem solving. Table 20 lists

these groups, the variables in the group, reliabilities of the standardized scales, and

descriptions of the groups. All of the groups used for problem 1 were used in problem 2,

since participants could use everything in the Stata environment they used in problem 1

to solve the problem; however, the variables and descriptions are repeated here as

addition variables extracted from problem 2 were included in these groups.

Name Variables in the Group a Includes Variables That Reflect
the Degree to Which…

For Command FORTIME, LPLINE, REPLNUM, REPLX, ROFPHLP, X2Y,
CHNFOR5, HLPFOR, HLPSLSH

.63 for command was modified to
comply to specification

Changed Words MODCOMW, REPLNUM, REPLX, X2Y, REMUNDR, GRPTIT,
GRPCOM, CHWORD

.60 non-numerics were changed to
comply to specification

Frustration SIGHS, CUSSING, TIMEREM, FONTCOM, LAUGHS, IMPAT .30 confusion is explicitly expressed
through words or behavior

Graph GRATIME, T2VGRP, SIZEGRA, TRACEGR .76 graph was used in testing and
debugging the do-file

Window Management WINOFF, WINARR .96 windows are managed
systematically

Changed Comments EDITCOM, MODCOMW, MODCOMN, GRPCOM, FIXSEMI .43 comments were changed to comply
to specification

Use of Specification READPD, READPDT, COMTIME, TOPCOM .55 descriptions and problem
boundaries are referenced and used

Attention to Feedback HNOTFND, ERRLINK, OUTREL, MSRLSPD, DOUSE, RUNUSE,
INGERR, ERRS, GRATIME, T2VGRP, SIZEGRA, TRACEGR,
NCHB4R

.42 feedback is attended to and used

Familiar Commands GRNDTIM, CONFGRN, SETTIME, CONFSET, HLPGEN,
HLPTTEST

.14 familiar commands were
investigated or operated on

Syntax Confusion GUESSYN, COMDIVR, COMVOL, UNMAERR, DUPERR,
HLPLIST, EDITCOM, MODCOMW, MODCOMN, LPLINE,
REPLNUM, REPLX, X2Y, CHNFOR5, REMUNDR, GRPTIT,
FIXSEMI, HLPGR, HLPFOR, HLPGEN, HLPTTEST, HLPDEL,
HLPSLSH

.63 syntax is improperly constructed or
interpreted

Use of Commands TYPOS, COMDIVR, COMVOL, EXMAN, LOOKDAT, TRYCLR .90 commands were used in testing and
debugging the do-file

State Comprehension QHATTMP, FORGETQ, VARWIN, REVWIN, RETBAR,
LOOKDAT, TRYCLR

.97 the state of artifacts in Stata are
understood

Use of Examples USETUT, USEEXAM, CONFGRN, CONFSET .23 examples from tutorial and online
help are references and used

Valueofoutlier
Command

GVLTIME, REMUNDR, GVL210, GVL2TH, GVLCH, HLPGEN,
HLPSLSH

.59 generate valueofoutlier command
was modified to comply to
specification

Graph Command GRPTIME, GRPTIT, GRPCOM, HLPGR .31 graph command was modified to
comply to specification

Guess and Check GUESSYN, COMDIVR, COMVOL, COMOUT, GNP210,
GNP2TH, GNPCH, GVL210, GVL2TH, GVLCH, DOUSE,
RUNUSE, REPCHNG

.67 solutions are derived iteratively
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Pvalues Command GNPTIME, GNP210, GNP2TH, GNPCH, HLPGEN, HLPSLSH .46 generate pvalues command was
modified to comply to specification

Desire to Seek
Information

READPD, READPDT, WRITE, DRAW, HNOTFND, ERRLINK,
HELPTIM, HELPREL, SBUT, COMMENU, SEARCHS, HELPS,
HELPDIV, SRCHDIV, LINKUSE, ROFPHLP, TRACEGR, HLPGR,
HLPFOR, HLPGEN, HLPTTEST, HLPDEL, HLPSLSH, HLPDO

.71 information is pursued

Use of GUIs HELPREL, SBUT, COMMENU, INSPBUT, INSPMEN, BUTUSE2 .44 GUIs are relied on to reach solution
Cyclic Behavior COMDIVR, COMVOL, DUPERR, DUPHELP, DUPSRCH,

DUPLINK, REPCHNG, TRYCLR
.43 solutions and methods are repeated

unnecessarily
Change Range MODCOMN, CHNFOR5, GNP210, GNP2TH, GNPCH, GVL210,

GVL2TH, GVLCH, CHNUM
.75 ranges were changed to comply to

specification
Verbalization TALKATV, CUSSING, TIMEREM, LAUGHS, INQUIS .55 thoughts about problem and

solutions are verbalized

Table 20. Groups of variables used to characterize strategies used by
participants to solve problem 2. Cronbach’s alphas are reported in
the third column, indicating the “relatedness” of the group of
variables.

As with problem 1, quantities representing each of the groups based on the variables

contained within the group were created by extracting the first principle component from

a factor analysis of the variables

What Testing and Debugging Strategies Are Successful?

As with problem 1, these variables were used to fist describe participants that were

successful on problem 2 and those who were not. Interval data and milestone data was

used for problem 2 as well, with the first milestone defined as when the participant

stopped working on problem 2 (when the participant believed the testing and debugging

was complete). Figures showing the standardized measure for each group of variables for

problem 2 versus four time intervals of five minutes are shown in Figure 23 through 27.

As before, each graph represents the average group measure of successful participants

(for example, the “Guess and Check” measure) relative to unsuccessful participants.

Success in this case was plotted separately for each of the four bugs.
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As seen in Figure 23, participants differed greatly for each bug. Successful

participants for all bugs were on average less frustrated throughout problem 2.

Furthermore, participants who were successful on each of the bugs tended to verbalize

their thoughts more than unsuccessful participants.
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Figure 23. External environment measures for success relative to
failure, for each bug in problem 2.
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Figure 24. Measures for success relative to failure, for each bug in
problem 2.
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As seen in Figure 24, successful participants on each bug inspected the graph more

than unsuccessful participants, and also attended to feedback provided by Stata more.

Participants did not differ too much on how much they used graphical user interfaces,

however, those successful at fixing the generate pvalue bug did more window

management, and those successful on the other three bugs did less window management.

On average, successful participants on each bug comprehended the state of Stata more

than unsuccessful participants. Those who were successful at fixing the generate

valueofoutlier range used the problem specification more, while those who were

successful on the other bugs used it less.
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Desire To Seek Info
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Figure 25. Measures of problem solving behaviors for success relative
to failure, for each bug in problem 2.
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As seen in Figure 25, participants differed greatly for each bug with respect to

problem solving behaviors. Participants successful on fixing the inverted axes spent more

time seeking information in the beginning and less at the end; for the other three bugs,

successful participants sought information earlier than unsuccessful participants. There

were few differences in cyclic behavior except for the inverted axes bug, where

successful participants seemed to exhibit more of this behavior early on. As two of the

bugs were observation range problems, it is no surprise that participants successful on

these two bugs changed more ranges throughout the problem; in fact, participants

successful on fixing the inverted axes also changed more ranges. Participants successful

at fixing the inverted axes and the loop iteration range were more likely to change

comments of the code in the do-file, but those who fixed the pvalue and valueofoutlier

observation ranges were less likely to change comments. During the second and fourth

intervals, successful participants on all bugs but the generate valueofoutlier bug were

more likely to change words in commands, as opposed to numbers. Finally, successful

participants exhibited more guessing and checking behavior for the generate pvalues bug,

more for the generate valueofoutlier bug, but no more than unsuccessful participants on

the intervted axes and loop range bugs. Furthermore, successful participants exhibited

less guessing and checking behavior on the generate pvalues and generate valueofoutlier

bugs later in the problem.
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As seen in Figure 26, participants successful at fixing the generate pvalue bug used

more commands through time, yet participants successful at fixing the other three bugs

used an average amount or fewer commands than unsuccessful participants. Though,

participants successful on all four bugs tended to have less syntax confusion in the

beginning and more later on.
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Figure 26. Measures regarding command creation for success relative to
failure, for each bug in problem 2.
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As seen in Figure 27, participants successful at each bug inspected the valueofoutlier

command more than unsuccessful participants early in the problem.  In general,

participants successful at each bug inspected familiar commands (such as “set obs 1000”

and “generate rand1=uniform()”) less than unsuccessful participants. Furthermore,

participants who were successful at each bug spent more time inspecting the generate
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Figure 27. Measures regarding work on the commands in the do-file for
success relative to failure, for each bug in problem 2. The graph
command was not included because of insufficient data for comparison.
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pvalues command. Finally, successful and unsuccessful participants worked on the for

loop command equally.

As with problem 1, data for the first milestone was also inspected using the variables

in Table 20. The milestone for problem 2 was considered to be from the beginning of

participants’ interaction until they believed they had found all of the bugs and the do-file

was correct, thus these results included all the data for each participant, unlike the

milestone results for problem 1.
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Success on Fixing the For Loop Iteration Range Relative to Failure
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Figure 28. Success relative to failure for each of the measures across
the whole duration of each participant’s interaction.

Participants who successfully fixed the for loop iteration bug, described in Figure 28,

exhibited more verbalization of their thoughts, changed more observation ranges,

exhibited more cyclic behavior, used more graphical user interfaces, sought more

information, spent more time inspecting the generate pvalues command, use far more

examples, changed more words in commands, and inspected the for loop command more.

Furthermore, such participants inspected the graph commands familiar from problem 1
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less, as well as attended to less feedback, read the problem specification less, changed

fewer comments, and payed less attention to the graph produced by the do file.

Success on Inverting the Axes Relative to Failure
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Figure 29. Success relative to failure for each of the measures across
the whole duration of each participant’s interaction.

As seen in Figure 29, participants successful at fixing the inverted axes  (of which

there were only 25 percent), exhibited less use of graphical user interfaces, used fewer

examples, and inspected familiar commands less. Furthermore, such participants

inspected the graph command more (which should be expected), but also inspected the
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generate valueofoutlier command more, was more confused about syntax, changed more

comments, and inspected the graph produced by Stata more.

Success on Fixing the Generate Pvalues Observation Range 
Relative to Failure
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Figure 30. Success relative to failure for each of the measures across
the whole duration of each participant’s interaction.

Appropriately, participants who successfully fixed the generate pvalues command

spent more time inspecting the command and changing observation ranges, as seen in

Figure 30. However, successful participants also inspected the graph more, exhibited
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more cyclic behavior, and were more confused with syntax. They also attended to

feedback from Stata less, were less frustrated, and used graphical user interfaces more.

Success on Fixing the Generate Valueofoutlier Observation Range 
Relative to Failure
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Figure 31. Success relative to failure for each of the measures across
the whole duration of each participant’s interaction.

As we see in Figure 31, participants who successfully fixed the observation range in

the generate valueofoutlier command appropriately inspected the command itself more.

Such participants also spent more time viewing the graph and managing windows, and
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inspecting the generate pvalues command. Furthermore, these participants used more

commands and were confused by them, performed more guess and check behavior, and

comprehended the environment’s state more. Lastly, these successful participants

inspected familiar commands far less and used fewer examples from the online help.

Distinct Testing and Debugging Strategies

To detect distinct programming strategies irrespective of success, a hierarchical cluster

analysis was performed on the grouped variables listed in Table 20, just as with problem

1. Also as with problem 1, earlier analysis of these variables with respect to success,

interval data as well as data up until the first milestone seemed to generate different

results, thus both of these sets of data were used in the cluster analysis. Just as with

problem 1, it was likely that past the first five minutes, participants would diverge greatly

on their strategies and subtasks, thus only the first five minutes of problem 2 were used

for the interval data. Ward’s method combined with Euclidian distance again produced

the cleanest clusters; solution sizes of 2 to 7 clusters were generated for milestone data

and interval data.

The six solutions for the each data set are provided in Table 21. Again, as with the

cluster analyses performed for problem 1 data, when more than 3 clusters were generated,

the size of the fourth group was often too small to be practically useful.

Milestone Data First Interval Data
Solution Size Cluster # Size Percent Size Percent

1.00 60 80.0 45 60.02
2.00 15 20.0 30 40.0
1.00 20 26.7 45 60.0
2.00 40 53.3 24 32.03
3.00 15 20.0 6 8.0

4 1.00 20 26.7 45 60.0
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Milestone Data First Interval Data
2.00 40 53.3 21 28.0
3.00 9 12.0 3 4.0
4.00 6 8.0 6 8.0
1.00 20 26.7 45 60.0
2.00 40 53.3 20 26.7
3.00 6 8.0 3 4.0
4.00 6 8.0 6 8.0

5

5.00 3 4.0 1 1.3
1.00 20 26.7 60.0
2.00 25 33.3 9 12.0
3.00 15 20.0 3 4.0
4.00 6 8.0 11 14.7
5.00 6 8.0 6 8.0

6

6.00 3 4.0 1 1.3
1.00 20 26.7 27 36.0
2.00 22 29.3 18 24.0
3.00 15 20.0 9 12.0
4.00 6 8.0 3 4.0
5.00 6 8.0 11 14.7
6.00 3 4.0 6 8.0

7

7.00 3 4.0 1 1.3
Table 21. Sizes and percent of participants in each cluster for cluster

analyses producing 2 to 7 clusters.

As seen in Table 22, generating a fourth cluster from the milestone data resulting in a

higher correlation than from two clusters to three, suggesting that some detail is lost by

only choosing three clusters. The first interval data shows similar effects. Unlike problem

1, Table 23 shows that clusters generated from the milestone data did not correlate with

the first interval data.

Milestone Data First Interval Data
Solution

Size
3 4 5 6 7

Solution
Size

3 4 5 6 7

2 .784 .825 .846 .836 .645 2 .919 .822 .804 .856 .877
3 .958 .923 .916 .786 3 .964 .918 .908 .907
4 .926 .914 .770 4 .936 .860 .851
5 .963 .802 5 .900 .881
6 .801 6 .973

Table 22. Correlations between different size solutions for the
milestone data and interval data. All correlations were significant
at the .01 level.
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Milestone Data
Solution

Size 2 3 4 5 6 7

2 .136 -.080 .052 -.022 -.036 -.047
3 .042 -.049 .038 -.028 -.042 -.063
4 .075 .044 .131 .056 .041 -.002
5 .048 .044 .120 .048 .023 .107
6 .127 .109 .183 .097 .079 .120Fi

rs
t I

nt
er

va
l

D
at

a

7 .094 .081 .164 .062 .051 .089
Table 23. Correlations between interval data and milestone data

solutions of the same size. None of the correlations were significant
at the .05 level.

As with problem 1, the purpose of the cluster analysis was to detect simple,

constructive categories, thus the three-cluster solution generated from milestone data was

chosen as the best candidate. None of the cluster sizes were unreasonably small, and at

face value, the milestone data would seem to have higher face validity than the first five

minutes of participants’ interactions since participants could vary more in what they did

than in problem 1. Descriptions of these three clusters are shown in Figure 32.
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As shown in the figure, cluster d1 tended to be participants that viewed the graph less,

changed fewer comments, inspected more familiar commands, used more examples,
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Figure 32. Descriptions of the three clusters generated from the
problem 2 milestone data.
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sought more information, used more graphical user interfaces, while inspecting the

pvalues and valueofoutlier commands less than the other two groups. Cluster d1

participants also exhibited less guess and check behavior and changed ranges less than

participants in other clusters. Participants in cluster d2 tended to be more average,

exhibiting slightly less cycle behavior, slightly less use of graphical user interfaces,

slightly less use of commands (and thus less syntax confusion) and slightly less

comprehension of the state of the Stata environment. Finally, cluster d3 was the above

average group on most measures: they spent more time on the for-loop, changed more

words in commands, performed more window management, payed attention to more

feedback from Stata. Participants in this group also used more commands and thus

experienced more syntax confusion, verbalized their thoughts far more, exhibited more

cyclic behavior, and inspected the valueofoutlier command and graph commands more.

They also used graphical user interfaces slightly less.

Frequencies of combinations of bugs fixed for each cluster are given in Table 24.

Cluster d1 tended to be composed of participants who either fixed not bugs, or just the for

loop iteration bug. Cluster d2 tended to have individuals who fixed the generate pvalue

and generate valueofoutlier bugs, and sometimes the inverted axes and for loop iteration

bug. Cluster d3 tended to have individuals who fixed the generate pvalue bug and the

inverted axes bug.
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Cluster
Generate

pvalue
Generate
valueof… Inverted Axes

For Loop
Iteration 1 2 3

Failure Failure Failure Failure 7 6 1
Success 4 2 1

Success Failure 0 1 0
Success 0 0 0

Success Failure Failure 2 2 0
Success 0 0 1

Success Failure 0 1 0
Success 0 0 0

Success Failure Failure Failure 2 5 3
Success 1 5 1

Success Failure 1 2 2
Success 1 1 1

Success Failure Failure 1 8 1
Success 1 3 2

Success Failure 0 4 1
Success 0 0 1

Table 24. Frequencies of combinations of bugs fixed for each cluster.

Finally, in order to see if the clusters from problem 1 have anything in common with

the clusters for problem 2, tabulations by the two problems are listed in Table 25. Cluster

p1 participants from problem 1 tended to be equally distributed among the clusters in

problem 2. Cluster p2 participants tended to belong mostly to cluster d2. Cluster p3

participants tended to belong to cluster d3.

Problem 2
Cluster # d1 d2 d3

p1 16 15 10
p2 2 16 5

Pr
ob

le
m

 1

p3 2 9
Table 25. The relationship between the clusters from problem 1 and the

clusters from problem 2.

Predictive Power of Testing and Debugging Strategies

These three clusters were analyzed for their predictive value, as with problem 1. Chi-

Squared tests were performed on categorical variables to determine if the clusters were
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related to performance on problem 2, major, or gender. As seen in Table 26, the three

clusters were only related to major and successful fixing of the generate valueofoutlier

command. Those in cluster d1 tended to be non-psychology majors and successful at

fixing the valueofoutlier bug (and though not significant, were not successful on the other

three bugs); those in cluster d2 tended to be non-computer science majors and largely

unsuccessful on each of the bugs; finally, cluster d3 tended to be non-psychology majors

and more unsuccessful on each bug than successful.

Cluster Fixed Loop
Range

Fixed Inverted
Axes

Fixed Pvalue
Range

Fixed
Valueofoutlier

Range

Major Gender

True False True False True False True False Psych. Comp
Sci.

Other f m

d1 7 13 2 18 4 16 13 7 3 8 9 10 10
d2 11 29 9 31 18 22 12 28 16 8 16 19 21
d3 1 8 5 10 6 9 3 12 1 8 6 5 10

Table 26. Frequencies of performance variables, major, and gender, by
the three clusters. Chi-squared tests were used to test for
differences among the groups; shaded variable columns were
significant at the .01 level.

The clusters were also related to continuous background variables, as shown in Table

27. Only two measures showed significant relationships: programming experience and

attitudes toward the experiment, the latter of which is questionable. Cluster d1 tended to

have medium programming experience, cluster d2 the lowest, and cluster d3 the most;

however, since all three clusters contained computer science majors, it is difficult to

ascertain whether or not programming experience was different for the three clusters. If

in fact the three clusters are meaningful, it may very well be a more complex construct

underlying programming experience.
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Cluster Number
d1 d2 d3

Background Characteristic Mean (Standard Deviation)
Percent Correct

Vocab27 .58 (.14) .50 (.14) .53 (.18)
Vcog I .63 (.12) .58 (.10) .61 (.15)
Statistics Test .36 (.14) .31 (.17) .34 (.15)

Self-reported experience (0=none, 1=least, 7=most)
Mathematics Experience 4.93 (1.19) 4.26 (1.83) 5.27 (1.64)
Statistics Software Experience 1.35 (1.05 1.5 (1.29 1.7 (1.07)
Programming Experience 2.52 (1.76) 1.20 (1.62) 3.59 (2.00)
Computer Experience 6.13 (.90) 5.65 (1.10) 5.8 (.75)

Attitudes Towards… (1=negative, 7 = positive)
Experiment 4.89 (.84) 4.68 (.98) 5.53 (.90)
Computers 5.65 (1.05) 4.76 (1.39) 5.98 (1.05)
Statistics 3.34 (1.07) 3.39 (1.33) 3.18 (1.09)
Mathematics 4.83 (1.27) 4.40 (1.68) 4.95 (1.91)

Age (years) 25.55 (5.92) 24.28 (6.86) 23.6 (4.6)
Sleep (hours) 6.8 (1.64) 6.63 (1.21) 7.27 (1.87)

Table 27. Means and standard deviations for measures of individual
differences by the three clusters. Shaded rows are significant at the
.01 level, as evidenced by one-way ANOVAs.
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Discussion

A wealth of data was generated in this study for which many questions can be

investigated. This study focused on two major questions:

ü What differences are there among successful and unsuccessful participants

with regard to individual differences such as experience, intelligence, attitudes,

and problem solving style?

ü Do individuals’ problem solving styles naturally cluster into distinct

categories, and if so, do these categories have any predictive value with regard

to individual differences and programming success?

Individual Differences and Performance: Who is Successful?

On the whole, the sample of college students used in the study did not reach a ceiling

or a floor on either problem: even the most poorly performing groups still had successful

individuals while the most successful group still had unsuccessful individuals. The

interesting differences to consider are with respect to each individual milestone in the

programming task and the testing and debugging task.

The Programming Task

For example, the very first task for problem one was to type the command “set obs

1000” to generate a data set with 1000 objects; all participants had experience typing the

command “set obs 10” during the tutorial, so it is no surprise that nearly participants
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successfully completed this task. What is surprising is that five participants did not

complete this task. Even comparing the means of the seventy participants who did to the

only five who did not, we do not see large differences in intelligence, attitudes, or

experience. Quite possibly, these were individuals who failed on problem 1 completely

and saved the first step for last.

The second task in problem 1 was arguably the most important and the most telling: to

create two variables with uniformly distributed random numbers, participants needed to

be able to search for information in Stata, to have the patience to read numerous help

documents, to know which documents of hundreds to read, and to know when they found

what they were looking for. Once they did, they needed to be able to construct the

command “generate somename = uniform()” by interpreting the description of the

uniform() function in the help file. Furthermore, the picky syntax in Stata would produce

ambiguous syntax errors to the effect of “invalid syntax” if a participant put

anything—numbers, spaces, words—in the parentheses in the command, thus they

needed to have some sort of intuition about what could be wrong with their attempts.

Given the complicated nature of the task, who were the individuals that succeeded? They

tended to be more intelligent and have much higher mathematics and programming

experience, suggesting that there some problem solving skills intrinsic in these categories

of knowledge that allowed the successful participants to eventually construct the required

command.

Because this task was the main barrier to success for most participants, it is also

interesting to consider the aspects of their problem solving captured by the groups of

variables presented earlier in Table 13, relative to success of creating the random
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numbers. Not only were successful participants more intelligent, but they also exhibited

some arguably better strategies. If the problem is framed as a search problem in which

participants were presented with a large search space and required to find a single

solution buried deep within the online help, the most appropriate strategy would be to

search and search with purpose. Successful participants performed less guess and check

behavior, sought more information early on, and repeated searches and commands far

less than unsuccessful participants. All of these aspects of their problem solving

demonstrate why unsuccessful participants were more frustrated: they repeated searches,

guessed syntax and read the problem specification. In the context of this search problem,

these unsuccessful participants were effectively stuck in a very small cycle of a very large

search space graph.

Other results regarding use of the interface describe successful participants with more

detail. They used graphical user interfaces much less; since Stata’s user interfaces are

simply visual representations of the same textual support systems (and often direct users

to the textual systems once employed), these interfaces were largely a distraction.

Interestingly, successful participants managed their screen real estate much more

effectively. Since the Stata environment consists of a main window with a number of

child windows, such management was crucial for being able to compare error messages

to help files. Unsuccessful participants showed much less management, which made it

more difficult for them to use the information available to them.

Finally, an interesting result was that throughout the problem, participants who

successfully spoke much more. Although it is impossible to tell whether their thoughts

are representative of their problem solving strategies, it does suggest that the successful
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participants were thinking more about the problem, entertaining possible strategies to use,

and interpreting feedback provided by Stata.

The final task in problem 1 of executing the t test, was largely dependent on the

previous task of generating the random data. As shown in Table 7, there were only a

scant number of participants who completed this final task without having completed the

previous two tasks. Most likely, they struggled with creating the two sets of uniformly

distributed data and tried to complete as much of the problem as possible.

Nevertheless, in general, one thing is apparent: the best predictors of success on the

programming task was intelligence, irrespective of background (thought programming

experience did help) Furthermore, participants who used problem-solving strategies that

were appropriate to the environment and the task were the most successful. Since there

were numerous users in the study who were not as intelligent and did not use appropriate

strategies, an important problem is to help these unsuccessful participants to complete

programming tasks similar to the one used in this study. Such a problem has numerous

issues:

ü Are there environments that force the use of environment- and task-appropriate

strategies and if so, what are their characteristics? Is forcing the use of

appropriate strategies effective?

ü If the use of environment- and task-appropriate strategies cannot be enforced,

are there environments that can teach the appropriate strategies either explicitly

or implicitly? Are they feasible or distracting?

ü How much does the presentation of information influence individuals trek

through the information search space? If it has substantial influence, are there
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effective ways to present it so that the search problem becomes as simple as it

is for successful users, but without the prerequisite higher intelligence and

knowledge of programming?

The Testing and Debugging Task

The testing and debugging task was inherently different in nature from the

programming task. There was no logical sequence of tasks participants could follow, nor

were their prescriptive guidelines of how to find information about what a “do-file” is or

how it works. In effect, this task was an opportunity to see what participants would do

with virtually no instruction and limited experience with Stata. Who were the participants

that excelled at finding each specific bug? With respect to overall performance, the

successful participants had higher self-reported math abilities and more positive attitudes

towards computers and mathematics. Interestingly, there was only a weak relationship

between programming experience and success. Before we make conclusions about why

this is, let us consider each bug in turn.

Probably the least interesting bug inserted into the do-file was the for loop iteration

bug: the for loop, which was to loop through outlier values from 1 to 10, was looping

from 10 to instead (“for num 10/1: …” instead of “for num 1/10:…”) . This had no

consequence on the data produced, or on the graph produced. Thus it is technically a bug

but only because it did not comply with the problem specification. However, this

command was systematically constructed to be part of the longest and most complex

command in the file, in order to see if complexity attracted attention. In fact, a third of the

participants in the sample took the time to fix the problem despite its lack of real
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problems. This result alone illustrates something inherent in testing and debugging:

complicated segments of even a simple end-user program can become major time sinks.

Who were the individuals who successfully fixed this irrelevant bug? These

participants were on the whole computer science and other majors—not psychology

majors—suggesting that the programming experience either compelled them to inspect

the command, or, once it was identified as not complying to the specification, to fix the

insignificant problem. Across the whole problem, these tended to be individuals who

spent much more time on the for loop command, used many more examples from the

tutorial and the online help system, and sought more information. Furthermore, they

spent less time inspecting the graph and the graph command, and more time on the

generate pvalues and generate valueofoutlier commands, both of which had similar

syntax similar to the range—and in fact, participants who fixed this problem either only

fixed this bug, or also fixed one or both of these commands. This suggests that these

individuals were fixated more on understanding the underlying syntax and language, and

less on the task: fixing the graph that was produced.

The trends raised by this bug raises an important issue: if there are individuals who,

because of their background experience, become obsessed with specific aspects of a task

and thus do not complete their task, are there ways to direct their attention to more

relevant aspects of the problem? Furthermore, considering that many of the participants

who successfully fixed this bug were computer scientists, it illustrates the importance of

not only supporting end users, but all individuals who have predispositions for

distraction.
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The next two bugs of interest were the generate pvalues and generate valueofoutlier

commands. Recall, both commands were nearly identical: the generate pvalues command

had the form “generate pvalues = 0 in 1/100” and the generate valueofoutlier command

had the form “generate valueofoutlier = _n in 1/100.” The only differences between the

two commands were that the generate valueofoutlier command had the symbol “_n” in

it—which refers to the current observation, meaning the variable valueofoutlier would

contain the values from 1 to 100 in observations 1 through 100—and the command also

had a comment above it that said “* Generate a variable that contains 1 through 10;”

Each command was supposed to end in “1/10” in order to create the values 1 through 10

and store 10 p-values. Thus the bug in the generate valueofoutlier command should have

been more obvious because of the comment, but more complicated because none of the

participants knew what the symbol “_n” meant. Interestingly, despite the similarity of the

syntax of the two bugs, two thirds of the participants fixed the generate valueofoutlier

command while only a third fixed the generate pvalue command. Furthermore,

individuals who tended to fix the generate valueofoutlier bug tended to fix only this bug,

or either the loop iteration bug or the generate pvalue bug but not both. This result has a

number of interpretations. First, there may have been some participants who did not

understand why what they fixed were bugs, otherwise they would have fixed both.

Another interpretation is that the comment in the generate valueofoutlier bug made fixing

the bug possible without understanding of the syntax. A final interpretation follows from

the nature of the do-file: participants only had to fix one of the two bugs to get the graph

to display correctly, since Stata could not graph missing values. Thus the valueofoutlier

bug may have had a higher probability of being noticed.
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Before we consider the implications of these results, who were the individuals who

successfully fixed these bugs? Participants who fixed the generate valueofoutlier bug

tended to have more math experience, and more positive attitudes towards math, but there

were no other significant distinctions. Possibly, the extra mathematics experience made

the connection between the comment and the command stronger, highlighting the

discrepancy between the two. Differences in participants who fixed the generate pvalue

bug are equally underdetermined: such participants, if psychology majors, tended to have

less positive attitudes towards computers, and if male, had less programming experience.

Such distinctions are hardly useful. What is interesting is that unlike performance on

problem 1, there were no significant differences in intelligence, statistics software

experience, programming experience, or computer experience. This seems to suggest that

debugging the do-file required less skill, and something more in terms of problem solving

skills not captured by the psychological tests used in this study.

This brings us to the problem solving aspects measured for problem 2. Participants

who fixed the generate valueofoutlier bug tended to verbalize their thoughts more

throughout the problem, spent more time inspecting the generate pvalues command,

while using more commands to test syntax. They spent much less time on familiar

commands and more time paying attention to the graph generated by the do-file, which

possibly explains why they successfully found and fixed the bug. They exhibited more

guess and check behavior—likely in trying new values for the observation range in the

command—but performed less cyclic behavior. They also tended to use the problem

specification early on but not later, when they spent more time changing ranges in

commands. To generalize, participants who fixed the generate valueofoutlier bug seemed
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to have some intuition that the problems lie in the generate valueofoutlier and generate

pvalue commands, but did not understand quite what was wrong.

Did participants who fixed the generate pvalue command show the same trends? In

fact, participants successfully fixing this bug tended to spend more time on familiar

commands, more cyclic behavior, and more syntax confusion. However, they still spent

more time attending to the graph produced by the do-file while spending less time

throughout the problem guessing and checking. Thus participants who fixed this bug

differ from participants who fixed the generate valueofoutlier bug in that they seemed to

be more confused about the command. This could be because there was no comment to

guide them to a possible solution. In fact, only half of the participants who solved the

pvalue bug solved the valueofoutlier bug.

The final bug was the inverted axes on the graph produced by the do-file. The graph

command in the do-file was at the bottom of the file and the graph, though it did have

labels, looked much like the curve that participants were expecting. Thus for some

reason, it seemed to be difficult to spot. Participants who were successful at fixing this

problem had higher statistics competency and also tended to fix the observation range in

the generate valueofoutlier bug, likely because the extra values created by the command

became obvious once the graph was inverted. With respect to problem solving, these

participants spent more time inspecting the graph command, ignoring the familiar

commands, and more time inspecting the graph itself. Interestingly, they also tended to

speak much more early in the problem as if considering their approach to debugging.

This is confirmed by the fact that these participants spent more time using graphical user

interfaces and searching for information early in the problem. As the most logical way to
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approach the problem was to inspect the output, it is no wonder that few participants

fixed the for loop iteration bug, which had no consequence on the graph.

Given the diversity of the bugs contained in the short do-file, the backgrounds of

participants who successfully tested and debugged the do-file, and the complex

combinations of bugs that participants solved, we can conclude a number of things about

individual differences, testing, and debugging:

ü The structure of the program and the relationships of the commands in the

program largely determine the success of debugging

ü Programming experience, along with intelligence and statistical competency

played no role in predicting successful debugging

ü Comments and large, complex commands attract attention, and this is

sometimes useful and sometimes not

ü Few individuals inspected the output of the program, but those who did tended

to find the rest of the bugs

Given these observations, it is clear that testing and debugging are not as much of a

science as programming is: no matter what the background and intelligence, there seem

to be numerous strategies that participants employed, all with varying levels of success.

Are There Distinct Categories and Are They Useful?

The earlier discussion focused on using already established categories and measures to

describe successful participants. In such exploratory research, it is also important to

consider whether participants’ interactions with Stata—independent of any

categorizations or measures already established—cluster together into distinct categories
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in their own right, and to determine if such categories have any relationship to these

already established measures and categories.

Distinct Programming Strategies

As reported in the results, there were three types of programming strategies observed

based on the data that was collected about participants’ interaction with Stata on the

programming task. Cluster p1 had the following properties:

ü Less use of examples, problem specifications, and user interfaces

ü Less cyclic behavior, attention to feedback, and guessing and checking

ü Less trouble with syntax and less frustration

This group of participants, because they were successful, obviously knew how to solve

the problem without support from the Stata environment and exhibited far more

appropriate behaviors in the context of the task and environment. Cluster p1 also tended

to have

ü Far more successful on problem 1 as a whole, with most participants

succeeding at each milestone in the problem

ü Mostly computer science and other majors (not psychology)

ü Higher intelligence and more programming, computer, and mathematics

experience

ü More positive attitudes towards computers and mathematics

An appropriate label for this group is programmers, given the strategies they used to

solve problem 1 and their individual characteristics. Cluster p2 had the following

properties:
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ü More use of examples, user interfaces, and specifications

ü More cyclic behavior and attention to feedback; less guessing and checking

ü Less trouble with syntax and slightly more frustration

This group seems to be composed of individuals who were either not very motivated

or confused about how to begin solving the problem. They spent much more time with

information that would not help time, repeated a lot of problem solving strategies despite

the fact they did not help, but on the whole did not exhibit much problem solving. Cluster

p2 tended to have

ü Very limited success on problem 1 as a whole, with most only creating the data

set of 1000 objects

ü Mostly psychology and other majors (not computer science)

ü Lower intelligence and less mathematics and programming experience

ü More negative attitudes towards computers and mathematics.

An appropriate label for this group is lost/unmotivated end users. Cluster p3 had the

following properties:

ü Less use of examples and problem specifications

ü More cyclic behavior, and much more guessing and checking

ü Much more trouble with syntax, more information seeking

ü Much more window management

This group seems to be composed of individuals who were motivated to solve the

problem, search for information, and attempt many solutions; in other words, they

exhibited unconstructive problem solving behavior. Cluster p3 tended to have
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ü Average success on problem 1, relative to the whole sample, with about a third

succeeding on the whole problem

ü Mostly psychology and other majors (not computer science)

ü Equal intelligence to cluster p1, but less programming and mathematics

experience

ü More negative attitudes towards computers and programmers than cluster 1 but

more positive than cluster p2

An appropriate label for this group is lost/motivated end users. In summary, there

tended to be three clear types of participants in this study: users who knew what they

were doing (programmers), users who were lost and unmotivated, and users who were

lost but persistent. Clearly, as these three groups solved problem 1 using different

methods, we must consider a number of questions:

ü Does each group require different support systems in the end-user

environment?

ü If each group requires different support mechanisms, are there ways to detect

these types of users reliably and non-obtrusively?

ü If each group does not required different support mechanisms, what type of

end-user environment can support all groups effectively?

Of course, data that would support all of these questions would describe these three

groups with more detail in order to guide the approach to answering the questions. To

some extent, the distinction of computer scientist and non-computer scientist helps

predict problem-solving strategies, but there are clearly at least two types of end users.
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Distinct Testing and Debugging Strategies

As reported in the results, there were three types of testing and debugging strategies

observed based on the data that was collected about participants’ interaction with Stata on

the testing and debugging task. Cluster d1 had the following properties:

ü More use of examples, and user interfaces, and less use of specifications

ü More attention to familiar commands, and less attention to the generate

pvalues command, the generate valueofoutlier command, and the for loop

command

ü Less attention to feedback from Stata and the graph produced

ü Fewer changes to ranges in commands, fewer changes to comments, less

guessing and checking

ü Sought much more information

This group seemed to be composed of individuals who sought a lot of information, but

payed little attention to the commands in the do-file that were unfamiliar and the graph

produced by the do-file. Possibly these were individuals who lost sight of the original

task—to find the bugs and fix the graph—and become more absorbed in understanding

the language syntax. Cluster d1 tended to have

ü An even mix of psychology, computer science, and other majors

ü More failure than success at the bugs in problem 2, except on the generate

valueofoutlier command.

ü Average programming experience and slightly above average mathematics

experience relative to the sample
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An appropriate label for this group is curious/distracted, given the extent to which

participants ignored the do-file and learned about the environment instead. Cluster d2 had

the following properties:

ü Less use of examples, user interfaces, but more use of specifications

ü More attention to the generate pvalues command, average attention to the

generate valueofoutlier command and less attention to the graph command and

for loop command

ü More attention to the graph produced

ü Less use of commands (and thus less syntax confusion and less attention to

Stata), more changes to comments, and slightly less changes to ranges and

words

ü Sought less information

This group seemed to be more focused on the problem than cluster d2 given thought

they sought less information, referenced the problem specification more, and attended to

the two most problematic bugs (the pvalue and valueofoutilier commands) as well as the

graph. This group tended to have

ü More psychology and other majors than computer scientists

ü Individuals who fixed either the generate pvalue or generate valueofoutlier

bug, and sometimes the inverted axes bug

ü Much less programming experience, and slightly lower attitudes towards

computers
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An appropriate label for this group is hesitant/focused given that the group seemed to

want to solve the problem, stayed focused, but was not very adventurous or creative.

Cluster 3, as compared to clusters d1 and d2 had the following properties:

ü Slightly more use of examples, less use of user interfaces, and less use of

specifications

ü Much more attention to the generate pvalues, generate valueofoutlier, for loop,

and graph command bugs than familiar commands

ü More attention to the graph produced and much more attention to feedback

from Stata

ü Much more changes of words and ranges in commands

ü Much more use of commands (and thus more syntax confusion)

ü More guess and check behavior, and much more cyclic behavior

ü Sought less information

Cluster d3 seems largely different from clusters d1 and d2 in that every command was

inspected and seemingly in more detail given that errors from Stata were noticed and the

graph checked more. Cluster d3 participants also seemed to try many different possible

solutions and use commands in Stata to test them. Cluster d3 tended to have

ü Mostly computer science and other majors

ü Individuals who fixed the generate valueofoutlier bug and sometimes the

inverted axes bug

ü Much higher mathematics and programming experience

ü More positive attitudes towards the experiment
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Given the enthusiasm and energy cluster d3 seemed to have, despite the group’s lack

of universal success at finding bugs in problem 2, an appropriate label for this group is

active/focused.

With regard to testing and debugging strategies, there tended to be three clear types of

participants: curious and distracted users, hesitant and focused users, and active and

focused users. None of the groups were truly more successful than the other, except on

the generate valueofoutlier command. Curiously, the curious and distracted users were

more successful at spotting this bug. Furthermore, when it came to testing and debugging

strategies, there were clear differences in programming experience but no clear

differences in success. These results raise some important questions:

ü Is there something about testing and debugging that makes it universally

difficult, despite the testing and debugging strategy?

ü Do the different groups require different testing and debugging support?

ü Are there ways to detect these types of users reliability and non-obtrusively?

ü Why did the computer scientists in the sample not more successful? Are the

reasons the same for the rest of the sample?

Relationships Among Programming, Testing, and Debugging Strategies

The final topic of discussion regards whether or not there is a relationship between

programming, testing, and debugging strategies. The results presented earlier in Table 25

showed that for problem 1 clusters,

ü Cluster p1 (programmers) participants were equally distributed among

problem 2 clusters (curious/distracted, hesitant/focused, active/focused)
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ü Cluster p2 (lost/unmotivated) participants tended to belong mostly to cluster d2

(hesitant/focused)

ü Cluster p3 (lost/motivated) participants tended to belong mostly to cluster d2

(hesitant/focused)

There are a number of interesting implications from these results. The programmers of

cluster p1 tended to have very uniform behavior in problem 1, but show much diversity

when posed with a testing and debugging problem. This is possibly because computer

science majors are rarely trained in testing and debugging at a university, but rather in

industry, which explains the variation. It is also curious that the lost and unmotivated

participants of problem 1 tended to become the hesitant and focused participants of

problem 2. Possibly these individuals found the testing and debugging problem more

approachable because there was no restriction on the sequence of events that had to be

performed for success. For the same reason, the lost and motivated participants of

problem 1 may have found problem 2 easier to approach. Finally, it is interesting that

only the programmers of problem 1 were found in the active/focused group of problem 2.

Possibly, the success the programmers found in problem 1 gave them more knowledge

necessary to be engaged in problem 2; furthermore, the background characteristics of the

programmers group would predict the type of behavior seen in the active/focused group.

Limitations

There are some obvious limitations to this study, given its exploratory nature.

Seventy-five participants is a relatively small number to ensure the validity of the
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clustering done to identify end-users’ strategies, and also limited the detail with which

each cluster could be described.

Furthermore, the domain of statistics and the programming environment of Stata are

hardly representative of all domains and end-user programming languages. Some of the

findings presented here may not hold in other domains and environments, particularly

because the strategies found were completely dependent on measurements of

participants’ interactions with the Stata programming environment. For example, if a

visual programming language had been used instead, there would have been no measures

of the number of commands entered, which would have changed the findings

dramatically. At the most, since participants’ backgrounds in statistics did not seem to

play a factor in participants’ success or strategies, these results may generalize to other

textual programming languages with similar levels of feedback and environmental

support for programming, testing, and debugging.

The sample came completely from Oregon State University undergraduates, which

threatens the external validity of the findings. Samples that showed greater variation in

statistics knowledge may have revealed a significant influence on performance and

strategy, suggesting that domain knowledge is important in determining strategies, but

this could not be shown here. Another significant problem is that the majority of end-user

programmers are not college students, but rather, individuals employed at businesses.

Such individuals may have developed different strategies for dealing with computers,

may have had more or less computer experience, and may have shown more anxiety

towards computer use than the younger sample used in this study. Each of these may

have affected the findings. Furthermore, the sample had a significant gender bias: there
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were few female computer scientists and few male psychologists, which makes it difficult

to conclude anything about gender differences. Finally, many of the participants also had

very little experience with English, with suggests that their understanding of the tutorial,

of the online help in Stata, and performance on the measures of intelligence may have all

been biased.

There may have also been a significant source of noise from the coding and extraction

phases. Vigilance on the part of the coders may have varied depending on their personal

factors, which means that some actions may not have been captured accurately or at all.

Furthermore, the limited tests for inter-rater reliability may threaten the validity of up to

sixteen of the participant’s data. In the data extraction process, the regular expressions

used to define metrics may have under- or over-matched the actions in the transcripts,

which could have significantly influenced the results. As stated before, each metric was

run and the actions that the data extraction script was matching were inspected.

Nevertheless, there was room for error.

The reliability of the statistics test used is also another significant problem. The results

on the test showed that the sample had poor statistical knowledge in general, but poor

reliability also suggests that the test is a poor measure of statistical knowledge. This

limited our abilities to analyze the influences of statistical knowledge on performance and

strategies for programming, testing, and debugging.

Finally, the two problems used to explore participant’s strategies both seemed to have

very low ceilings; in other words, end users all had difficulty completing the problems

successfully, suggesting that either the statistical knowledge required to complete the

problems was too high or the Stata programming environment was too difficult to use.
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Even still, computer scientists in the sample had poor statistical knowledge yet still

succeeded, suggesting that statistics knowledge was not the limiting factor.
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Implications, Future Directions, and Conclusions

This study intended to investigate two areas of end-user programming: the influence

of individual differences on success and whether or not groups of programming, testing,

and debugging style would naturally cluster together and provide predictive value.

Eighty-six participants, from backgrounds of computer science, psychology, engineering

and humanities completed at battery of psychological tests and attempted to complete a

programming task and a testing and debugging task in Stata, a statistical programming

environment intended for non-computer scientists.

There were a number of significant findings that suggest important directions in future

end-user programming research. For example, the best predictor of successful

programming was higher intelligence and the use of problem solving strategies that were

appropriate to the environment and task. The significant finding, however, is that not all

users are of high intelligence, nor do they know what strategies are appropriate to the

environment and task. In fact, many users may not even have a strategy. We care far less

about the successful programmers group and more about the users fell into the two

largely unsuccessful groups in this study: lost/unmotivated and lost/motivated end users.

With regards to end-user programming, there are some basic questions that still need to

be answered about these individuals:

RQ1. Can these two groups be reliably detected?

RQ2. Are these distinctions robust across different end-user programming

environments?
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RQ3. Do these two groups require different environmental support than the

programmers group and than each other?

Although there are far more questions that can be considered from the results

presented in this paper, these seem to be the most compelling, given the wide range of

end-user programming environments that have attempted to alleviate the difficulty of

programming. If these groups can be detected and modeled, we may be able to determine

whether or not the groups need different types of environmental support and what types

in specific may help the different groups succeed. One promising method of modeling

these users problem-solving strategies would be to construct search spaces in the form of

directed (and certainly cyclic) graphs, much like those described in the discussion. Using

the data from this study, the complete search space for problem 1 could be illustrated and

the complete path for each participant described in detail. Constructing this type of data

would allow for deeper analyses of the rich data set gathered in this study.

Given the amount of work left to do to understand end-user programming, considering

the problem of end-user testing and debugging seems a bit hasty. Nevertheless, there are

some obvious next steps given the findings of this study. As noted before, the structure of

the program and the relationships of the commands in the program seemed to be the

gatekeepers to success, rather than the users themselves—this is supported by the fact

that programming experience and intelligence played no role in predicting successful

debugging of the do-file given to participants. Rather, we saw different factors affecting

success: the comment in the generate valueofoutlier command attracted much attention,

and deservedly so; however, the complexity of the for-loop attracted just as much, yet

careful inspection yielded no results. Furthermore, a seemingly obvious finding was that
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those who tended to inspect the output of the program first found more bugs—yet few

did. Even more compelling is that trained programmers, the computer scientists in the

study, showed a wide array of testing and debugging strategies, and the same ones as

psychology and other majors at that. Some were curious and distracted, trying to

understand the commands and investigating some tangent of the problem forgetting their

task. Others were more focused, but tended to make few attempts at solving the problem.

Others were focused, but acted as if in sandbox, changing everything, and absorbing

information. None of these groups were more successful than the other. Thus testing and

debugging seems less of an end-user issue and more of a general problem in computer

science. This leads us to some obvious first questions:

RQ4. Can these three groups be reliably detected?

RQ5. Are these groups robust across all end-user programming environments?

RQ6. Do these groups require different environmental support for testing and

debugging, and to what degree?

Much like the method proposed for studying programming, directed graphs

representing the search space for testing and debugging the file could be constructed and

the paths that each participant took generated. This data would shed more light on the

sequences of behavior that participants exhibited, rather than just counts. It would also

shed light on the findings that the lost/unmotivated and lost/motivated participants tended

to be only hesitant/focused participants for testing and debugging, highlighting the subtle

differences between this group and the wide variety of strategies employed by the

programmers of problem 1.
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In summary, though the data collected in this study was limited to a single end-user

programming environment, there are a number of questions that can be answered by

deeper analysis. Hopefully, such analysis will answer some of the basic questions

regarding end-user programming, testing, and debugging, so that leveraging theories and

tools may be created.
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