
Journal ofVisual Languages and Computing (2002) 13, 517^544
doi:10.1006/S1045-926X(02)00042-3 available online at http://www.idealibrary.com on

A

1

Improving the Design of Visual Programming Language
ExperimentsUsing CognitiveWalkthroughs$

. J.KOw,M.M. BURNETTw,T. R.G.GREENz, K. J. ROTHERMELw andC. R. COOKw

wDepartment of Computer Science, Oregon State University, Corvallis, OR 97331, U.S.A.E-mail:burnett@
cs.orst.edu and zComputer-Based Learning Unit, University of Leeds, Leeds LS29JT,U.K.

Received 23 January 2001; accepted 6 June 2002

Visual programming languages aim to promote usability, but their usability is rarely
examined scienti¢cally.One reason is the di⁄cultyof designing successful experimen-
tal evaluations.We propose the CognitiveWalkthrough (CW) as an aid to improve ex-
periments’ designs. The CW is an HCI technique designed for evaluating interfaces.
The technique focuses on the potential di⁄culties of novice users and is therefore
particularly suited for evaluating programming situations that arise invisual program-
ming language experiments performed in laboratory settings.We ¢rst describe an em-
pirical study performedwithout bene¢t of awalkthrough and showhow the studywas
improved by a series of walkthroughs.We also describe two other empirical studies and
how theywere improved with the help of the CW.We found the method to be quick to
use, e¡ective at improving the experimental design, and usable by non-specialists.
r 2002 Elsevier Science Ltd. All rights reserved.
1. Introduction

THE PROFESSED raison d’eŒ tre of most visual programming languages (VPLs) is usability [1].
Yet until recently it has been regrettably rare to present any but the most cursory test of
whether aVPL is usable. One reason, we believe, is the di⁄culty of designing well-con-
trolled experiments involvingVPLs.This paper describes an approach to helping with
this task of experimental design.

Designing a validVPL experiment is di⁄cult, not so much because advanced knowl-
edge of experiment design is needed, but because the results can easily be disturbed by
extraneous problems. For example, participants might not understand instructions, or
they might not be able ¢nd the right button to press.These factors can create so much
experimental noise that even a well-designedVPL being used in a well-designed envir-
onment can appear to be quite poor.Technically, such randomperturbations come under
the heading of uncontrolled situational variables, and in this context, they pertain to the varia-
bility in the way participants can reason about theVPLs being studied.
$An earlier version of portions of this paper appeared in [12].

045-926X/02/$-see front matterr 2002 Elsevier Science Ltd. All rights reserved.

A. J. KOETAL.518
The scale and pervasiveness of this problem is shown by Gurka and Citrin’s review [2]
of empirical studies of the e¡ectiveness of algorithm animation. They list six variables
that are often uncontrolled. Although some of these variables are speci¢c to algorithm
animation, such as animation quality and the di⁄cultyof the algorithms being animated,
the implication toVPL experiments is clear: designing valid experiments involving the
combination of humans, interfaces, and programming logic is di⁄cult.

Howcan designers of VPL experiments detect potential uncontrolled situational vari-
ables at an early stage, before performing the actual experiments? Often experimenters
usemethods such as pilots and protocol analyses but these must be done late in the design
process.To be more viable, a method would be usable much earlier, and would therefore
be less resource intensive.There is a parallel here to evaluating a design for a user inter-
face, where as many usability problems as possible should be detected and eliminated
before performing actual user testing. This paper draws on that parallel by using the
HCI technique of the Cognitive Walkthrough (CW) [3] as a means to identify uncon-
trolled variables in experiments’designs.

The CW is familiar in HCI as a tool to improve interface usability. But improving an
experiment’s design is not the same as improving an interface. Interface details are only part of
the issue. For example, in an experiment, a tutorial must be designed to prepare the par-
ticipants for the experimental task. If the tutorial does not cover exactly the right skills for
the experimental task, or if the tutorial is not e¡ective due to any number of pedagogical
pitfalls, the experiment will not correctly measure the variables the experimenters are
trying to measure because the participants will not have mastered the assumed set of
skills. Other issues include the task design and the interplay between interface details
and the realities of research systems.

In this paper,we report on threeVPL experiments improvedby theCWand investigate
four research questions along the way:

Research Question 1: Is the CWe¡ective in improving aVPL experiment?
Research Question 2: Does the CWpossess advantages over traditional approaches to

improving experiments?
Research Question 3: Is an HCI specialist necessary for e¡ective use?
Research Question 4:What general lessons can be learned about experiment design?

2. The CognitiveWalkthrough

2.1. Background

The CognitiveWalkthrough [3] was primarily designed as a ‘desktop’evaluation tool for
usability engineering, aimed at predicting potential di⁄culties for novice users. Its
strengths are that it requires neither human subjects nor a fully functioning model of
the product, and that it rests on an acceptable cognitive model of user activity during
the phase of exploratory learning.That model describes four phases of activity:

* the user sets a goal to be accomplished,
* the user searches the interface for available actions,
* the user selects an action that seems likely to make progress toward the goal, and

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 519
* the user performs the action and checks to see whether feedback indicates that pro-
gress is being made towards the goal.

To perform a‘classic’ CW, ¢rst the evaluation team de¢nes the expected users and esti-
mates their prior knowledge (userswho comewith knowledge of many related or similar
interfaces will have fewer problems than will those who come with little knowledge).
Next the team prepares a detailed description of one or more tasks, and a list of action
steps comprising the optimal sequence of execution.

During the actual walkthrough the team works through each step of the execution
sequence, following a printed form to answer the following questions.

* Will the user form the right goal?
* Is an appropriate action readily available?
* Will the user ¢nd that action?
* Will the user know that progress has been made?

The team notes steps where the user may not take the correct action. At the end of the
walkthrough, they will have identi¢ed a set of problems associated with the system.

As ¢rst proposed [4], and considered solely in the context of evaluating interfaces, the
CW proved reasonably successful. Subsequent revisions and re¢nements to the original
CWprocedure have addressed criticisms about the di⁄culty of determining the required
level of granularity, the tightly speci¢ed procedure, and the problem of choosing appro-
priate tasks. Rieman, Franzke, and Redmiles presented a revised procedure for the walk-
through, involving small teams, rotation of walkthrough duties, and a slackening of
walkthrough formuse once it is familiar [5]. Re¢ning the method further, Sears andHess
reported on the e¡ect of taskdescription detail on evaluator performance, noting that the
granularityofdescription results in di¡erent types of problems discovered via theCW[6].
This result seemingly patched up many of the early complaints that the walkthrough
provided no criteria for selecting task descriptions.

Extending past the CW’s traditional use, Bell et al. showed that it could be adapted to
evaluating the design for a programming language, which supplies evidence that it may
be adaptable beyond its original domain of user interfaces [7].TheCWhas also beenused
by Hundhausen and Douglas to evaluate a programming environment to be used in an
empirical study [8], and by Lewis etal. in the design of educational activities [9]. Closest to
our work is that by Stasko etal., who used a CWafter an experiment, to discover why their
experiment failed to yield a signi¢cant result [10].Their CW proved successful in unco-
vering several design £aws in their experiment.

2.2. Relevance to Empirical Studies of VPLs

AlthoughHCI evaluationmethods have been developed to evaluate the usabilityof inter-
faces, no studies, to our knowledge, have reported using the CWmethod or any other
usability evaluation method to assist in designing an experiment.To address the problem of
eliminating situational uncontrolled variables fromVPL experiments, why choose the
CWmethod over some other evaluation method?

Surveying the development of evaluationmethods inHCI in general, it is clear that the
¢eld has not yet settled down, and no obvious choice emerges of an evaluation method
that could be applied to experimental designs.There are a few examples of applying HCI

A. J. KOETAL.520
techniques directly to the design of VPLs and their environments: Green and Petre ap-
plied the Cognitive Dimensions framework [11,13], andWilliams and Buehler applied the
Keystroke Level Model [14,15]. Both these approaches target experienced users who have
found out how to work the system, rather than novices meeting the system for the ¢rst
time, and are therefore inappropriate for evaluating an experimental situation.

Quite a few HCI evaluation methods have been proposed. Attempts to compare the
e⁄cacy of di¡erent methods [16,17] have been partially vitiated by weaknesses in the de-
sign of the comparisons [18].The choice of which method to explore for evaluating ex-
periments needed therefore to be determined by apparent rather than demonstrated
suitability.The CWappeared particularly suitable to evaluateVPL experiments in labora-
tory settings for two reasons:

* the CW is intended for users new to an interface, and
* the CW has potential for use by non-specialists.

2.2.1. Focus on UsersNewto a System

When aVPL is to be evaluated in a laboratory setting, we can be sure that the system is
new to its users.We can also be sure that they will not have adequate time to progress to
being experienced users. Thus, HCI methods that target experienced users, such as
GOMS [14] are inappropriate here.

VPLs include user interfaces; the CWmethod focuses on users who are new to a given
interface and who are trying to ¢gure out how to use it. It does not focus on speed and
accuracy, but on reasoning.The tasks given toVPL experiment participants are program-
ming-related, which emphasize reasoning.These factors make the CWparticularly suita-
ble for evaluations of people’s ability to perform programming tasks in an experiment.
Further, the creators of the CWapproach have themselves previously successfully applied
it to aVPL [7], although they ruefully noted some of the things they missed [19].

Other evaluative methods derived from HCI typically operate at a more surface level,
paying less attention to reasoning and knowledge.Heuristic Evaluation [20], for example,
addresses a very mixed bag of questions, none of which deal with the participants’ prior
knowledge. In a very di¡erent style, but equally much concerned with surface issues, the
Keystroke Level Model [21] is good for predicting how fast a user can perform a well-
learned routine task, but has no relevance to non-routine tasks with a high element of
reasoning.

2.2.2. Potential forNon-specialist Use

The CWmethod also shows potential for being usable bycomputer scientists without the
assistance of an HCI or cognitive science expert. This is in contrast to many HCI ap-
proaches, which explicitly assume HCI or cognitive science expertise (e.g., GOMS [14],
Task Knowledge Structures [22], and Interaction Framework [23]). Neilsen’s Heuristic
Evaluation is an exception, but aswehave seen, that approach is not relevant to our needs.

However, evidence for non-specialist usability is scanty and mixed. On one hand
Wharton et al., after evaluating three user interfaces, identi¢ed a few important weak-
nesses of the CW process, and claimed ‘it will be di⁄cult to eliminate the need for
a cognitive science background both to make sense and to take full advantage of the
technique’ [24]. On the other hand, John and Packer reported a case study in which ‘the

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 521
CognitiveWalkthrough evaluation technique [was] learnable and usable for a computer
designer with little psychological or HCI training’ [25]. Their single-user case study is
encouragingbutdata about a single user can hardlybe considered a de¢nitive demonstra-
tion. In this paper, further data supporting their ¢ndings are supplied.

3. Experiments 1A and 1B: Evaluations of aVisual Testing Methodology

Our ¢rst experience using the CWto improve aVPL experimentdesignwasmotivated by
counterintuitive results of a previous experimental evaluation of the e¡ectiveness of a
visual testing methodology (described below). In this section we describe the ‘before’
experiment (Experiment 1A), discuss our use of the CW to re¢ne it, and describe the
re¢ned ‘after’ experiment (Experiment 1B). Lastly we compare the outcomes of the ‘be-
fore’and ‘after’experiments.

3.1. TheVisualTestingMethodology

The experiments described below evaluate a visual testing methodology, applicable to
commercial spreadsheet systems as well as someVPLs [26, 27].The methodology incre-
mentally analyzes, behind the scenes, the relationships among spreadsheet cells and how
thoroughly tested each relationship is. It provides immediate visual feedback about the
‘testedness’of the spreadsheet, which may change as the user edits formulas.We term this
methodology the ‘WhatYou See IsWhatYouTest’ (WYSIWYT) methodology.The ex-
perimental question to be answered was whether spreadsheet users can successfully
employ this methodology.

Part of theWYSIWYTmethodology is a tight integration with its hostVPL. Our ex-
periments used the researchVPL Forms/3 [28, 29]. In Forms/3, ordinary formulas, con-
tained inmovable cells, can be used for both numeric andgraphical computations. Figure
1 contains a program (spreadsheet), one of the two used in the experiments.The WYSI-
WYT testing methodology can be seen in several of the features of Figure 1. The ¢ne
granularity of integration can be seen in the ¢gure: there is no separate window for test-
ing, no separate testing mode, etc. Instead, all testing information is combined with the
display of the program and the values. In the ¢gure, red cell borders (shown as light gray
in this black-and-white paper) indicate that a cell is untested, blue cell borders (black in
this paper) indicate that a cell is fully tested, and purple cell borders indicate partial ‘test-
edness’. Users record decisions that values are correct by checking o¡ the checkboxes in
the upper right corner of cells (some checkboxes contain ?’s in the ¢gure). Users can also
invoke other visual devices, such as data£ow arrows (between subexpressions or entire
cells) that follow the same ‘testedness’colors.

3.2. Experiment 1A: the ‘Before’ WYSIWYT Study

The aim of the ‘before’ study was to determine whether, by using theWYSIWYT tech-
nology, participantswould produce better-tested spreadsheets.The participants, students
from three computer science courses, were randomly assigned to three conditions.The
AdHocGroup did not have access to theWYSIWYT testing methodology.The other two
groups, theWYSIWYT-No-TrainingGroup and theWYSIWYT-With-TrainingGroup, didhave

Figure 1. A Forms/3 spreadsheet that calculates a student’s grade. Cell relation arrows in and out of
formulas are colored in the same way borders are colored: from red (untested) to blue (tested), light gray

to black in this paper

A. J. KOETAL.522
access to theWYSIWYTmethodology.The experiment started with a 25-min interactive
tutorial of Forms/3, in which each participant actively participated by working with the
example spreadsheets on their workstations as instructed by the lecturer. The tutorial
introduced all participants to language features and environmental features. BothWYSI-
WYT groups’ tutorials also included instruction on the testing interface, and the
With-Training Group received additional instruction on the underlying testing theory.
Following the tutorial, all participants were given two spreadsheet problems to test,
one of which is shown in Figure 1. Problem order was counterbalanced.

The statistical outcomes of this study were mixed. One major hypothesis had signi¢-
cant results, and some minor analyses showed or came close to showing signi¢cance, but
most hypotheses lacked signi¢cant results.We felt a plausible reason for this was because
of various uncontrolled situational variableswe had not identi¢ed before the experiment.
In order to re¢ne the experiment, we used three CWs to help identify the situational
variables we had not controlled.

3.3. A Walkthrough for Common Testing Tasks

Our team, consisting of 10 members, did not have previous experience using the CW.
Thus one of the authors (Green), an HCI expert, gave a brief explanation of the ideas
behind the CW, followed by a presentation of a few example walkthroughs to teach the
speci¢cs of the technique.This introduction to the CW lasted about 90minutes.

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 523
In order to gather relevant information for Research Question 3, the HCI expert mon-
itored the ¢rst walkthrough. His functions were (1) to answer questions about the CW
that came up along the way, and (2) to observe whether the team seemed to be able to use
the CW technique e¡ectively. A few members of the team were selected to be recorders,
and a single member of the team was chosen to be the facilitator (recorder and facilitator
being roles de¢ned in the CW process).

First, the 10 members of the team ¢lled out the setup form required by the CW, which
is presented in Figure 2. The task description was the same as the work to be done in the
experiment: the participant had to test the spreadsheet.The action sequence was a bit more
di⁄cult to construct; whatwas an optimal sequence of atomic actions for completing the
task? In the literature, the action sequence has been criticized as di⁄cult to prepare and
evaluate, but Sears and Hess provide limited empirical guidelines for preparing this se-
quence of actions [6], and Rieman et al. [5] provide general rules for choosing tasks and
constructing action sequences. In this experiment, participants must open the formula,
then change the formula, and then validate the output, and these are expressed in the
‘Action Sequence’ in the ¢gure.

Next, looking ahead to future studies, we chose ouranticipated users to be endusers, even
though our actual participants would initially be computer science students.To keep our
thinking about end users concrete, we chose a real person as a model, whose experience
and skills were known to us.We picked a department employee experienced with spread-
sheets and formulas as a representative end user and used that person as a model for
‘Martha’, a ¢ctional participant. Finally, the team explicitly set the user’s initial goals: to test
the spreadsheet.

After completing the startup form, the team began on action (1),‘double-click on the
formula tab’ (see Figure 3). First, the CW poses the question,‘What are the current goals
for this point in the interaction?’ Since the ¢nal goal is to validate a cell, a good goal for
Cognitive Walkthrough Form: Start up sheet.
Experiment: WYSIWYT experiment
Task: Validate the output corresponding to a set of inputs on the Grades spreadsheet

Task Description. Describe the task from the point of view of the first time user. Include any special assumptions about the state of the system assumed
when the user begins to work.

The task is to test the spreadsheet (this is what they‘ll be told). The system will be in a state such that someone could immediately start testing.

Action Sequence. Make a numbered list of the atomic actions that the user should perform to accomplish this task.

The optimal sequence of actions: Change an assignment grade to a different value by (1) double-clicking on the formula tab, (2) changing the
window focus, (3) entering a value, and (4) accepting, (5) checking the final output box (hopefully the user will choose the “final grade” cell), and
(6) repeat for different inputs.

Anticipated Users. Briefly describe the class of users who will use this system. Note what experience they are expected to have with systems similar to
this one, or with earlier versions of this system.

People who have experience with spreadsheet basics, but limited experience inventing spreadsheet formulas. They should have basic algebra skills,
and will have gone through the oral tutorial, but will not have had other Forms/3 training.

User‘s Initial Goals. List the goals the user is likely to form when starting the task. If there are likely goal structures list them.

We think it’s going to be “test the spreadsheet,” rather than something more concrete like “change an input value.”

Figure 2. A CognitiveWalkthrough startup sheet. (The CognitiveWalkthrough forms portrayed in this
paper are slight revisions of what Polson etal. presented [3].We modi¢ed them in the presence of the HCI
expert by removing the questions regarding the percentage of users likely to commit an error, which the
HCI expert advised were not crucial.) Italicized text represents a summary of the notes the evaluators took

during the walkthrough

Cognitive Walkthrough Form: A Single Step
Task: Double click on the formula tab
Action #: 1

1. Goal Structure for this step
1.1 Correct Goals. What are the current goals for this point in the interaction?

Change the formula of a cell.

1.2 Mismatch in likely goals Check each goal in this structure against your analysis at the end of the previous step. Will all users have dropped it or
failed to form it? Are there unwanted goals that will be formed or retained by some users?

Since this is the first step, there is no previous step.

Figure 3. The ¢rst two questions (and answers) of the form for the ¢rst action in Experiment 1B’s ¢rst
CognitiveWalkthrough

A. J. KOETAL.524
Martha would be to change the formula of a cell; a group member who had been given
responsibility for recording the CWrecorded this.The next question requires examina-
tion of whether this ‘good’goal is likely, asking if there might be a mismatch in the in-
tended goals and the actual goals of the participant. Since at this point, Martha had
(hypothetically) just started the experiment, a team member recorded ‘no’.The facilitator
(the member of the group responsible for leading the CS) directed the group through the
whole set of questions for action (1), and then proceeded to answer the same set of ques-
tions on the rest of the actions.The CWdetails on these actions are given in Appendix A.

By the time the set of questions hadbeen answered for each of the six actions presented
in Figure 2, the team had identi¢ed a set of potentially uncontrolled variables, which are
listed inTable 1.We identi¢ed four types of situational variables in the experiment:

* Problem Design:These were aspects of the testing problems used in the experiment
that could have caused participants to puzzle about elements unrelated to the WYSI-
WYTmethodology.

* Tutorial Design: Many of the assumptions we made about the audience in the CW
setup rested upon the tutorial’s coverage of the necessarymaterial and the participants’
presumed mastery of the introductory tutorial material.

* Testing-Related User Interface:The user interface part of theWYSIWYT methodol-
ogy needed improvements to make the action choices clear to the participants and
future users. This subset of issues is approximately the same subset that would have
been identi¢ed by a classic use of the CWfor evaluating the user interface component
of the methodology.

* Unrelated User Interface Distracters: Previous evaluations of the non-testing part of
the user interface were never done in the context of testing tasks. Since our ¢rst CW
focused on our participants’ability to do the task (test this spreadsheet), it turned up
ways this mature interface could distract participant’s attention away from testing,
leading to more uncontrolled variables.

Some of the Problem Design issues can be seen in Figure 1. Note that each issue in-
troduces distractions: the ErrorsExist? cell in the upper-left contains extensively nested
parentheses, requiring participants to expend extra energyon parsing; cellLetterGrade on
the right exhibits several nested conditionals, requiring participants to focus on the £ow
of logic; and cells min, min1, and min2, contain conditionals that would normally be
handled by a minimum operator in most spreadsheet systems. Since the redesigned study
would ¢rst be administered on computer science students, who are familiar with such

Table 1. Speci¢c issues identi¢ed during our ¢rst walkthrough

Issue Potential solution

ProblemDesign issues
Nested ‘if’conditionals might confuse

participants.
Alter the problems so that nested conditionals are

not required.
Overabundant nested parentheses might

confuse participants.
Change the parsing engine to allow for fewer

parentheses or else alter the problem formulas.
‘Min’and ‘max’operators are absent,

introducing additional ‘if’conditionals.
Implement ‘min’and ‘max’operators or design

problems that do not need them.
Indentation is often lacking, reducing

readability.
Indent cell formulas in a consistent and readable

manner.

Tutorial Design issues
Length of tutorial may be too long to hold

the participants’attention, thereby
invalidating our assumption about what
the participants know.

Eliminate unnecessary details and integratemethodology into
the explanation oftestfeedback, for reduction of length.
Eliminate theWith-Training Group and therefore the
training section ofthe tutorial.*

Absorption of tutorial material may not
be complete because of lack of
participant practice.

Attemptto balancethepracticeperiod timeforall groupsafter
the tutorial and before theproblems. (Theprevious experi-
ment provided a longerpracticeperiod for theAdHoc
than theWYSIWYT groups, to equalize the treatment
length.)

Testing-Related User Interface issues
While there is signi¢cant feedback when

users validate a set of inputs, there is
no feedback indicating long-term
progress.

Implementa ‘testedness’indicator, showing thepercentage that
the user has tested a spreadsheet.

Participants may not be able to deter-
mine what ranges of inputs to try
in order to test di¡erent parts of
the program.

Show cell relation arrows in the background of
the spreadsheet.*

Participants do not have a way to undo
validations in the event that they want
to repeat validations or compare
them to other options.

Implementan undo feature.*

Unrelated User Interface issues
Cell formula tabs do not suggest the

action ‘edit this cell’s formula.’
Bring up the formula edit window whenevera cell is selected.

The formula edit window contains
labeling problems with associating
goals to appropriate actions.

Add instructions atthe top ofthe formula edit window,
describing to the user whataction is required next in order
to change the formula.

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 525

Editing a formula contains an ‘and-then’
structure, suggesting that participants
may forget to click the accept button.

Add a reminder the top ofthe formula edit window once a
formula is entered in the ¢eld.

Formula edit windows can get lost
behind other windows.

Attach the formula edit windowto the bottom ofthemain
spreadsheet window.

The system generates fractions in ratio
format, which can be misinterpreted
as bugs.

Change the format offractional outputto decimal format.

The system is often slow to respond,
due to multiple client applications
on one server and frequent garbage
collection.

Reduce the number of clientapplications per serverand
implement better garbage collection timing.

Note: Italicized text represents changes that were made as a result. Solutions marked with an asterisk
(*) indicate solutions that were discussed before the CWwas done, but were also revealed by the CW.

Table 1. (continued)

Issue Potential solution

A. J. KOETAL.526
complexities, Problem Design changes were not made for Experiment 1B. However,
these changes were incorporated in designing Experiment 2, because that experiment’s
participants were end users.

3.4. AWalkthrough for the ‘?’

With the results of the ¢rst CW, one of the signi¢cant changeswe decided tomakewas the
addition of a ‘testing undo’ feature, allowing participants not only to check but also to
uncheck any cell. In the ¢rst walkthrough, we had discussed three cases where an undo
would be necessary: a participant accidentally checks a cell, a participant does not notice
what changed on the screen after a check and wants to see it again, or a participant wants
to see the testedness of a di¡erent set of checks and removes checks in a di¡erent order
than theywere originally placed.While the proposed solutionwas straightforward in the
¢rst two cases, it was less clear in the third: undoing part of a set of checksmayhave made
some blanks or ‘?’ fail to reappear exactly as before, due to multiple checkmarks the user
had placed providing duplicate coverage of some cells.

Worried about this inconsistency confusing the participants, therefore confounding
the statistics, we performed a CWon this speci¢c task in order to discover whether there
was a quick solution, or whether a solution was required at all. A portion of this walk-
through is presented in Figure 4.

The walkthrough revealed that participants could indeed vary in reasoning about the
third case, when it arose. However, we became convinced from the CW that few partici-
pants would encounter the situation because the tutorial did not encourage testing stra-
tegies leading to that case.The CWdid, however, lead to a discussion of testing strategies
that the tutorial did encourage, which revealed that therewas novisual mechanism in the
WYSIWYTinterface thatwould suggest to participants a reasonable testing action to take
next.

3. Modification of Goal Structure, Assuming the Correct Action has Been Taken
3.1 Quit or Backup. Will users see that they have made progress? What will indicate this?

The participants will see a change in cell border colors, a checkmark will appear, and arrow colors, if displayed, will also change.

3.2 Accomplished Goals. List all current goals that have been accomplished. Is it obvious that each has been accomplished?
The current goal of “check of the output cell” has been accomplished.

3.3 Incomplete Goals That Look Accomplished. Are there any current goals that have not been accomplished, but might appear to have been?
Since another goal is to test the whole spreadsheet, but the participant has received feedback, they may think that they’ve tested enough. Do we
need some sort of indicator?

3.4 “And-Then” Structures. Is there an “And-Then” structure and does one of its sub-goals appear to be complete? How many users may
prematurely terminate?

No, they just have to click.

3.5 New goals in response to prompts. Does the system response contain a prompt or cue that suggests any new goals?
If at this point the participant has the cells on the spreadsheet anything less than all blue, they will likely be cued to test more.

3.6 Other new goals. Are there any other new goals that the user will form given their current goals, the state of the interface, and their background
knowledge?

We can’t think of any.

Figure 4. A portion of the second CW for Experiment 1B. Italicized text represents evaluator responses
and underlined text represents critical observations

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 527
To solve this problem,we used the discussionwe recorded during thewalkthrough for
guidance.The team investigated expanding the existing checkbox testing mechanism in
such away that corresponded to the CWquestions that ¢rst brought the discussion to this
point (see Figure 4). The existing model was a three-state system: a checkmark repre-
sented the participants’ belief that the cell’s value was valid for the current inputs contri-
buting to it,‘?’meant a cell had been previously validated, but not for the current inputs,
and ablankmeant a cell had not ever been previouslyvalidated.The team’s solutionwas to
rearrange the meanings of the three states and incorporate into the new model another
aspect of testing a cell: potential progress. A checkmark’s meaning remained the same,
and an empty box and a question mark would still indicate that a cell has not been vali-
dated for the current inputs. However, an empty box would also indicate that validation
would make no progress in testing, while a question mark would indicate that validation
would make some progress.

While the HCI expert did not participate in this walkthrough, he monitored a portion
of it to be sure that the teamwas executing it in a reasonably correct fashion. His observa-
tion was that, although an HCI expert would have gotten more data from the technique
than the team did without an HCI expert’s participation, their use of it was still appro-
priate and within the boundaries of the CWmethod.

3.5. DidWe Lose Control of SomeVariables?

After making the italicized changes inTable 1 to the interface and other components of
the experiment, a third walkthrough was performed for two reasons. First, the revisions
to the experiment design could have themselves introduced new variables. For example,
during each of the previous CWs, a number of questions on the CWformswere answered
positively under the assumption that the user would retain all of the knowledge con-
tained within the tutorial.Yet, we had since made changes to the tutorial. Second, some
of the changes identi¢ed in the ¢rst CW, which were expected to solve certain problems
with the experimental design, were not implemented (such as data£ow arrows in the
background, and the problem design issues) because they had no practical solution or

Table 2. Comparison between the design of the ‘before’and ‘after’experiments

Variable ‘After’ version compared to‘before’ version

Who: participants
Participant count Before: 61, After: 69.
Participant grouping Before: WYSIWYT-No-Training (23), WYSIWYT-With-

Training (21), Ad Hoc (17).
After:WYSIWYT Group (39),
Ad Hoc Group (30).

Participant pool No change (computer science students in CS 381, CS 411,
CS 511).

What: contentandmaterials
Tutorial

Length Before: about 25min, After: about 20min.
Content Added explanations of new features and removed

explanations about moving and resizing cells.
Examples Two tutorial examples kept, one replaced.

Spreadsheet problems
Grades spreadsheet Boundary condition bug ¢xed.
Clock spreadsheet Graphical clock output altered slightly because it could be

perceived as incorrect.
Both problems Cell in which participants entered reports of bugs

they found was renamed from ‘OutputErrors’ to
‘BugRecorder’.

Handout materials
Forms/3 quick reference sheet Name changed from ‘Forms/3 Notes’ to ‘Forms/3 Quick

Reference Card.’ Notes regarding moving and resizing
cells were removed, and notes regarding new testing
features were added.

Problem descriptions Added descriptions of expected inputs, error messages,
and simpli¢ed the program descriptions.

Questionnaires
Background Added the question ‘is English your native language?’
After ¢rst problem Self-rating question scale was changed from ambiguous

wording like ‘very well’ to an A^F grading scale.
Question asking participants the length of time needed
to complete the task was rephrased with more options.

After second problem Added questions regarding the meaning of the user
interface features in the Forms/3 environment, such as
‘what does a blue arrow mean?’ to get more accurate
information. Rephrased questions about perceived
usefulness of the methodology feedback.

Hardware and software
Hardware Same computers on the front end; backend was

restructured so that there was less load on each server,
meaning faster system response.

A. J. KOETAL.528

Software User interface changes as enumerated inTable 1.

When
Time of day of experiment No change (evening).

Where
Location of experiment No change (computer lab).

Table 2. (continued)

Variable ‘After’ version compared to‘before’ version

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 529
were deemed unnecessary for computer science students. The third walkthrough was
intended to catch any problems that our changes might have introduced and to point
out remaining unsolved problems.

Recalling di⁄culties doing the ¢rst walkthroughwithout having theVPL present, we
performed the third walkthrough while actually performing each action on a computer
running Forms/3, to be surewe had included all the options that would actually be avail-
able to the participants.This is not traditional in the use of CWs for user interfaces, since
they are normally used at a stage of user interface design in which there is no executable
user interface to use. However, it is viable in the design of an experiment involving an
existing system, and we found that doing so added accuracy and completeness to our
responses to the questions.

3.6. Experiment 1B:The ‘After’ WYSIWYT Study

In Experiment 1A, we chose to include the WYSIWYT-With-Training Group because we
were not con¢dent that participants usingWYSIWYTcould be successful without train-
ing in testing theory.TheCW’s emphasis on the user’s priorknowledgemade us con¢dent
that participants did not require such training, which allowed us to simplify the experi-
mental design by abandoning the ‘with training’condition.We could then make a simple
comparison of WYSIWYTversus Ad Hoc, with equal numbers of participants in each
group, instead of the more complicated ratio of 3:2 in the ‘before’experiment.

After the encouraging results of the ¢nal CW, we proceeded to administer the rede-
signed experiment on new participants with two goals: to obtain clearer results about
e¡ectiveness of the WYSIWYT methodology, and to evaluate the bene¢ts we had ob-
tained through the use of the CW.Table 2 compares Experiments 1A and 1B.

3.7. How CanWe KnowWhether the CWsMade a Di¡erence?

The aim of performing a CWon the experimental design was to increase the ‘power’of
the experiment, a term we shall shortly de¢ne. Although techniques exist for determin-
ing power they are not elementary, and our argument is that in the present context, it
is adequate to use the extremely straightforward procedure of comparing patterns of

A. J. KOETAL.530
signi¢cance before and after the redesign inspired by CW, and reach conclusions purely
by inspection. Here is why.

Experiments are run to help us make decisions based on the results we obtain. The
fundamental task of experimental design is to increase the correctness of our decisions.
That is, when populations genuinely di¡er, we want to detect the di¡erence, or more
accurately we want to reject the ‘null hypothesis’of no di¡erence; but when populations
are identical, or do not di¡er to a degree that matters, we wish to conclude that we can
observe no di¡erence, or that ‘we cannot reject the null hypothesis’. In hypothesis testing
the probability of mistakenly concluding that a signi¢cant di¡erence exists, denoted al-
pha, is customarily set at say 5%; this is aType I error.The problem then is to decrease the
probability of mistakenly failing to reject the null hypothesis (i.e. aType II error). This
probability is known as beta.

The powerof a test is de¢ned as1�beta.Thus, the smaller theType II error probability,
the greater the power of the test. Oneway to increase the power of a test is to collect more
observations, and indeed there is a substantial literature on techniques to estimate the
number of observations (or participants) required to achieve a desired level of power.
The more scores that contribute to a statistic, the greater the precision of that statistic as
an estimate of the population parameter. But collecting data costs time.

Alternatively, we can increase the power by eliminating sources of uncontrolled varia-
tion and thus reducing the estimate of error variance.That will increase the precision of
the statistic, in the same way as collecting more scores, which will thereby increase the
power. In algebraic terms, test statistics for the analysis of variance compute a term
F which is the ratio of the variance between means of samples to the variance within
samples:

F ¼ MSeffect=MSerror

where the expected value of MSerror is the error variance, and the expected value of
MSe¡ect is the error variance plus the treatment component. The smaller the error var-
iance, the greater the value of F.The probability p of obtaining such a large value of F
if indeed the null hypothesis were true is called the signi¢cance of the result.This is the
probability that is compared to alpha.

The signi¢cance level cannot be used as a simple measure of power; nor can it be used
as a measure of the relative treatmentmagnitude.Nevertheless, it is instructive to observe
the e¡ects of increasing the error variance.The followingdata are taken from [30,Tables 3
and 4 p. 60] (see Tables 3 and 4). Single factor analysis of variance (anova) returns F
(3,12)= 7.34, po0.005, where p is the probability being compared to alpha of, say, 5%.

Now suppose that in that experiment, participants had had di⁄culty in following the
instructions, in understanding the test problems, or in manipulating the screen controls,
or in combinations of those. For illustrative purposes, we have added a random element
of such ‘noise’ to each score, with a mean of zero and a standard deviation of approxi-
mately16.The population treatmentmeans are unchanged, of course, but the same single-
factor anova nowyieldsF(3,12)= 3.35, p=0.06.The result has been transformed from one
that was extremely signi¢cant to one that failed to reach the 5% level.

As we can see from this example, if all else is held constant, an increase in error var-
iance will cause a decrease in signi¢cance, which in turn corresponds to a decrease in
power, even though direct computation of that relationship is not easy. It is therefore
essential to reduce sources of uncontrolled variation.

Table 3. Example data taken from [30]

Treatments
A B C D

37 36 43 76
22 45 75 66
22 47 66 43
25 23 46 62

Table 4. Same data asTable 3 but with additional random noise

Treatments

A B C D

36.55 16.37 48.94 82.54
35.90 70.44 76.03 68.04
21.60 63.61 81.94 46.42
22.48 18.70 48.31 61.39

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 531
How can we decide whether our e¡orts to reduce uncontrolled variation (e.g. by per-
forming CWand redesigning as indicated) have been successful? Perhaps the best ap-
proach would be to compute estimates of the proportion of variance accounted for by
treatment di¡erences, using say the o2 index [30]. But to do so would introduce more
technical apparatus than is really necessary to make a very simple point: if experimenters
¢nd ways to reduce uncontrolled variation, they will get better results, because of in-
creased power. Complete enumeration of uncontrolled variation’s removal, paired with
inspection of the changes in results, is su⁄cient to demonstrate this.

Following this approach,Table1has alreadyenumerated all the uncontrolled variations
eliminated by the CWs we performed.The next section shows the changes in results.

3.8. AComparison of Before and After

Table 5 presents a summary comparison of statistical analyses of the ‘before’ and ‘after’
WYSIWYTstudies. In general, as the summary shows, whereas the ‘before’ study pro-
duced mixed results, the ‘after’study supported all the major hypotheses with strong sta-
tistical results. Although there was one measureFthe number of editsFwhich moved
from signi¢cance in Experiment 1A to non-signi¢cance in Experiment 1B, this measure
was dependent on the participants’ relative success.That is, in Experiment 1A, the WY-
SIWYTgroups achieved approximately the same coverage as did the Ad Hoc Group in
signi¢cantly fewer edits (more coverage per edit), whereas in Experiment 1B, the WYSI-
WYT Group achieved more coverage than did the Ad Hoc Group in approximately the
same number of edits (which is still more coverage per edit).Thus, this drop in signi¢-
cance does not imply a drop in e⁄ciency.

Table 5. Major results from the ‘before’and ‘after’experiments

Hypothesis ‘Before’ ‘After’

WYSIWYTparticipants more e¡ective NS **
WYSIWYTparticipants more e⁄cient:

Number of edits to achieve coverage ** NS
Number of redundant tests NS ***

WYSIWYTparticipants less overcon¢dent NS *
Training in testing theory not necessary to

achieve better e¡ectiveness and e⁄ciency
NS WYSIWYT Group was

given no testing theory
training, so results support

this hypothesis

***Indicates po0.001; **, po0.01; *, po0.05. NS indicatesp>0.1. (No signi¢cance levels between 0.05 and
0.1were found in the major hypothesis results.)

A. J. KOETAL.532
Bare comparisons of main-e¡ect signi¢cance levels inTable 5 hide a great deal of in-
formation that further supports the di¡erences in results.Those interested in details of
the analyses are invited to see [31] for full details of Experiment 1B.

4. Experiment 2: A Forms/3 Modi¢cationTask

Our second use of the CWwas to evaluate an experiment that was di¡erent from Experi-
ment1A/1B in twoways. First, we did not have a‘before’experiment to re£ect on in order
to improve the experimental design; thus it provides a di¡erent kind of information re-
levant to Research Question1. Second, the participants in Experiment 2 would modify a
spreadsheet in addition to testing it, complicating the participants’task and extending the
range of evaluation that the CW would perform.This section brie£y describes Experi-
ment 2, and the impact of the CWupon it.

4.1. The Experiment

The experiment aimed to investigate the e⁄cacyof theWYSIWYTtesting methodology
in the context of a spreadsheet modi¢cation task by end users [32].The participants, stu-
dents in their second or third year of abusiness degree,were divided into two conditions:
one with WYSIWYT and one without. Each group completed a 25-min tutorial on
Forms/3, which provided the necessary instruction to accomplish the modi¢cation task.
Next the participantswere given awritten description of the spreadsheet, alongwith a list
of modi¢cations that were to be made. A questionnaire was given to test their under-
standing of the problem. Following this, participants were told that they had 15min to
complete the modi¢cation (nothing was mentioned about testing). If participants ¢n-
ished early, they worked on a dummy task. After the modi¢cation session, participants
completed a questionnaire designed to test their understanding of the problem and their
con¢dence of success.

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 533
4.2. ACognitiveWalkthrough of the Modi¢cationTask

While this experimental design was very similar to Experiments 1A and 1B, during the
time between Experiments 1B and 2, a number of things had changed.The new team,
consisting of seven evaluators, replaced the previous group of 10, keeping three original
members, including the facilitator.The HCI expert was not present at any time. Further-
more, the group was ¢nishing a complete reimplementation of the user interface for
Forms/3 inJava. Moreover, components of the experiment were quite di¡erent. Our par-
ticipant populationwas now end users instead of computer science students, the partici-
pantswere expected to perform several actions not required of the previous experiment’s
participants, there was a di¡erent tutorial tailored to the new tasks, new post-modi¢ca-
tion questionnaires were created, and a di¡erent spreadsheet problem was used. Any of
these di¡erences could have introduced uncontrolled situational variables.

To guard against such variables, the group decided to perform a CW. Drafts of
the materials that participants would encounter, including problem descriptions and
tutorials were made available for the evaluators. This time, the HCI expert was not
present to introduce the CWmethod, so the three continuing members introduced the
method to the other group members.The original facilitator gave a10-min introduction
to the method describing motivations and preparing guidelines for the walkthrough
procedure. Furthermore, the three evaluators who were familiar with the CWdecided
to follow rules similar to Spencer’s to avoid design discussion detours and defensiveness
[33].

The results of the walkthrough are summarized inTable 6.The CWrevealed issues in
each component of the experiment that had the potential to confuse participants. For
example, the representation of the spreadsheet on the screen was inconsistent with the
representation of the problem on the paper description, and the tutorial was inconsistent
in placeswith the new interface. Furthermore, therewere a number of interface variables,
both regardingWYSIWYTand not, that required attention.

The changes were made and the experiment was run.The results for testing behavior
were extremely clear-cut. The main results were that WYSIWYT participants were
much more likely than the Ad Hoc participants to conduct at least some testing
(p=0.0004). Further, although testing did not help anyAd Hoc participants ¢nd even
one error, three of the 19 WYSIWYT participants found errors during the process of
testing. Taken together, these two ¢ndings suggest that WYSIWYT increases not
only the raw quantity, but also the coverage of testing.These results are consistent with
Experiment 1B.
Table 6. Frequencies of speci¢c types of
variables identi¢ed in Experiment 2’s CW

Type of situational variable Frequency

Problem design 3
Tutorial 6
Treatment user interface 4
Unrelated user interface 11

A. J. KOETAL.534
In addition, accuracy of the participants’ modi¢cations was considered. (Accuracy
was not a factor in Experiment 1B.) The results were in the marginal signi¢cance
range: WYSIWYT participants achieved better accuracy at a signi¢cance level of
p=0.0861.

We take this opportunity to emphasize that a CW cannot cause an experiment to
produce signi¢cant results. Its relationship to achieving greater signi¢cance lies
only in its ability to increase power by eliminating ‘noise,’ as already explained in
Section 3.7.

5. The CognitiveWalkthrough of Experiment 3: AComparison of
Forms/3 Time Models

LikeExperiment 2,Experiment 3was designedwithout the help of a‘before’experiment.
But unlike Experiment 2, it required participants to reason about a new model of time
[34, 35].

Contrary to the structure of previous CWs, in the CW performed on this experiment
there were only two evaluators conducting the CW: the original facilitator and the new
lead experimenter (whohad no experiencewith CWs).The CWthey conducted identi¢ed
only two variables; both were of the ‘treatment user interface’ type. It is possible, of
course, that these were the only two variables that needed identi¢cation. Perhaps other
problems had already been resolved in previous experiments and CWs; for example, the
method for changing a cell’s formula and the way our tutorials teach that skill had been
walked through numerous times before. Also, the experiment was very simple, and there
seemed to be few variables toworry about controlling.The hypothesis that there were no
more variables to ¢nd is consistent with fact that the statistical analysis of the data ulti-
mately collected in the experiment shows extremely clear results: The end-user partici-
pants using the new model of time were signi¢cantly more correct in the programming
task (po0.0001), made fewer errors along the way (p=0.0002), were faster in terms of
both time spent (po0.0001) and number of edits (po0.0001), and demonstrated signi¢-
cantly greater understanding of the model of time than did participants using the tradi-
tional model of time (p=0.0003).

Alternately, it could be that the team with only two evaluators was too small.With
so few team members, the walkthrough proceeded much more quickly, and there
were rarely disagreements between the two evaluators, unlike earlier CWs. Since
these disagreements often led to important discoveries in earlier CWs, we mayhave over-
looked uncontrolled variables of the experiment. Furthermore, since the CWwasmore a
conversation between the two experimenters than a meeting, there was a tendency to
slacken the rules and converge on agreement in the interest of time. This too could
have reduced the e¡ectiveness of thewalkthrough to discover variables in the experimen-
tal design. To guard against these possibilities, we now always involve more than two
evaluators.

6. Discussion

In this section we return to the research questions posed in the introduction.

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 535
6.1. Research Question 1: Is the CWE¡ective in Improving
aVPL Experiment?

6.1.1. Hindsightand Foresight

Any experiment can be improved with hindsight. For example, in Experiments 1A and
1B, it is easy to think of reasons for the improvement from‘before’ to ‘after’ in hindsight.
Reducing the number of participant groups from 3 to 2 increased power-e¡ectiveness of
statistical tests. Improving the tutorial increased the likelihood that all participants un-
derstood what to do and how to do it. Improving details of the experimental interface
increased the likelihood that participants would form correct goals, be able to achieve
them, and be aware that they had made progress. All these can be obvious, after an ex-
periment fails to produce clear results. However, it is not clarity of hindsight that is
needed for better experimental designs, it is clarity of foresight. It is this improved clarity
of foresight that is the bene¢t we gained from use of the CW.

6.1.2. Structured Evaluation

While an experiment can be designed in an ad hoc fashion, it can be aided by more
structured design techniques. For example, in an ad hoc design process, a polite member
of the team might not criticize an experiment’s design.The CWprovides an open session
for criticism and evaluation, where individuals are expected to be critical and inventive.
This was also observed by Spencer, who comments on social constraints of the CW in a
software development environment [33].

6.1.3. Low-level Evaluation

Experiments involving human participants in ¢elds such as psychology or sociology
often must control situational variables such as typographical errors in questionnaires
or a broken pencil. VPL experiments must be designed to control these variables and
the rich user interfaces that can allow for countless unpredictable actions to be performed
by participants.Thus, one critical way in which the CW is e¡ective is in evaluating the
lower-level aspects of an experiment: it is capable of helping experimenters ¢nd subtle
problems which can be large sources of variation. For example, in the ¢rst line of
Table 1 note that there was a question as to whether or not nested ‘if’ conditions may
confuse participants. As computer scientists, we may not have noticed this potential pro-
blem.Yet, end-user participants might have been unable to complete the experimental
task due to this kind of unnecessarily complex logic, thus making the collected data
useless.

6.1.4. The CWand Issues Particular to ExperimentDesign

It is already known that CWs can reveal problems with an interface. Here we discuss
the subtle di¡erences between doing a CW to evaluate an interface versus doing one to
evaluate an experiment, and how these subtle di¡erences help to reveal problems in an
experiment’s design in a relatively cost-e⁄cient way.

Problem Design: Traditional CWs pick actions of interest, but obviously cannot have a
speci¢c example that describes what every user is supposed to do. In contrast to this, the

A. J. KOETAL.536
experimental tasks are precisely thatFspeci¢c goals under speci¢c conditions that dic-
tate the participants’goals and subgoals.This allows a CW for an experiment to be very
speci¢c and focused. Thus, many actions that would need to be evaluated in walking
through an interface are not needed when evaluating an experiment. Because of this, a
CW for an experiment can be faster than a CW for an interface.

Even so, the CWfor an experiment considers problem-oriented data not considered by
traditional CWs. For example, the problemdesignmay introduce issues thatwill sidetrack
the experiment’s participants, such as layouts that are unintuitive, confusing spacing con-
ventions, obtuse names, and so on.

Tutorial andDescriptiveMaterials: All CWs involve assumptions about what users have in
the way of prior knowledge. In an experiment, much of this knowledge is obtained
through the tutorial and supplemental materials (problem descriptions, quick reference
cards, etc.) Doing a CWon an experiment focuses attention to how helpful the tutorial
and materials are speci¢cally to participants ability to perform the experimental tasks.The
tutorial’s impact is particularly important to consider throughout the CW, because the
experiment rests upon its success. Both the completeness of the skills taught and the
e¡ectiveness of the way they are taught need to be considered throughout the CW’s con-
sideration of what skills participants havewhen performing the tasks. Atutorial that does
not e¡ectively teach the skills needed for the tasks dooms an experiment to producing
useless data.

Evaluating the experimental tasks in the context of tutorials and experimental materi-
als is in marked contrast to using a CWfor interface design, inwhich there are usually no
tutorial or materials at all to consider.

Interface Issues: Doing a CW on an interface can potentially reveal a large number of
problemsFtoo many in fact. That is, since most VPL researchers do not have the re-
sources to improve their research prototypes to commercial standards, they cannot a¡ord
to follow up on a large list of improvements to their interface. However, doing a CWon
an experiment focuses attention on precisely the subset of the interface likely to be en-
countered during the experimental tasks. This allows VPL researchers to concentrate
their resources on resolving only those interface di⁄culties that could obscure experi-
mental results.

For example, because Forms/3 is a research prototype, imperfections in its inter-
face were expected. One such imperfection was that editing a cell formula was
unintuitive and physically tricky. The team had already been aware of several such
imperfections, but had considered them unimportant in designing a successful
experiment. The CW dispelled this idea, and revealed which particular set of
imperfections would directly impact the participants’ability to perform the experiment
task.

In summary, the CW for an experiment is more focused than a CW for an inter-
face. Regarding interfaces, this allows theVPL researcher to focus directly on the issues
that will allow the experiment to produce clear results, without having to produce an
interface up to commercial quality. It also takes into account the speci¢c tasks and speci¢c
training materials to be used, which are not considered in CWs aimed at interface evalua-
tion.The tasks and training are as important to the experiment’s outcome as the interface
itself, and the experiment’s CW keeps the importance of these factors continually in
focus.

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 537
6.2. Research Question 2: Does the CW Possess Advantages Over More
Traditional Approaches to ImprovingVPL Experiments?

There are two traditional approaches to experiment design evaluation that are commonly
used: pilot studies and protocol analyses. To discuss Research Question 2, these two
methods will be discussed brie£y and then compared to the CW.

6.2.1. Pilot Studies

Pilot studies are studieswith fewer participants.The goal of a pilot is to determine if there
are any glaring £aws in the experimental design. For example, a pilot may help experi-
menters determine if the experimental task is too simple or too di⁄cult, therebyavoiding
£oor and ceiling e¡ects in data collection.This information can be very helpful in identi-
fying large problems with an experimental design.

Unfortunately, to perform a pilot, an experimenter must have the majority of the ex-
periment designed and the materials, such as tutorial and questionnaires nearly complete.
If large problems are found in the design, it can be very expensive to redesign these por-
tions of the experiment. However, an advantage of the pilot is that it involves real
humans, real data collection, and so on; thus it is very useful as a ¢nal test before running
the real experiment.

6.2.2. ProtocolAnalyses

The goal of a protocol analysis is to observe a participantwhile performing a task, anduse
their behavior as data to analyze. Participants usually ‘think aloud’and experimenters can
use the data to infer rules and properties that re£ect the participant’s problem-solving
process. At one level, this can be used by experimenters to validate assumptions about
participants’ reasoning processes for the experimental task. For example, experimenters
may assume that a participant will make a certain modi¢cation ¢rst; a protocol analysis
may show that in fact, participants do this modi¢cation last. At another level, it simply
allows experimenters to learn about any aspects of the experimental procedure that they
have not anticipated.

Of course, since it is similar to a pilot study, the majority of the experiment must be
designed before executing the analysis. Furthermore, since the participants are encour-
aged to speak at any time, protocol analyses can be very time consuming. Thus, fewer
participants can be tested, usually only one at a time.

6.2.3. Advantages (andDisadvantages)

In essence, pilot studies and protocol analyses are too time consuming and expensive to
do repeatedly.The CW, on the other hand, is inexpensive enough to do multiple times.
Further, because it does not require an almost ¢nished experiment, it can be done early.
To be more speci¢c, we observed several advantages of evaluating experiments with
the CW:

* It was relatively quick; with a small group of evaluators, the longest walkthrough
spanned a total of about 4 hr.This is much faster than preparing an ‘almost polished’
version of the experiment, as in a pilot or protocol analysis.

A. J. KOETAL.538
* It focused on possible problems with each speci¢c subtask, which led to a list of
speci¢c design issues. In contrast, a pilot does not provide this level of subtask detail.

* Thewordingof the CW’s questions,while not prescriptive, was relativelyconstructive,
pointing out where better information would help participants to perform their task.
For example, in Figure 4, our response to question 3.3 suggested that user interface and
tutorial changes could solve the problem.

* It was simple to see how a number of aspects of the experimental design remained
constant, and thus did not require further evaluation until changed. For example, the
user interface elements to edit a cell’s formula remained the same throughout Experi-
ments 2 and 3, and we could save time by avoiding evaluation of this element for
Experiment 3.

* Although the ¢rst CW was a walkthrough of the entire experimental task, it is also
possible to use CWs to analyze some portion of an experiment at a lower resolution.
This is seen by comparing the scope of Experiment 1A and 1B’s three CWs.

Whymight the CWpossess these advantages? All three experimental designs required
participants, supported by theVPL interface display, to explore, reason and act. Under-
standing such behavior is the strong point in the CWs evaluative abilities.This may ex-
plain why the technique was so useful in this type of VPL experiment. For experiments
not so reliant on the ability to support reasoning skills about programs, some other eva-
luative technique might be needed.

The CWmethod has some limitations. For example, although the CWdoes focus on
the individual user steps, it has little to say about the cost of making and repairing an
error. Other issues that the method does not address include whether the user is com-
pelled to look ahead before choosing an action or whether changing one value in the
system is likely to require further changes to restore an internally consistent state, neither
of which was an issue in our experiments.

Thus, although the CWpossesses certain advantages over the othermethods, it is not a
panacea. Our results can be taken as strong support within a circumscribed area, but the
exact de¢nition of its boundaries requires further study. As a result of our experiences,
the methodology now used by our group is to conduct one or more CWs for every ex-
periment as early as possible, with a pilot near the ¢nal experiment. If questions arise
from the CWs that the team cannot answer, we also sometimes use a protocol analysis
sometime after the ¢rst CWand before the pilot.

6.3. Research Question 3: Is an HCI Specialist Needed for E¡ective Use?

Over the course of three experiences using the CW, the level of training and the results of
thewalkthroughsgive reasonable evidence forResearchQuestion 3.As stated before, our
group received very little training on the CW. In Experiments 1A and 1B, our team con-
sisted of computer scientists with no prior experience using the CW, with the exception
of the HCI expert.The HCI expert taught the team the method in about 90min and the
rest of the team did the walkthroughs of the experiment. In Experiment 2, only three of
seven group members had experience from the preceding CWs; in this case, the under-
graduate facilitator gave a brief ten-minute training period. In Experiment 3, the facil-
itator gave a brief 5-min training period to the other evaluator without the help of the
HCI expert.

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 539
With these levels of training, a number of variables were identi¢ed, such as shown in
Tables 1 and 6. Thus, although a team of HCI experts might have extracted more
from the walkthroughs, our team certainly used it successfully enough to obtain useful
results.

6.4. Research Question 4:What General Lessons Can Be Learned About
Experiment Design?

Other domains of experimentation have guidelines regarding variable types, to help ex-
perimenters to design a successful experiment.TheVPL domain could likewise bene¢t
from guidelines that take into account variables commonly encountered inVPL experi-
ments. In our experiences with the CW, we noticed four such situational variable types
(given in Section 3.3) and propose these four types as a start at such a guideline list for
VPL experimenters:

* Problem Design. Design the problems given to participants so that their attention
remains on the experimental task, rather than on extraneous elements such as syntax
oddities or nested logic.

* Tutorial Design. Design the tutorial with close scrutiny to participants’ ability to
master the material, considering not only content, but also length and practice time.

* Treatment-Related Interface. If there is a user interface component in the feature under
evaluation, make sure it has helpful action choices and labeling.

* Unrelated Interface. If there is a user interface component present in the experiment
unrelated to the feature under evaluation but still likely to be used by participants,
eliminate distracters that could impact ability to perform the experiment’s task.

We o¡er this experimental design checklist to otherVPL experimenters, and welcome
additions.

7. Conclusion

Like John and Packer, we found that the CWcould be used successfully by a computer
science team, even without the presence of an HCI expert or cognitive scientist [25]. In
our case, we did learn the technique via a short training session from such a person, but
he did not participate in the walkthroughs per se.

In our experiences, use of the CW improved the design of VPL-focused empirical
studies.We believe it may also be useful for other types of empirical studies that focus
on problem-solving situations supported by interfaces, but we can only speculate about
this point, since we have not tried it outside the domain of VPL experiments.

For improvingVPL experiments, we found the CW to be e¡ective: it exposed uncon-
trolled variables and prompted us to thinkof solutions. It was easyto learn, needing just one
training sessionwith an HCI expert. It was quick, taking about 4 hr for the longest walk-
through. It was concretely focused, requiring very little working out howan abstract theoryor
model could be applied to the speci¢c situation. Finally, it was constructive, leading directly
to suggestions for improving the experiment design.

A. J. KOETAL.540
Acknowledgements

We thank Miguel Arredondo-Castro, John Atwood, Josh Cantrell, Mingming Cao,
Nanyu Cao, Dan Keller,Vijay Krishna, Dusty Reichwein, Justin Schonfeld, and Andrei
Sheretov, for their contributions to the CWs and to the associated experiments.Thiswork
has been supported in part by the National Science Foundation under awards CCR-
9806821 and ITR-002265.

References

1. A. Blackwell (1996) Metacognitive theories of visual programming: what do we think we
are doing? IEEESymposiumonVisual Languages, Boulder, CO, September 1996, pp. 240^246.

2. J. Gurka &W. Citrin.Testing e¡ectiveness of algorithm animation (1996) IEEESymposium
Visual Languages, Boulder, CO, September 1996, pp. 182^189.

3. P. Polson, C. Lewis, J. Rieman & C.Wharton (1992) Cognitive walkthroughs: a method
for theory-based evaluation of user interfaces. International Journal of Man^Machine Studies 36,
741^773.

4. C. Lewis, P. Polson, C.Wharton&J.Rieman (1990)Testing awalkthrough methodology for
theory-based design of walk-up-and-use interfaces.ACMCHI ’90ConferenceonHumanFactors
in Computing Systems, Seattle,WA, April 1990.

5. J. Rieman, M. Franzke & D. Redmiles (1995) Usability evaluation with the cognitive walk-
through.ACMCHI ’95Conference onHumanFactors inComputing Systems, Denver, CO, May1995,
pp. 387^388.

6. A. Sears & D. Hess (1998) The e¡ect of task description detail on evaluator performance
with cognitive walkthroughs. ACMCHI ’98 Conference on Human Factors in Computing Systems,
Los Angeles, CA, April 1998.

7. B. Bell,W. Citrin, C. Lewis, J. Rieman, R.Weaver, N.Wilde, & B. Zorn (1994) Using the
programming walkthrough to aid in programming language design. Software Practice and
Experience 24,1^25.

8. C. Hundhausen & S. Douglas (2000) Using visualizations to learn algorithms: should stu-
dents construct their own, or view an expert’s? IEEESymposium onVisual Languages, Seattle,
WA, September 2000, pp. 21^28.

9. C. Lewis, C. Brand, G. Cherry&C. Rader (1998) Adapting user interface design methods to
the design of educational activities. ACMCHI ’98Conference onHumanFactors in Computing Sys-
tems, Los Angeles, CA, April 1998, pp. 619^626.

10 J. Stasko, A. Badre & C. Lewis (1993) Do algorithm animations assist learning? an empirical
study and analysis. ACM INTERCHI ’93 Conference on Human Factors in Computing Systems,
Amsterdam, pp. 61^66.

11. T. Green (1989) Cognitive dimensions of notations. In: People and Computers (A. Sutcli¡e &
L. Macaulay, eds),Vol.V. Cambridge University Press, Cambridge, pp. 443^460.

12. T. Green, M. Burnett, A. Ko, K. Rothermel, C. Cook & J. Schonfeld (2000) Using the
cognitive walkthrough to improve the design of a visual programming experiment. IEEE
SymposiumonVisual Languages, Seattle,WA, September 2000, pp. 172^179.

13. T. Green & M. Petre (1996) Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. Journal ofVisual Languages and Computing 7,131^174.

14. S. Card,T. Moran & A. Newell (1983) The Psychology of Human-Computer Interaction. Erlbaum,
Hillsdale, NJ.

15. M. Williams & J. Buehler (1999) Comparison of visual and textual languages via task
modeling. International Journal ofHuman^Computer Studies 51, 89^115.

16. R. Je¡ries, J. R. Miller, C. Wharton & K. M. Uyeda (1991) User interface evaluation in
the real world: a comparison of four techniques. ACMCHI ’91Conference on Human Factors in
Computing Systems, New Orleans, pp. 119^124.

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 541
17. C. Karat, R. Campbell &T. Fiegel (1992) Comparison of empirical testing and walkthrough
methods in user interface evaluation. ACMCHI ’92 Conference on Human Factors in Computing
Systems, Monterey, CA, 1992, pp. 397^404.

18. W. Gray & M. Salzman. Damaged Merchandise? A review of experiments that compare
usability evaluation methods (1998) Human-Computer Interaction 13, 203^261.

19. B. Bell, J. Rieman & C. Lewis (1991) Usability testing of a graphical programming system:
thingswe missed in a programmingwalkthrough.ACMCHI ’91ConferenceonHumanFactors in
Computing Systems, April 1991, pp. 7^12.

20. J. Nielsen & R. Molich (1990) Heuristic evaluation of user interfaces. ACMCHI ’90Confer-
ence onHumanFactors in Computing Systems, Seattle,WA, April 1990, pp. 249^256.

21. S. Card,T. Moran & A. Newell (1980) The keystroke-level model for user performance time
with interactive systems. Communications oftheACM 23, 396^410.

22. H. Johnson & P. Johnson (1992) Task knowledge structures: psychological basis and inte-
gration into system design. In: Cognitive Ergonomics: Contributions from Experimental Psychology,
(G. van derVeer, S. Bagnara & G. Kempen, eds) North-Holland, Amsterdam, pp. 3^26.

23. R. Butterworth, A. Blandford & D. Duke (1999) Using formal models to explore display
based usability issues. Journal ofVisual Languages and Computing 10, 455^479.

24. C.Wharton, J. Bradford, R. Je¡ries & M. Franzke (1992) Applying cognitive walkthroughs
to more complex user interfaces: experiences, issues, and recommendations. ACMCHI ’92
Conference onHuman Factors in Computing Systems, Monterey, CA, pp. 381^388.

25. B. John & H. Packer (1995) Learning and using the cognitive walkthrough method: a case
study approach. ACMCHI ’95 Conference on Human Factors in Computing Systems, Denver, CO,
May 1995, pp. 429^436.

26. G. Rothermel, M. Burnett, L. Li, C. DuPuis & A. Sheretov (2001) A methodology for test-
ing spreadsheets. ACMTransactions on Software Engineering andMethodology 10,110^147.

27. G. Rothermel, L. Li, C. DuPuis & M. Burnett (1998) What you see is what you test: a
methodology for testing form-based visual programs. 20th International Conference on Software
Engineering, Kyoto, Japan, April 1998, pp.198^297.

28. M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein & S.Yang (2001) Forms/3: a
¢rst-order visual language to explore the boundaries of the spreadsheet paradigm. Journal of
Functional Programming 11,155^206.

29. M. Burnett & H. Gottfried (1998) Graphical de¢nitions: expanding spreadsheet languages
through direct manipulation and gestures. ACM Transactions on Computer-Human Interaction 5,
1^33.

30. G. Keppel (1982) Design and Analysis: A Researcher’s Handbook, 2nd edn. Prentice-Hall,
Englewood Cli¡s, NJ.

31. K. J. Rothermel, C. Cook, M. Burnett, J. Schonfeld,T. R. G. Green & G. Rothermel (2000)
WYSIWYT testing in the spreadsheet paradigm: an empirical evaluation. International
Conference on Software Engineering, Limerick, Ireland, June 2000, pp. 230^239.

32. V. Krishna, C. Cook, D. Keller, J. Cantrell, C.Wallace, M. Burnett & G. Rothermel (2001)
Incorporating incremental validation and impact analysis into spreadsheetmaintenance: an
empirical study. IEEEInternationalConferenceonSoftwareMaintenance, Florence, Italy, November
2001, pp. 72^81.

33. R. Spencer (2000) The streamlined cognitive walkthrough method, working around social
constraints encountered in a software development company. ACM CHI ’00 Conference on
HumanFactors in Computing Systems,The Hague, Amsterdam, April 2000.

34. M. Burnett, N. Cao, M. Arredondo-Castro & J. Atwood (2001) End-user programming
of time as an ‘ordinary’ dimension in grid-oriented visual programming languages,
TR 01-60-01, Oregon State University, Jan. 2001. Journal ofVisual Languages and Computing 13,
421^447.

35. M. Burnett, N. Cao & J. Atwood (2000) Time in grid-oriented VPLs: just another
dimension? IEEE Symposium on Visual Languages, Seattle, WA, September 2000,
pp. 137^144.

36. C.Wharton, J. Rieman, C. Lewis & P. Polson (1994) The cognitive walkthrough method:
a practitioner’s guide. In: (J. Nielsen & R. L. Mack, eds), Usability Inspection Methods. John
Wiley, NY.

A. J. KOETAL.542
Appendix A: A Detailed Example of a CognitiveWalkthrough

The following details the portion of the CWon action (5), described in Section 3.3. At
this point in the CW, Martha, the hypothetical experiment participant, had changed the
formula of an input cell and was ready to click the checkbox of the output cell (recall
Figure1).With the form in FigureA1in front of them, the group proceeded with the ¢rst
question.

In our CWs, Martha is a ‘good’ participant, who always forms good goals in answer
to 1.1. Question 1.2 then asks whether it is reasonable to expect all participants to
have this goal. Quickly answering question 1.1, the current goal was to check the check-
box of the output cell. Reaching question 1.2, the group wanted to stop and discuss.
Would the experiment participants actually have this goal, or would they just observe
the output, say okay in their heads, and proceed to change another input cell without
clicking? Since the experiment intended to discover if theWYSIWYTmethodology re-
sulted in better testing, it was di⁄cult to ¢nd a solution that did nottell the participants to
test more.This was a serious issue, so the group recorded the issue for further discussion
in a later meeting.

After completing the ¢rst set of questions, the facilitator proceeded with the second
set, shown in Figure A2. The correct action to take was to check the checkbox of the
output cell ‘LetterGrade’, but at question 2.2 the groupwas unsure if the empty checkbox
was a good enough label to prompt an experiment participant to check it.Would the
participants even know that the non-traditional looking checkbox (seen in Figure 1)
was a checkbox at all? Instead of solving the problem at this point, the group recorded
the issue, and proceeded to answer the successive questions.

After recording the group’s answer to 2.9, the facilitator proceeded to the last group of
questions, and reminded the group that at this point in the CW, the hypothetical experi-
ment participant had correctly checked the output cell’s checkbox. Reaching 3.3, the
group was reminded that the hypothetical experiment participant still had the goal of
testing the spreadsheet, and not just clicking this checkbox.Would the participants in
the experiment need some sort of reminder of their progress tomake sure they continued
testing? The group thought so, and recorded a group member’s suggestion for a ‘tested-
ness indicator’ which would remind participants of their progress in testing the spread-
sheet. See Figure A3.
Cognitive Walkthrough Form: A Single Step
Task: Check off the final output box on the Grades spreadsheet
Action #: 5

1. Goal Structure for this step
1.1 Correct Goals. What are the current goals for this point in the interaction?

The current goal is to check the checkbox of the output cell.

1.2 Mismatch in likely goals Check each goal in this structure against your analysis at the end of the previous step. Will all users have dropped it or
failed to form it? Are there unwanted goals that will be formed or retained by some users?

There’s a possibility that some users may not have this goal after changing the formula. They might just look at the value, say okay, and proceed
to try another input value. How much do we really want to emphasize the importance of testing in the tutorial?

Figure A1. The ¢rst set of questions and answers for action (5). Italicized words indicate evaluator
responses and underlined phrases indicate responses that were emphasized in discussion

2. Choosing and executing the action.
What is the correct action at this step?

check the final output cell “final grade”

2.1 Availability. Is it obvious that the correct action is a choice here?
There’s nothing obvious about the checkbox. Our anticipated users should, however, understand the concept of the checkbox (which is fairly
common in user interfaces these days) and realize that the box in the upper right of each cell is exactly that. Furthermore, the correct action lies
on a continuum: if they click on a cell in the middle of the flow of data, it’s not as great as if they’d clicked on the final output cell. Does that
matter though, as long as they make progress?

2.2 Label. What label or description is associated with the correct action?
There is an empty box, which unfortunately doesn’t indicate much: possibly no label?

2.3 Link of label to action. If there is a label or description associated with the correct action is it obvious, and is there a good match between the
label and the user’s representation?

A checkbox is pretty close to the action of “checking,” we’d say.

2.4 Link of label to goal. If there is a label or description associated with the correct action, how it obviously connected with one of the current goals
for this step?

There’s an empty checkbox: does that scream out “test me!”?

2.5 No Label. If there is no label associated with the correct actions, how will users relate to this action to the current goal?
The users will have the oral tutorial and the Forms/3 quick reference sheet. The checkbox is also a common user interface concept. A fairly
small percentage will have a problem if the tutorial is good enough. Maybe we should have a better indicator to ensure this.

2.6 Wrong Choices. Are there other actions that might seem appropriate to some current goal?
There are a lot. The user could change other formulas, validate different cells, and lots of other things. The interface allows almost anything
when it comes to testing. How will we get the participants to validate the useful cells?

2.7 Too many Choices. Are there more than 10 screen actions to be considered at this time?
There are too many to count!

2.8 Time-out. If there is a time-out in the interface at this step does it allow time for the user to select the appropriate action?
Yes; the participants have the freedom of the mouse cursor.

2.9 Hard to do. Is there anything physically tricky about executing the action?
The checkbox is actually pretty small, but nobody in this group seems to have a problem with it. Would participants?

Figure A2. The second set of questions and answers for action (5)

3. Modification of Goal Structure, Assuming the Correct Action has Been Taken
3.1 Quit or Backup. Will users see that they have made progress? What will indicate this?

The participants will see a change in cell border colors, a checkmark will appear, and arrow colors, if displayed, will also change.

3.2 Accomplished Goals. List all current goals that have been accomplished. Is it obvious that each has been accomplished?
The current goal of “check of the output cell” has been accomplished.

3.3 Incomplete Goals That Look Accomplished. Are there any current goals that have not been accomplished, but might appear to have been?
Since another goal is to test the whole spreadsheet, but the participant has received feedback, they may think that they’ve tested enough. Do we
need some sort of indicator?

3.4 “And-Then” Structures. Is there an “And-Then” structure and does one of its sub-goals appear to be complete? How many users may
prematurely terminate?

No, they just have to click.

3.5 New goals in response to prompts. Does the system response contain a prompt or cue that suggests any new goals?
If at this point the participant has the cells on the spreadsheet anything less than all blue, they will likely be cued to test more.

3.6 Other new goals. Are there any other new goals that the user will form given their current goals, the state of the interface, and their background
knowledge?

We can’t think of any.

Figure A3. The third and ¢nal set of questions for action (5)

VISUAL PROGRAMMINGLANGUAGE EXPERIMENTS 543
Appendix B: Getting Started

This appendix provides advice on how to get started using CWs in experiment design.

1. Learn the CW technique.We recommend [36] as a very good source for how to use
the technique.

A. J. KOETAL.544
2. Assemble details of the experiment: the tutorial materials available, the experiment
tasks, any materials to be provided to the participants, relevant screen shots, etc. It
saves time and adds accuracy to have a live system available instead of static screen
shots, but a live system is not required.

3. Appoint a facilitator, whose job is to lead the CW.
4. Appoint a recorder, whose job is to record the comments and results. (The facilitator

will not have time to do this.)
5. If the grouphas never doneCWsbefore, conduct a practice sessionon some tinyaspect

of the experiment.The examples in this paper may be useful guidance; in particular,
the detailed example of Appendix A is precisely for the purpose of providing a con-
crete start-to-¢nish example of using the CW in an experiment.

6. Dealing with procedural problems:The practice session may reveal group tendencies
to drift o¡ track, and other group dynamics that might be seen as counterproductive.
Spencer o¡ers good advice for avoiding and dealing with such matters [33] if they
arise.

	1. Introduction
	2. The Cognitive Walkthrough
	3. Experiments 1A and 1B: Evaluations of aVisual Testing Methodology
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Figure 4
	Table 2
	Table 3
	Table 4
	Table 5

	4. Experiment 2: A Forms/3 Modification Task
	Table 6

	5. The Cognitive Walkthrough of Experiment 3: A Comparison of Forms/3 Time Models
	6. Discussion
	7. Conclusion
	Acknowledgements
	References
	Appendix A: A etailed Example of a Cognitive Walkthrough
	Figure A1
	Figure A2
	Figure A3

	Appendix B: Getting Started

