
JASPER: An Eclipse Plug-In to Facilitate Software
Maintenance Tasks

Michael J. Coblenz
Computer Science Department

Carnegie Mellon University School of Computer Science
mcoblenz@andrew.cmu.edu

Amy J. Ko and Brad A. Myers
Human-Computer Interaction Institute

Carnegie Mellon University School of Computer Science
{ajko, bam}@cs.cmu.edu

ABSTRACT
Recent research has shown that developers spend significant
amounts of time navigating around code. Much of this time is
spent on redundant navigations to code that the developer previ-
ously found. This is necessary today because existing develop-
ment environments do not enable users to easily collect relevant
information, such as web pages, textual notes, and code frag-
ments. JASPER is a new system that allows users to collect rele-
vant artifacts into a working set for easy reference. These artifacts
are visible in a single view that represents the user's current task
and allows users to easily make each artifact visible within its
context. We predict that JASPER will significantly reduce time
spent on redundant navigations. In addition, JASPER will facili-
tate multitasking, interruption management, and sharing task in-
formation with other developers.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User interfaces; D.2.6
[Programming Environments]: Graphical environments, Inte-
grated environments, Interactive environments

General Terms
Design, Documentation, Human Factors

Keywords
Natural programming, Concerns, Eclipse, Programming Environ-
ments, Programmer Efficiency

1. INTRODUCTION
Software developers’ time is highly fragmented [2]. Interruptions
take them from their work regularly [6] and information that is
vital in their tasks is often unavailable, forcing them to defer their
work until later. Unfortunately, there are few ways that developers
can keep track of the information that was relevant to their task,
other than writing it down [9], using primitive controls like tabs
and scrollbars to mark relevant information [5], or simply relying
on their unreliable memory. Even when developers can work un-
interrupted, the lack of a mechanism for tracking relevant infor-
mation means that they must constantly re-find information, caus-
ing significant navigational overhead [5].

As software developers do their work, they frequently navigate
among numerous software artifacts, such as code, documentation,
and notes. Our research [5] has shown that software developers

spend approximately 35% of their time performing the mechanics
of these navigations in their IDE. Reducing this navigation time
would be likely to significantly improve developer productivity.

JASPER (Figure 1) is a new Eclipse plug-in that aims to remedy
this problem by providing a workspace for developers to gather
task-relevant information in a consistent, persistent, and straight-
forward manner. JASPER stands for Java Aid with Sets of Perti-
nent Elements for Recognition. Developers can create a separate
workspace for each of their tasks, and within each of these, add a
variety of task-relevant information. Such information includes
code fragments (defined at a line granularity and updated incre-
mentally as code changes), portions of documentation or bug de-
scriptions in HTML documents, and textual notes.

Artifacts are task-relevant pieces of data that form small, coherent
units. For example, a method implementation, a few contiguous
variable declarations, or a particular syntactic element such as a
certain for loop may all be artifacts. As developers do their
work, they locate relevant artifacts. In JASPER, users select a
relevant region and click the add button, and JASPER places the
artifact in the current working set, which represents a particular
task. All artifacts in a working set are visible in the working set’s
view for easy reference. Users can also easily access the context
of each working set item.

In addition to saving programmers’ time navigating, we believe
that JASPER may aid programmers in several other ways. Users
of the system can share task information with other programmers.
If a user is interrupted and cannot proceed with a particular task,
another user could continue, taking advantage of the information
collected by the first user. Working sets can be archived as part of
a version-control system. Then, when considering changes related
to a particular task, users may examine the previous working set
used. This may give context to future tasks, helping to answer
questions such as “why did the previous developer not notice this
bug?” The answer might be of the form “since a particular line of
code was not in the working set, the developer probably did not
know about a dependency.” It can also reveal dependencies: future
users may not understand all the dependencies involved, but in-

Figure 1. JASPER shows the working set for a user’s
task.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permission and/
or a fee.
OOPSLA Eclipse Technology Exchange 2006, Portland, Oregon, USA

65

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

 OOPSLA Eclipse Technology Exchange October 22 -23, 2006,
 Portland, Oregon, USA
 © 2006 ACM 1-59593-621-1/06/10...$5.00

Most up-to-date version: 06/22/2021

specting dependencies discovered by other users may help explain
the changes. Working sets can also be thought of as each repre-
senting a particular aspect of the software under development.
They may form a concise, convenient way of informally docu-
menting aspects in the context of aspect-oriented programming.
Working sets represent cross-cutting concerns, and as such, could
be used by the aspect-oriented programming community as docu-
mentation.

In this paper, we will describe some of the related work in this
area, and then describe JASPER’s use and implementation. We
will end with a brief discussion of some of the implications of
JASPER’s design on other software engineering tools.

2. RELATED WORK
Existing development environments do not support collecting
small segments of code. Instead, they force users to choose arti-
facts at the file or syntax granularity rather than the code granular-
ity. In Eclipse, users must first select a file to view and then scroll
through the file, or select an artifact from a long list. Because
artifacts are always shown in the context of their files, only a
small number of artifacts may be displayed simultaneously. The
result is that users typically must navigate away from relevant
code, requiring them to subsequently re-locate artifacts that were
previously visible.

Eclipse allows users to arrange multiple panes to try to have rele-
vant artifacts be visible. But this is too cumbersome. In the study
described in [5], users never arranged their Eclipse window to
show all the relevant information for their tasks. Even opening a
split view to show just two different regions of a file requires
dragging the file’s tab to create a split, dragging the file to put a
copy of the file in the previous pane, and scrolling each pane to
the relevant region. Furthermore, even if one were to do this, a
large portion of the screen would be occupied with only two arti-
facts. But in the study in [5], one task, for example, required arti-
facts from four different files, and each file typically had several
relevant artifacts. It would be impractical to manually arrange the
panes in Eclipse to show this information. In Microsoft’s Visual
Studio 2005 and Eclipse 3.2, only tabs and panes are available,
not overlapping windows. Previous versions of Visual Studio
included support for overlapping windows, but this feature was
removed, presumably because people found it too hard to use.

Although no other systems have the goal of providing an explicit
way for developers to create documents that represent their tasks,
other systems have had related goals. The Desert environment
allowed users to save and view fragments of course files, but its
views did not show the fragments in full [7]. Eclipse has, as of
version 3.1, a feature already called “Working Sets,” but it is very
limited. It essentially acts as a filter on the existing Package Ex-
plorer, limiting the view to files or projects chosen for a particular
working set. Although this may help, its functionality is extremely
restricted. Mylar [4] is an Eclipse plug-in that helps users collect
and view frequently used artifacts (as opposed to artifacts explic-
itly chosen by the developer). Like JASPER, Mylar displays task-
relevant data to reduce the time that programmers spend on navi-
gation. However, instead of displaying the contents of the arti-
facts, Mylar only displays the name of each. Mylar shows a list of
elements of the Java model that are relevant according to a
degree-of-interest model, which considers user actions such as
navigations and edits to infer user interest in artifacts. However,
Mylar is limited to showing these syntactic elements: it cannot
represent arbitrary sequences of lines of code, such as the first
three lines of the body of a certain for loop. These artifacts were

shown in [5] to be relevant to programmers, so this limitation
hinders Mylar’s ability to show relevant information.

FEAT [8] represents artifacts as concern graphs. A concern repre-
sents task-relevant data, and consists of syntactic elements. Users
must learn to use FEAT’s interface to navigate various kinds of
dependencies among elements to locate relevant elements. The
result is a graph of elements where the edges in the graph are
relationships between elements. But the study in [5] showed that
relevant artifacts are not limited to those kinds of items; some-
times only a line or two of a large method implementation is rele-
vant. Furthermore, FEAT does not facilitate viewing the contents
of many elements in a concern simultaneously, as JASPER does.
An extension to FEAT, described in [10], allows the system to
automatically infer concerns from a user’s interactions with the
IDE. FEAT, in addition to helping navigation, helps users find
relevant artifacts. JASPER does not have this goal, since many of
the dependencies expressible in FEAT are already navigable in
Eclipse. A related tool, ConcernMapper [11], facilitates creation of
new kinds of concerns, but the focus is still on maintaining a list
of artifacts; the tool does not help users see the contents of all the
relevant artifacts simultaneously.

JQuery [3] is a query language for Java code to help users visual-
ize the structure of a search through software. However, JQuery
does not help manage tasks or working sets. Instead, it helps users
record the history of their searches through the source code. The
resulting representation does not directly represent the working
set; it instead represents the search.

3. WORKING SETS IN JASPER
JASPER is an Eclipse plug-in that maintains a list of working sets
on which a user is working. Each working set consists of several
working set items. A working set is intended to correspond to a
particular task, or goal, that the user intends to accomplish. For
example, a user might be working on a small drawing application,
and have several tasks: fix the “undo” feature; add a tool for draw-
ing lines; and permit users to change the thickness of drawn lines.
Another example might be a refactoring unsupported by auto-
mated tools, which requires a careful inspection of several parts of
a system that are distributed amongst several source files.
In Figure 2, a user of JASPER has created a new working set by
clicking the New button, and named it according to the task: add a
thickness slider to the Paint program. Double-clicking a working
set icon opens a pane that displays the contents of the working set.
Users may also load a saved working set from a file by clicking
the “Open…” button and save an existing working set by choos-
ing the “Save” item in the File menu.
After creating a working set, the user continues to work as usual.
When the user finds a relevant artifact, it can be easily added to
the working set. There are many ways to create a new item:

• Dragging a URL into the working set creates a new URL item
for any web content. Dragging text in creates a new text item
whose contents are initialized to that text.

• When a text editor or Java editor has the focus, an “add” but-
ton, , appears in the toolbar (see the top of Figure 1). When a
user clicks this button, JASPER adds the selected text or Java
code to the working set. The user can later retrieve the context
of the item by double-clicking on the working set item or click-
ing a magnifying glass icon in its title bar. JASPER then opens
a standard Eclipse Java editor for the file and scrolls it so that
the item is visible. If an editor for that file is already open,
JASPER re-uses it and just scrolls to the correct place.

66

• When a working set view has the focus, a “new note” button,
, appears in the toolbar (see top of Figure 3). When a user

clicks the button, JASPER creates a new, empty text item.

Figure 3 shows a working set that contains three items: a web
page with documentation for JSlider, a text note, and some
Java code. The Eclipse toolbar is visible at the top, including the
“new note” button and the “auto-layout” button, described below.

Figure 3. A working set that includes three items.

The interaction with existing working set items is modeled after
the standard GUI windowing paradigm. Working set items behave
similarly to windows: they can be dragged or resized, and closed
when no longer needed. This windowing approach is familiar to
users and consistent with traditional interaction techniques. The
working set view provides a workspace in which users may ma-
nipulate working set items; items may not leave the view. All
items have a title bar, which shows information about Java items
and URL items.

When creating Java items, JASPER automatically chooses a size
that fits the contents. However, JASPER does not have enough
information to choose a correct size for empty text items (it can-
not be known a priori how much text the user will type) and for
web pages (only a small part of a large page is likely to be rele-
vant).

Even though JASPER can size Java items correctly initially, fur-
ther edits may change the appropriate size. Since the user may
have positioned items manually, it would be inappropriate for the
system to automatically resize items after changes. Even if resiz-

ing were acceptable, it would be likely to obscure an adjacent
item, requiring items to move automatically. But this would inter-
fere with the user’s spatial memory of the locations of items.
Therefore, each item has a resize widget in the lower right corner.

Java items each consist of a contiguous sequence of lines of
source code from a file. If the code corresponding to the working
set item is edited, the text shown in the working set item is up-
dated immediately. If the original file is edited above the working
set item, JASPER ensures that the working set item is updated so
that it displays the same code. The code is formatted exactly as it
was in the original view, including syntax coloring and indenta-
tion so it will look familiar to the user. However, when necessary
to fit all the items in the view, the code is shown using a smaller
font so that more code will fit in the working set view at the same
time.

Java items are not directly editable in the item view. This is be-
cause, in informal observations of developers [5], users almost
always preferred to see large amounts of context when editing.
Therefore, developers will be unlikely to make any significant
edits directly in the tiny working set view, so the space that would
be required for the necessary controls, such as scroll bars, is better
used to display other items. When clicked, then, instead of dis-
playing an insertion point, Java items can be dragged. This makes
the drag region significantly bigger, which is useful since it is
expected that dragging will be a relatively common operation.

URL items uniquely identify particular web pages. A URL item
displays the web page with scroll bars so that the user can choose
which portion of the page to view. URLs are commonly used for
referring to bugs (e.g. Bugzilla bug reports) and documentation.
Javadoc is typically viewed in an external web browser, which
would normally require frequent switching between the IDE and
the browser. But JASPER allows users to keep frequently used
items, such as documentation, visible in the IDE. URL items be-
have as the platform-default web browser does. For example,
links are clickable, and images are properly rendered. However, to
reduce space requirements, there are no additional browser con-
trols on the URL items, such as back and forward buttons. When a
user clicks the magnifying glass icon in the title bar, JASPER
opens the page in the platform-default external web browser.

Text items allow users to record notes and information about the
task. These items are editable within JASPER, since they are in-
tended to be used for taking notes and recording information. Text
items may be copied from text files or entered directly by the user
using JASPER. Because text items are part of the content of the
working set document, and not pointers to content like code and
URL items, there is no magnifying glass icon. Since text items are
editable, they include scroll bars. This enables maximum flexibil-
ity: users can have many or only a few text items, and they can
choose to have only a portion of certain items visible — some
portions may be irrelevant. The scroll bars then serve as a visual
indicator that some information is not currently visible.

4. AUTOMATIC SIZING AND LAYOUT
We designed JASPER to represent code and other content literally,
as in Figure 1, rather than as a list of summaries or some more
succinct and automatically laid-out view. One consequence of this
decision is that manually positioning each item could be a time-
intensive operation, especially since upon adding an item users
might need to rearrange several other items to make room. In-
stead, JASPER automatically chooses a size and location for each
new item. The size is chosen to be just large enough in each di-
mension such that the text of the item fits inside it. The position is

Figure 2. A list of working sets, containing one item.

67

chosen so that the new item does not overlap with any other item
being displayed. Because choosing the position optimally is NP-
hard, JASPER uses an approximation of an optimal solution.
JASPER automatically shows the working set so that the items are
as large as possible while still fitting in the view. The scale of the
items is selected automatically when items are added, moved, or
deleted, and is constrained so that the text never gets too large. If
an added item does not fit, the scale of the entire working set view
is decreased so that there will be enough space to fit all of the
items. The font size is proportionally decreased, in addition to
making the items smaller, so that all the text of the items remains
visible. If an item is removed, JASPER checks to see if the entire
view should be rescaled so it is larger.
Figure 4 shows how JASPER displays the working set from Fig-
ure 1 in a smaller pane. Each item is automatically scaled down so
that the entire working set is visible.

Figure 4. Same as Figure 1, but using a smaller pane.

When scaling working set items, the title bar text remains the
same size—only the item content is scaled. This allows users to
still distinguish items using the text in the title bar. If the title bar
text were scaled, then items could become completely indistin-
guishable except for location and shape. By not scaling the title
bar text, JASPER ensures a minimum height for all items. How-
ever, if the user continues to add items, then the titles continue to
become narrower to accommodate new items, and would eventu-
ally become too small to read. However, we believe this would be
unusual in practice since this would only be necessary when there
are several dozen items, which is significantly larger than the
working sets seen in [5]. Future work will be necessary to deter-
mine how large real working sets become. JASPER does not scale
URL item content because of implementation difficulties: the
SWT Browser widget does not support scaling.
If the user explicitly repositions an item or changes its size, that
item is not moved when items are added or removed. This enables
users to develop a spatial memory of items.
The incremental layout can be improved on: if the system could
arrange all of the items at the same time, the heuristic is likely to
produce a better arrangement. However, doing this automatically
would result in an unexpected, counterintuitive change, since
users are likely to develop a spatial memory for the positions of
the items. For this reason, JASPER only moves all items on user
command. JASPER has an “auto-layout” button, which rearranges
all of the working set items according to its heuristic. The button,

 , is visible in Figure 3 at the top.

Details about the implementation of automatic sizing and layout
are described in [1].

5. REFERENCING CODE
Implementing Java working set items presents a challenge, since
the source code files containing the code fragments in a set may

change as other developers on a team submit changes. For exam-
ple, if changes are imported from a version control system to a file
that the working set refers to, the location of the item may change.
In fact, the item itself may change: lines may be inserted or re-
moved, and the item may disappear entirely. JASPER must detect
these changes in a robust fashion when the file is loaded and,
where possible, repair references to working set items.
To facilitate reference repair, references to Java code consist of the
project name, a path within the project to the file containing the
code, and the line numbers of the beginning and end of the item.
In addition, JASPER stores as a string the text of the item as it is
currently known each time the item is archived.
JASPER must be robust to changes, but alert the user if it was
unable to find the referenced item. There must be some tolerance
for imperfect matches so that the item will be maintained even if it
has been edited. Therefore, JASPER performs a search in the new
file for the code in the item as it was last saved. Every line in the
new file is scored: +1 if it matches some line of the item, and -1
otherwise. Then, JASPER finds the region that defines the maxi-
mum contiguous subsequence sum of scores. Ties are broken by
biasing the results toward the location of the original item. This
allows for lines that do not match as long as enough of the sur-
rounding lines do. If more than half of the found region was not in
the original item, the user is alerted by displaying the found region
with a bright red background. In Figure 5, the lines directly above
the shown line were part of the working set, but the entire work-
ing set item contents were deleted from the file outside Eclipse.

Figure 5. The working set item could not be found, so nearby
text is shown with a red background.

If changes to the referenced files are made using Eclipse, JASPER
detects these changes and updates the working set item’s reference
to the changed code. This enables different treatment of edits
made using Eclipse than edits made outside. JASPER adds itself
as a listener to the document that represents the file containing the
item. Then, when a change is made to the file anywhere in
Eclipse, JASPER is notified. The reference to the working set
item is updated so that it still points to the same text. However, if
the edit modifies the item itself, the reference is updated to in-
clude the union of the old item text and the new item text. This
ensures that any lines the user marked as relevant are kept, and
also that their replacement code is kept as part of the working set
item. If the stricter approach of including only lines that existed
before the change were taken, then as the user made changes, the
working set items would slowly grow smaller and smaller, and
might eventually not include the relevant code.

6. FUTURE WORK
One useful extension to JASPER would be to add other ways to
add items to working sets. Mouse gestures could be used to select
items; for example, circling a block of text could add the circled
text to the working set. There should be a keyboard shortcut for
creating working set items. A choice should be added to the con-
textual menu for code, text, and web pages to add the selected
item to the working set. URLs can already be dragged and
dropped into the working set view, but it should be possible to do
so with text and Java code as well.
In addition to these manual methods of adding items to working
sets, there may be automatic approaches that are not excessively

68

intrusive. The system could take advantage of navigations and
other actions that users already perform — for example, automati-
cally adding any edited items. Also, a special kind of working set
item could always display several automatically-derived items not
in the working set, and users could click a button to easily add a
particular item.
JASPER should be integrated with other research systems that
complement it. An artifact recommender, such as Mylar, could
suggest potentially relevant items. Working set items could also
contain arbitrary FEAT [8] concerns, allowing more versatile and
robust working set items.
References to code may need to be adjusted to reflect more
closely the external changes that happen most frequently when
JASPER is in use. JASPER scores lines; it could instead work on
a per-character or whitespace-delimited token basis, or it could
use a minimum edit distance model like UNIX diff.
We are currently planning a public release of JASPER. A version
of JASPER that recorded anonymous usage statistics would be
released. These statistics, with the user’s explicit permission,
would be sent to the experimenters for analysis. Using this data,
we could evaluate whether users find JASPER to be a useful tool.
This would also be a valuable way of gathering direct feedback
from users, and is especially important for evaluating how well
JASPER scales when used on real problems.

7. EXTENSIBILITY OF ECLIPSE
Eclipse is an immensely extensible environment for software de-
velopment. Extension points allow plug-ins to add functionality to
many different features of Eclipse. This permitted development of
JASPER, which would not be possible in most other existing
IDEs. However, we were greatly hindered by the poor documenta-
tion of Eclipse and SWT. The class used to display Java code,
CompilationUnitEditor, is an internal Eclipse class, not
for public use, but we needed to use it in order to make Java items
look the same as the original code. Documentation is frequently
available in the form of JavaDoc for individual classes and some
tutorials, but information about the architecture of the system is
difficult to find. This makes answering questions like “which class
should I use for X?” and “I have an instance of class X; how do I
get an instance of class Y?” very difficult.

Plug-ins indicate to Eclipse how they integrate with the platform
via an XML file. Unfortunately, the tags used are poorly docu-
mented. For some tags, there is a “not yet implemented” warning,
but no reference to the appropriate tag to use for that functionality.
Errors in this XML are nearly impossible to debug because
Eclipse gives no feedback when errors occur. For example, when
adding a button to the toolbar, it is necessary to fill in several at-
tributes of an XML tag, and when the wrong values are given, the
only feedback is that the button does not appear.
The SWT drawing system lacks basic features like transparency,
so some approaches to showing working set items were impossi-
ble. A two-week-long attempt to port the system to Draw2D and
the Graphical Editor Framework ended in failure because of poor
documentation, complex model requirements and complex inter-
actions among classes, and great difficulty in customizing default
functionality of GEF. We hope that in the future, developers of
Eclipse will focus more on creating high-quality documentation.

8. CONCLUSIONS
The design of JASPER was driven by the results in [5]. Data
about how real programmers use Eclipse has led to inspirations

for new tools that otherwise might not have been designed. Ob-
serving how users refer to many different artifacts suggested that a
tool like JASPER would be useful. However, because the code
that users modified in [5] was only 508 lines long, future user data
will be needed to see how JASPER scales with larger projects. We
are confident that our user-centered approach to tool design will
continue to provide insights for tool design and refinement.

9. ACKNOWLEDGMENTS
This work was funded in part by the US National Science Founda-
tion (NSF) under grant IIS-0329090 and as part of the EUSES
consortium (End Users Shaping Effective Software) under NSF
grant ITR CCR-0324770, and by an IBM Eclipse Innovation
Award. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect those of the NSF.

10. REFERENCES
[1] Coblenz, M. J. JASPER: Facilitating Software Maintenance

Activities With Explicit Task Representations. M.S. Thesis.
Technical Report CMU-CS-06-150, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA. 2006.

[2] Gonzalez, V. M. and Mark, G. Constant, Constant, Multi-
Tasking Craziness: Managing Multiple Working Spheres. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, Vienna, Austria, 2004, 113-120.

[3] Janzen, D. and De Volder, K. Navigating and querying code
without getting lost. In Proceedings of Aspect Oriented Soft-
ware Development, Boston, Massachusetts, 2003, 178-187.

[4] Kersten, M. and Murphy, G. C. 2005. Mylar: a degree-of-
interest model for IDEs. In Proceedings of Aspect-Oriented
Software Development, Chicago, Illinois, March 2005, 159-
168.

[5] Ko, A. J., Myers, B. A., Coblenz, M. J., Aung, H. H. An Ex-
ploratory Study of How Developers Seek, Relate, and Collect
Relevant Information during Software Maintenance Tasks.
IEEE Transactions on Software Engineering, 33(12), De-
cember, 2006, to appear.

[6] Perlow, L. The Time Famine: Toward a Sociology of Work
Time, Administrative Science Quarterly, 44, 57-81, 1999.

[7] Reiss, S. P. The Desert environment. ACM Transactions on
Software Engineering and Methodology 8(4) (Oct 1999),
297-342.

[8] Robillard, M. P. Representing Concerns in Source Code.
Ph.D. Thesis. Department of Computer Science, University
of British Columbia. November 2003.

[9] Robillard, M. P., Coelho, W., and Murphy, G. C. How Effec-
tive Developers Investigate Source Code: An Exploratory
Study. IEEE Transactions on Software Engineering, 30(12),
889-903, December 2004.

[10] Robillard, M. P. and Murphy, G. C. Automatically Inferring
Concern Code from Program Investigation Activities. In
Proceedings of the 18th International Conference on Auto-
mated Software Engineering, 225-234, October 2003.

[11] Robillard, M. P. and Weigand-Warr, F. ConcernMapper:
Simple View-Based Separation of Scattered Concerns. In
Proceedings of the Eclipse Technology Exchange at
OOPSLA, October 2005.

69

