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ABSTRACT
Artificial Intelligence (AI) educational resources such as training
tools, interactive demos, and dedicated curriculum are increasingly
popular among educators and learners. While prior work has ex-
amined pedagogies for promoting AI literacy, it has yet to examine
how well technology resources support these pedagogies. To ad-
dress this gap, we conducted a systematic analysis of existing online
resources for AI education, investigating what learning and teach-
ing affordances these resources have to support AI education. We
used the Technological Pedagogical Content Knowledge (TPACK)
framework to analyze a final corpus of 50 AI resources. We found
that most resources support active learning, have digital or physi-
cal dependencies, do not include all the five big ideas defined by
AI4K12 guidelines, and do not offer built-in support for assessment
or feedback. Teaching guides are hard to find or require technical
knowledge. Based on our findings, we propose that future AI cur-
ricula move from singular activities and demos to more holistic
designs that include support, guidance, and flexibility for how AI
technology, concepts, and pedagogy play out in the classroom.

CCS CONCEPTS
• Applied computing → Interactive learning environments; •
Social and professional topics→ Children.
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1 INTRODUCTION
Modern computing is rapidly embracing artificial intelligence (AI)
for it’s great promise in improving our lives via advances in digital
voice assistants, AI supported learning and increased accessibility
[8, 17, 18]. However, AI systems can also amplify bias, sexism,
racism, and other forms of discrimination, particularly for those in
marginalized communities [1, 2]. In this context, promoting both
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technical and sociotechnical literacy of AI in primary and secondary
education is critical [6, 13, 16, 24].

How to achieve this, however, is still an open question. Explo-
rations of AI applications in education are challenging since the
mechanisms and opportunities of AI are unfamiliar to most peo-
ple outside of computer science. AI education is considered a vital
part of computational thinking [4, 24], and there are arguments
to include AI literacy in the primary and secondary education CS
curricula [6, 14, 15]. Some works have begun to systematize com-
petencies and skills for AI literacy [13].

One part of achieving AI literacy is the creation of technology
resources to facilitate learning and teaching. For example, dedi-
cated coding platforms such as Cognimates1 and Machine Learning
for Kids2 have emerged to enable AI learning. Organizations like
AI4All3 have also created a free AI curriculum for secondary stu-
dents. These technologies and their designs matter [12] as they
shape and constrain what content knowledge can be taught. Edu-
cators must understand and appropriate AI resources to integrate
them into their practice [20].

Despite the proliferation of AI education, prior work has only
begun to examine its efficacy and appropriateness for primary and
secondary teaching and learning. For example, studies have recently
found that whether data is personal can influence student learning
[16], that AI curriculum needs to be adapted to different cultural
references and languages to become more inclusive [6, 26], that
children become more skeptical of machine intelligence if they
engage in active training and coding with AI [5], that carefully
designed scaffolding is key to learning and transfer of knowledge
[9], that gaps in access to technological resources and appropriate
infrastructure, especially in the global south, can prevent learning
from happening at all [26], and that teaching machine learning
differs from teaching computer science as it is not “rule-based”
[23].

While prior work has begun to reveal the pedagogies neces-
sary for AI literacy, no prior work has examined the technologi-
cal resources necessary to support these pedagogies. Prior studies
have focused on more narrow aspects of machine learning learning
ressources, either by analyzing visual tools for teaching machine
learning in K-12 [27] or by doing a systematic review of research
efforts on AI education[28]. For our analysis we choose to analyse
how existing AI resources support pedagogical efforts and teachers.
Therefore, we asked: What learning and teaching affordances do ex-
isting AI resources have for supporting teaching AI? To answer this,
we conducted a systematic analysis of 50 AI resources curated from
the most popular AI Education communities in North America: the

1http://www.cognimates.me
2https://machinelearningforkids.co.uk
3https://ai-4-all.org/
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AI4K12 repository4, the CSTA repository5, the MIT AI Education
repository6.

Building on the Technological Pedagogical Content Knowledge
(TPACK) framework [12], we formulated a series of questions and
criteria to identify the extent to which current AI learning resources
offer the support that educators might need. Overall, we found that
AI resources broadly do not consider educators’ needs to adapt and
customize them for pedagogical use. In the rest of this paper, we
elaborate on these findings in detail and discuss implications for
design.

2 METHOD
To answer our question, we analyze a corpus of resources that could
be used for AI learning. This mirrored prior corpus of studies of
learning technologies, such as those considering coding tutorials
[11] and programming environments for novice programmers more
broadly [10]. Our focus is on resources that explicitly engage AI
concepts relevant to AI literacy, including those not necessarily
designed to be learning technologies.

2.1 Inclusion and Exclusion Criteria
To obtain a corpus of AI resources, we focused on curated lists
of resources recommended for primary and secondary educators
in North America: the AI4K12 repository7, the CSTA repository8,
the MIT AI Education repository9. From these lists we considered
only: curriculum materials, demos, list of links, online course, and
software packages.

Based on these lists, the first two authors gathered an initial
corpus of 100 resources. They then identified a subset of resources
that were still available and functional and removed all duplicated
entries, reducing the set to a total of 50 demos, interactive activities,
tools, and curricula. The final corpus of 50 AI Education resources to-
gether with our final analysis is available here tinyurl.com/aiedk12.

2.2 Theoretical Framework
Since our research question focused specifically on teaching and
learning concerns, we developed our framing based on theories
that would make salient varying levels of support for teaching
and learning. Our primary frame was the Technological Pedagogi-
cal Content Knowledge framework (TPACK) [12]. Building upon
Shulman’s Pedagogical Content Knowledge framework (PCK) [22],
which posited the existence of knowledge of how to teach partic-
ular content knowledge, TPACK makes a similar claim. TPACK
analyzes the existence of teacher knowledge of how to use technol-
ogy (TK), how to use technology to teach (TPK), how technology
and content influence and constrain each other (TCK), and how to
use technology to teach particular content (TPACK).

We specifically used the TPACK definition proposed by Cox for
our investigation, which synthesizes 89 other definitions. Her defini-
tion describes TPACK as five connected facets of teacher knowledge:
“(1) the use of appropriate technology (2) in a particular content area
4https://ai4k12.org/resources/list-of-resources/
5https://www.csteachers.org/page/resources-for-virtual-teaching
6https://raise.mit.edu
7https://ai4k12.org/resources/list-of-resources/
8https://www.csteachers.org/page/resources-for-virtual-teaching
9https://raise.mit.edu

(3) as part of a pedagogical strategy (4) within a given educational
context (5) to develop students’ knowledge of a particular topic
or meet an educational objective or student need” (p.65) [3]. Each
facet describes what a teacher needs to know about technology to
use it for teaching and learning.

For the content knowledge dimension of our TPACK framework,
we used the AI4K12 guidelines10, which at the time of this writing
defined five “big ideas” about artificial intelligence: 1) Perception:
computers perceive the world with sensors, 2) Representation & Rea-
soning: agents maintain representations of the world and use them
for Reasoning, 3) Learning: computers can learn from data, 4) Natural
Interaction: intelligent agents require many kinds of knowledge to
interact naturally with humans, and 5) Social Impact: AI can impact
society in both positive and negative ways. These ideas provide struc-
ture for analyzing the kinds of content knowledge that resources
can feasibly help students learn.

While the above TPACK framework is not necessarily theoretical,
it derives from particular theoretical traditions that view teachers as
pedagogical experts who develop content and technological knowl-
edge to facilitate student learning [19].While we acknowledge other
more sociocultural [21] and sociopolitical teaching theories [7], our
specific focus here is on educators’ cognitive and pedagogical needs
in their AI teaching practice.

2.3 Analysis
Our analysis built on the definition by Cox [3] by devising guiding
analysis questions for each of its five facets, leading to 20 ques-
tions that structured our systematic evaluation of each resource.
For example, one of our questions was “What types of pedagogical
strategies does the tool support?” with fixed potential answers (i.e.,
“interactive learning”, “direct instruction”, and “hybrid between di-
rect instruction and interactive learning”). The complete listing
of these questions is available at tinyurl.com/aiedk12. Both first
two authors collaborated on answering these 20 questions for each
resource, resulting in a large spreadsheet with labels for each of the
five facets of existing teacher support. Any disagreements in an-
swering the questions were discussed until consensus was reached.

3 RESULTS
Overall, there were many distinct genres of resources by various
creators: 39%were curriculum collections, 27%were single activities,
18% were demos, and 16% were tools. Only 20% were behind a
paywall, though some of the more extended curricula offerings
had a prohibitive price (i.e., ReadyAI charged more than USD 2.5k,
TeensinAI charged more than 2.5k€). In this section, we evaluate
the different genres of existing AI resources concerning how well
they support teaching AI.

3.1 Communication of Intended Use
We considered the first facet of TPACK educators’ need to know
what technology is “appropriate” for a given student and learning
goal. Therefore, we examined what kinds of information educators
might need to judge the appropriateness of analyzing resources.
A critical piece of information was the intended use of a resource,
which illustrates the resource designers’ assumptions about users’
10https://ai4k12.org



Figure 1: Curiosity Machine offered clear guidance to teach-
ers about appropriate use, including: a) clear curriculum pro-
gression, b) learning goals, c) activity overview, d) materials
description, e) and teaching materials.

prior knowledge and context. To analyze resources’ intended use,
we asked questions such as: “does the resource provide teaching
guides?” and “does it provide explanations of the AI concepts it
demonstrates?”

Teaching guides were one way to articulate intended use. Over-
all, we found that 59% of resources offered them. However, some
teaching guides were minimal; for example, Zhorai11 provided brief
descriptions of “moderator” and “student” roles without ground-
ing AI concepts and activities in existing curricular standards and
practices. In contrast, platforms such as AI4ALL and Curiosity Ma-
chine12 (shown in Figure 1) offered clear guidance for educators
across several pedagogical dimensions, including learning objec-
tives, pedagogical demonstrations, and materials required.

Another indicator of appropriate use was prior knowledge re-
quired to engage a resource. For example, 36% of the resources
required users to perform an initial setup before testing or using
the AI activity. Many of these setup requirements implicitly as-
sumed particular content knowledge (i.e., terminal use, version
control knowledge), with no guidance on how to acquire it. Simi-
larly, while many resources were framed as learning materials—69%
offered some written explanations of AI concepts—many explana-
tions were not on the main page of the activity. Still, they were
found in other locations like GitHub repositories, further obscuring
whether the resource was intended for teaching and learning.

Trends in the clarity of intended use were primarily shaped
by the genre of the resources. Demos, were often designed to
emphasize one or more components of AI functionality, not to
11http://zhorai.csail.mit.edu
12https://www.curiositymachine.org

Figure 2: The Supervised Polygon activity creatively demon-
strated unintended consequences of machine perception.

teach a comprehensive understanding of AI. None of the demos
had teaching guides, only 50% of them explained the AI concepts
they were addressing, and just 20% of them allowed participants to
change the demonstration’s output by modifying either the input
data or the parameters. For example, TensorFlow Neural Network
Playground13 (Figure 1c) demonstrated how modifying different
neural network parameters could lead to different outcomes. This
resource offered a separate blog post explaining neural networks
but did not integrate the explanation into the experience.

Activities were similar to demos, but often applied AI without
a particular teaching goal. Only 30% of activities included teaching
guides, only 50% of them explained how a part of AI works, and 62%
allowed users to customize their creations. For example, Doodle
Bot14 was an activity for building a bot that uses speech commands
to tell a bot what to draw. The activity listed instructions for build-
ing the bot and training the AI model with just one paragraph of
AI explanation which mentions the pre-trained models used by the
system (i.e., “ml5.soundClassifier()”).

Tools gave even less direction for use. They offered platforms
for creating new artifacts. Just two of the tools had teaching guides,
but 75% included explanations of how AI works. Cognimates is an
example of a tool that could be used to program interactive games
using AI by training models to recognize specific images or text. It
provided explanations of what algorithms were used to train the
models.

Curricula were the clearest about their intended use offering
explicit learning progressions for learners. All curricula included
teaching guides, AI explanations, and 63% of them included a fixed
progressive trajectory. For example, AppsForGood 15 had 14 sequen-
tial teaching sessions covering topics from what machine learning
is to highlighting careers in machine learning. Of the curricula,
84% used both active learning and direct instruction. AI+Ethics cur-
riculum included several activities that explored ethical questions
and AI by doing projects as well as slides that teachers can use to
explain AI concepts such as supervised machine learning.

13https://playground.tensorflow.org/
14https://mitmedialab.github.io/doodlebot
15https://www.appsforgood.org/courses/machine-learning



3.2 Big Ideas Coverage
The second facet of TPACK is content-specificity: teachers’ knowl-
edge of technologymust be linked to the specific content knowledge
they are teaching. Therefore, we examined the extent to which each
resource covered the five AI4K12 big ideas [24].

Resources varied widely in their coverage. Most covered more
than one big idea (88%), and most (72%) covered Perception. Some,
typically curricula, covered all five (24%). The secondmost prevalent
combination of coverage were resources that covered Perception,
Representation & Reason, and Learning (18%). These resources were
creative tools that typically allowed participants to input sound,
images, or video, change the model’s parameter, and get an output
that showcases how a specific AI algorithm works. These resources
typically covered supervised learning and training (28%), neural
networks (20%), GANs (12%), image classification (8%), and word
embeddings (4%). Social Impact was the least common, present only
2% of resources, typically in full curriculum or specialized activities
on that topic.

AI big idea coverage varied by genre. For example, demos var-
ied substantially in their coverage: 80% covered Perception, none
covered Social Impact, half of the demos covered two ideas, and 30%
had just one idea (Perception or Learning). One example was Pix2Pix
which was a website that modifies a picture in real time based on
drawings made by the learner16. Half of the demos covered two
ideas, for example Scrooby, a website that enables participants train
a cartoon based on movement perceived on the webcam. For one
of the demos, Art Climate Change17, it was not clear which AI big
idea was present. Half of the demos had an explanation of the big
ideas they covered.

Most activities focused on Perception. For example, Supervised
Polygons18, as shown in Figure 2, creatively used data on polygons’
shapes (Perception) to illustrate AI concepts with unintended con-
sequences (Social Impact). Most (84%) also focused on Learning; for
example, PlushPal used data from the movement of a microbit to
train a sound model. Half (53%) explained concepts; for instance,
in FarmBeats, learners could use AI to optimize their farms and
directly referenced AI4K12 big ideas.

Tools tended to cover at least three of the big ideas, most often
Perception, Learning, and Representation & Reasoning. For example,
the Personal Image Classification from App Inventor19, where users
could create, train, and test their image classifier and use it to create
a game. Most tools (75%) had an explanation of the big idea; for
example, Wekinator20 offered detailed descriptions of algorithms
used to train models.

Curricula such as AI4ALL and CuriosityMachine (Figure 1) were
the most comprehension, with 63% covered all the "big ideas". Some
curricula covered the ideas in narrow ways, focusing on a particular
technology. For example, Embeducation21 focused specifically on
word embeddings. Nearly all (90%) curriculum had explanations of
at least one of the five big ideas.

16https://www.tensorflow.org/tutorials/generative/pix2pix
17https://experiments.withgoogle.com/cold-flux
18https://supervised-polygons.github.io
19https://appinventor.mit.edu/explore/resources/ai/personal-image-classifier
20http://www.wekinator.org/
21https://embeducation.github.io

Figure 3: Examples of pedagogy integration from AI4All pro-
viding both direct instruction a) and active learning using
Cognimates.

3.3 Pedagogical Strategies
The third facet of TPACK is how teacher knowledge of technolo-
gies is tied to particular pedagogical strategies. To examine these
resources from this perspective, we analyzed the types of teaching
methods resources engaged (active learning, direct instruction, or
both) and the extent to which a resource accounted for learner prior
knowledge.

Overall, we found that all the resources use either exclusively
active learning or integrate active learning and direct instruction.
Every resource had some interactive component, whether support
for creating projects, training a model, or changing the model’s
parameters and seeing the outcome. We did not find any resources
that were designed for purely direct instructionwith no opportunity
for practice or tinkering.

Despite this consistency in pedagogy, resource genres varied
in their implementation. Demos, for example, primarily focused
on self-contained interactive activities with limited opportunities
for tinkering. Moreover, none offered any direct instruction, so it
would be up to teachers to integrate them into a broader pedagogical
strategy. InferKit22, for example, was a demo that uses a neural
network to generate text; it could support a range of pedagogical
strategies involving active learning but offered no detailed guidance
on how to do so.

Whereas demos offered unrestrained opportunities for tinkering,
activities offered more structured active learning experiences with
lightweight guidance. For example, Doodle Bot enabled participants
to create a robot trained to draw based on speech commands, offer-
ing direct step-by-step instruction in tutorial form. About half of
these resources offered multiple activities, with 27% giving learners
the option to choose their activity and 28% offering fixed sequences
of activities. For example, Code.org’s AI for Oceans structured mul-
tiple activities around training a model to identify fish from garbage,
unlocking activities as a learner makes progress.

Tools offered the most learner agency but also offered little
scaffolding. Most (62%) gave learners the choice of what activity
to do next. An example is RunwayML23, a tool for creating a video
with AI. Its environment offered several opportunities to build
knowledge in arbitrary sequences of tutorials.

Whereas all of the other genres generally offered relatively little
scaffolding, curricula offered the most structure and pedagogical
22https://app.inferkit.com/demo
23https://app.runwayml.com/



Figure 4: Some resources offered unplugged activities requir-
ing no device, including AI Ethics and Calypso’s activity
sheet.

support. The majority (63%) had a fixed sequence of activities. For
example, STEM UK24 was a curriculum with four sequential chal-
lenges, starting with an introduction of AI to later centering on
the role of AI in making transportation safer, cleaner, and better
connected. However, 26% allowed learners to make some choices
in their progression. For example, Machine Learning for Kids25
lets learners select activities based on project types, difficulty, and
program environment. Most curricula (84%) used both direct in-
struction and active learning methods. For example, Figure 3 shows
how AI4All combined direct instruction about overfitting with op-
portunities to tinker with overfitting a model by training a dog
classifier.

3.4 Educational context
The fourth facet of TPACK is the particular educational context in
which teacher knowledge is bound. To address this in our analysis,
we considered the kinds of educational contexts the AI resources
could support, asking: 1) what equipment they required, 2) if teach-
ers might need to prepare a particular technical setup to use the
resource, 3) if the resources were designed for a particular level,
age, or grade, and 4) if the resources were accessible on a tangible
or digital medium.

Overall, we found that 36% of the resources required some form
of setup either because of their use of hardware, specific technical
requirements such as libraries, or the creation of accounts. Most of
the resources (62%) were digital-only, but 30% required a physical
component, such as an unplugged learning activity or hardware
integration. Only 8% of the resources were exclusively non-digital.

Only 59% of resources explicitly noted age or grade level. Of
those 59%, most did not have implicit assumptions about either ed-
ucator or students’ prior AI and technical knowledge. For example,
Scroobly26, ModelZoo27, and Ml5 Tool28 required prior knowledge
of both CS and AI, despite being framed as learning resources.

Each genre had distinct context assumptions. Demos, for exam-
ple, all required computers with sufficient memory and compute
power as some of the AI models they used were RAM intensive,
24https://www.stem.org.uk/resources/collection/447030/grand-challenges
25https://machinelearningforkids.co.uk
26https://www.scroobly.com/
27https://modelzoo.co/
28https://ml5.js

Figure 5: The AI Ocean Activity failed to provide any feed-
back, even when the learner mislabeled fish images.

but none required a technical setup beyond a web browser. Of the
activities, 58% required some additional technical setup, and 25%
had instructions for age and grade levels. Those that involved hard-
ware, such as AIY kits for vision and sound 29, required significant
familiarity with hardware components and technical setup. More
than half (57%) of tools required a technical setup; all required
computers or mobile apps. Fewer than half (43%) offered specific
instructions regarding the age and grade levels of users. Curricula
had the fewest technical requirements, with only 33% requiring
configuration. However, all but two curriculum resources required
the use of computers; the exceptions, shown in Figure 4, included AI
Ethics30 and Calypso31, both of which involved activities that used
paper and writing utensils instead of computers. Most curricula
(77%) had age- and grade-based guidance, though several left the
intended audience unstated.

3.5 Support for practice and assessment
The fifth and last facet of our TPACK analysis concerns how knowl-
edge is deployed to develop students’ knowledge. We, therefore,
focused our analysis on how resources could support teachers in
facilitating practice and assessment, analyzing if each resource: 1)
provided support for practice and assessment, 2) provided opportu-
nities for personalizing the learning experience, and 3) supported
collaborative learning.

Overall, we found that 68% of the resources supported practice
and assessment, 64% provided opportunities for customizing the
learning experience by allowing teachers to either change the pa-
rameters of the resources or change the training data. In total, 40%
of the resources supported collaborative learning.

Demos offered the fewest support for practice and assessment:
only 33% supported repeated practice, only 22% allowed teachers
to customize the configuration for learning, and only 11% allowed
collaborative learning. None offered explicit support for assessment.

Activities tended to support practice (58%), often by allowing
users to engage more in customizing either the input for the AI
demo (i.e., record specific gestures like in the case of Plushpal32)
or by customizing the output of the demo by changing how the
demo output is displayed (i.e., Teachable Machine, allowing users
29https://aiyprojects.withgoogle.com/vision
30https://www.media.mit.edu/projects/ai-ethics-for-middle-school/
31https://calypso.software/
32https://www.plushpal.app/



to choose animations, text or sound). In total, 66% of activities sup-
ported the customization of the AI experience parameters, 58% had
support for the practice, and 33% supported collaborative learning.
Most activities offered no form of feedback on learners’ actions; for
example, the AI Oceans activity shown in Figure 5 allowed learners
to label fish however they wanted and offered no explanation of
how that might affect training.

Most tools (87%) offered substantial opportunities for practice.
For example, iNaturalist33 was a tool that used AI to support citizen
scientists in classifying organisms. It had a path to practice adding
IDs of an organism, comments, and observations before creating a
project. On this platform, participants could post as many projects
as they want. Most of the tools (75%) also allowed participants to
personalize and customize their creations. One of the tools that
do not allow it was Jukebox34, a neural net that generated music.
Jukebox let learners play with the creations of the model but unless
participants could run the model on their computer they could not
create their music. Another tool, AI Playground35, allowed users to
go more in-depth in modifying the AI parameters by controlling
the number of training cycles (epochs). In some cases, tools tried
to scaffold practice with activity sheets. Many sheets might be
confusing because they introduced many new terms and references.
For example, the activity sheet from Calypso (shown in Figure 4b)
was meant to support users to learn how to program a robot but it
could be difficult to grasp because it introduces a new programming
language together with a series of new icons and terms.

All of the curricula we could access had activities for partic-
ipants to practice AI concepts. For example, the AI and Machine
Learning Module at Code.org36 taught AI concepts at several differ-
ent levels. Most curricula (89%) had the option to input customized
data and personalized the outcome of the activities. Another exam-
ple in this group is AI Ethics. The last module in this curricula is
about YouTube re-design. Participants in this activity learn how
YouTube uses AI, select what features they want to re-design, and
have the option to present their mock-ups.

4 DISCUSSION
Overall, our analysis found the following:

• Intended use. Most resources, even those not designed for
teacher use, had guidance that conveyed intended use. But
the direction was often hard to find or required obscure
technical knowledge to find and comprehend.

• Content. While most of the resources covered many of the
AI4K12 big ideas, most did not cover all five, in most cases
overlooking Social Impact. Curricula were the most likely to
cover all five.

• Pedagogy. Most resources supported direct instruction and
active learning combinations, though few were responsive
to learners’ prior knowledge.

• Educational Context. Most resources had some form of device
dependency, constraining the learning and IT contexts in
which they were compatible. Demo hardware requirements

33https://www.inaturalist.org/
34https://openai.com/blog/jukebox/
35https://theaiplayground.com/
36https://studio.code.org/s/aiml-2021

could be quite prohibitive for schools that do not have access
to updated computers [26].

• Student Learning. While most resources offered substantial
opportunities for individual and collaborative practice with
AI concepts and skills, few offered assessment support or
learner feedback.

In someways, these findings reflect prior work on other classes of
CS educational technologies. For example, Kim and Ko’s evaluation
of coding tutorials found a similar focus on active learning, a similar
lack of communication about intended audience and context use,
a lack of responsiveness to the student prior knowledge, and a
disregard for formative and summative assessment [11]. Our results
also mirror Kelleher’s review of novice programming environments,
showing a bias toward tinkering over direct instruction [10]. Our
results also mirror the experience of educators who are currently
designing their AI curriculum and directly expressed the need for
support to combine the various AI resources and create a friendly
learners interface [20, 26].

Our evaluation adds to these prior works in two ways. First, our
results suggest that AI learning resources repeat some of the same
mistakes of non-AI CS educational resources. Second, our results
expand upon this, showing that many of the needs educators might
have in developing TPACK to use AI resources aren’t yet supported.
Most resources do not clarify their assumptions about learner prior
knowledge, required classroom resources context, alignment with
pedagogical strategies, or even intended use. Even many of the
curricula we analyzed were vague on these points. Some of the
resources were consistent with implications from recent studies
(e.g., leveraging personal data to an extent [16], embracing emerging
student skepticism about AI [6], and leveraging embodiment [25]).
But most resources did not meet basic pedagogical design principles,
let alone offer the information teachers need to develop TPACK
appropriate for successfully using the resources.

These findings have several implications for research. Future
work might explore creating design principles for CS educational
technology designers and understanding the barriers designers face
in meeting those principles. In some cases, research is needed to
achieve these principles. We see an opportunity for educators and
designers to develop a common language based on a common set of
guidelines, similar to the five big ideas [24]. For example, “features”
could be described as “observable detail of object”, “training” as
“machines learning from data”, and “model” as “application of what
the machine has learned”.

In terms of practice, our results suggest that until resource de-
signers are more explicit about the various dimensions of TPACK in
resource content, metadata, and design, teachers will have to make
complex judgment regarding what resources might be appropriate
for their students’ learning. The curricula in our corpus generally
fared best from a TPACK perspective (though not all were equal),
with only two at the time of this writing—Curiosity Machine and
AI4ALL—offering a clear path to adoption for teachers. Perhaps
with time, resource designers and educators will find better ways of
partnering, ensuring that all AI education resources can empower
teachers to better facilitate AI education for all.
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