
Let’s Go to the Whiteboard:
How and Why Software Developers Use Drawings
Mauro Cherubini

CRAFT
École Polytechnique Fédérale de Lausanne
Station1, CH-1015 Lausanne, Switzerland

mauro.cherubini@epfl.ch

Gina Venolia and Rob DeLine
Microsoft Research

One Microsoft Way, Redmond, WA 98052
gina.venolia@microsoft.com
rob.deline@microsoft.com

Amy J. Ko
Human-Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Ave, Pittsburgh PA 15213

ajko@cs.cmu.edu

ABSTRACT
Software developers are rooted in the written form of their
code, yet they often draw diagrams representing their code.
Unfortunately, we still know little about how and why they
create these diagrams, and so there is little research to
inform the design of visual tools to support developers’
work. This paper presents findings from semi-structured
interviews that have been validated with a structured
survey. Results show that most of the diagrams had a
transient nature because of the high cost of changing
whiteboard sketches to electronic renderings. Diagrams that
documented design decisions were often externalized in
these temporary drawings and then subsequently lost.
Current visualization tools and the software development
practices that we observed do not solve these issues, but
these results suggest several directions for future research.

Author Keywords
Software visualization, diagrams, exploratory/field study.

ACM Classification Keywords
H.5.3 [Group and Organization Interfaces] Computer-
supported cooperative work; D.2.10 [Design]
Methodologies, Representation

INTRODUCTION
Diagrams are important tools in every design and
engineering discipline. They support reasoning and problem
solving [15,21] and in some disciplines, such as civil
engineering [7] or mechanical prototyping [10], diagrams
are fundamental to practice.

Few studies, however, have investigated diagram use in
software development activities. While we might expect a
similar use of visual representations in such work, other
research suggests that developers are bound to the written
form of their code, and so source code editors are the most-
used tools for design despite being considered less effective

than paper or whiteboards [16]. This suggests that there
may be fundamental differences between software
engineering and other types of engineering.

To begin to describe these differences, we performed an
exploratory study of how and why developers draw their
code. As industrial software development happens in teams,
we additionally focused on the social practices around
diagrams and visualizations. This provided a social
perspective that was essential to understand group
dynamics. We started with some research questions:

A. How do engineers use diagrams in their work?
B. Why do engineers use diagrams in their work?
C. What graphical conventions do engineers use?
D. What is the culture around these drawings?
To answer these questions we conducted a field study at
Microsoft Corporation to assess developers’ perspective on
these issues. This involved an initial recruitment survey, a
series of interviews, and a final survey, which helped assess
the generality of our findings with a larger group of
developers. We found that diagrams play largely a
supportive role in software design and that drawings are
often ephemeral because of the labor involved in translating
them into more permanent forms. These findings and others
provide useful insights into the design of a wide array of
software-visualization tools as well into the use of diagrams
in design work in general.

The next section will present some related field studies
reporting results of software visualization. Then we will
describe our methodology detailing the results of our
investigation. We will then discuss the implications of our
findings for software development and for collaborative
design work in other disciplines.

DEFINITIONS AND RELATED WORK
In this research we will use many synonyms of the word
diagram, including visualization, sketch, representation,
and others. All these words are used to mean a simplified
and structured visual representation that shows entities and
relationships representing the architecture or
implementation of a software system. These diagrams might
represent any of the architectural aspects of software
system, e.g. class inheritance, data flow, flow charts, state

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2007, April 28–May 3, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-593-9/07/0004...$5.00.

CHI 2007 Proceedings • Programming by Professionals April 28-May 3, 2007 • San Jose, CA, USA

557 Most up-to-date version: 06/22/2021

machines, sequence diagrams, database tables and
relationships, architectural layer diagrams, relationships
between servers and clients, etc. [19]. For the purposes of
this paper, diagrams can be rendered on several media:
sketches on a whiteboard, in an engineering notebook, on
scrap paper, on a Tablet PC, or other medium; reverse-
engineering visualizations produced by tools such as
Source Insight (an integrated development environment),
Visual Studio’s Class Designer (a diagramming tool in
Visual Studio), SQL Server Management Studio’s Database
Designer, or other reverse-engineering tools; and drawings
in Visio, PowerPoint, etc., or even ASCII art in source files.

Diagrams of these types have been studied extensively in
other design disciplines [10]. There are a number of
findings that may be relevant to the study discussed in this
paper. For example, in studies of other work domains,
designers sketch for four different but intertwined reasons:

• To share: Diagrams play a major role in communication
[22], as they externalize internal thought making it
visible to self and others [21], reifying the mental model
for others to act upon.

• To ground: Human communication embeds ambiguous
interpretations that need to be clarified in conversations
[3]: diagrams can serve this purpose.

• To manipulate: By externalizing a mental model in a
drawing, part of the cognitive process needed to hold it in
memory is relieved and other operations can take place,
like joining different parts, evaluating the design,
checking the consistency, etc. [1]. Once externalized,
these phases can happen collaboratively, capturing joint
attention and enabling gesturing [1,8].

• To brainstorm: Ambiguity in sketches is a source of
creativity. Unintended interpretations and ideas can arise
when inspecting an initial arrangement of a sketch [20].

The cognitive implications are manifold: diagrams support
communicating, capturing attention and grounding
conversations [4]. They reduce the cognitive burden of
evaluating a design or considering new ideas [13]. Unlike
sketching buildings or mechanical parts, code is an abstract
entity with few spatial features other than the visual layout
of code within a source file. This means that unlike
cartography or architectural renderings the representation of
code does not follow any intrinsic spatial mapping.

Studies of software development practices also suggest
some roles of diagrams in the work. For example, one
reason developers might need to create and maintain
complex mental models of their code [16] is that design
information is not codified in a persistent manner:
documentation of the code is scarcely used during
development because it is often outdated and the diagrams
that are created in this process may not persist. There is also
evidence that software developers use whiteboards to
support face-to-face conversations in service of awareness

and knowledge sharing [18]. One common problem-solving
strategy is for a developer to walk to a teammate’s office
seeking for contextual information and brainstorm over the
problem they are facing [2,12,17].

Given this prior work, diagrams and drawings seem to have
an important role in software development, but we have
little understanding about the extent to which they are used,
and how their use compares to the use of diagrams in other
disciplines. This knowledge is important in designing any
kind of support tool for software development, and it may
also help reveal fundamental aspects of diagram use across
different engineering disciplines.

We were informed in part by socially distributed cognition
theory, which argues that work occurs not only within
people’s mind, but also between people, artifacts and tools
[13]. Unlike other studies from this perspective [2,18],
however, our study specifically focuses on diagrams as
artifacts in a social context.

METHOD
We used semi-structured interviews and surveys in our
investigation. An initial survey allowed us to recruit
interview participants. The interviews helped us understand
what kinds of representation were used, for which reason,
by which modalities, and in which media. From the
interview results we developed a model of drawing use, and
then validated it with a large-scale survey.

Interview recruitment
Recruitment for interviews was based on whether a
developer used visualizations of any sort and whether any
of these artifacts were placed in the person’s personal or
shared workspace. We focused specifically on developers
who already used diagrams in order to assess under which
conditions diagrams were used for their individual and
collaborative work. Investigations of developers who did
not use diagrams were left for future work.

To select the participants we deployed a short survey to a
randomly drawn sample of 350 Microsoft developers.
Besides asking for some biographical facts, the aim of the
survey was to gain knowledge on the two factors above.
Sixty developers responded to our survey within a week, 45
of whom stated that they used code diagrams in their work.
Fourteen respondents stated that they had diagrams

Pseudonym Title Historian Team Size Product
Andrew SDE No 3 Data tools
Geremy SDE Yes 7 Communication
Tom SDE Yes 30 Entertainment
Colin SDE No 6 Mobile device tools
John Architect No > 100 Development tool
David SDE No 8 Advertisement
Ray Lead No 20 Input device UI
Nigel SDE No 20 Multimedia

Mu

Table 1: Developers interviewed and details about their role and
their team size. These are sorted by interview date.

CHI 2007 Proceedings • Programming by Professionals April 28-May 3, 2007 • San Jose, CA, USA

558

displayed in their office space. Out of this last group we
interviewed 9 developers, stopping after we felt that we
were hearing similar answers from the respondents.

Table 1 contains the details of the interview participants
along with pseudonyms that we will use in the next sections
when describing anecdotes. A group “historian” is the
developer lead or the person whom has been with the
project the longest.

Interview protocol
The first two authors conducted the interviews, which
typically lasted 45 minutes. After introductions, we
explained the goals of the study, that their answers would
be anonymous, that they could decline to answer any
question, and that they could terminate the interview at any
time. Additionally, we asked permission to audio record the
conversation and photograph drawings that they showed us.

During the interview, we followed a list of questions that
was organized in four functional areas: WHAT (e.g.,
“Please, tell me something about this visualization.”), WHY
(e.g., “Why did you produce this visualization?”), WHEN
(e.g., “When did you use it last? For what purpose?”), and
HOW (e.g., “How do you use it?”). We did not ask the
questions sequentially but we tried to respect the flow of the
conversation, always trying to touch a couple of points in
each of the four areas.

Survey
We performed a preliminary analysis of the drawings that
the interview participants showed us or described. We
clustered them based on the situation in which they were
created, and identified nine recurring scenarios where
drawings were produced by developers. The scenarios are
described in the Motivations and Scenarios section, below.

To learn more about the scenarios we performed a survey.
We identified over thirty questions we wanted to ask about
each scenario. Rather than having survey respondents
answer questions about all scenarios, we created a family of
six surveys, where each respondent answered regarding
only three scenarios, and each scenario appeared in two
surveys. We controlled the order of the scenarios within the
surveys so that a scenario appeared either in the middle in
both surveys, or first in one and last in the other. The
surveys were implemented as intranet web pages.

We filtered the Microsoft address book to find the 8,570
full-time employees with titles indicating that they were
software developers, development leads, or architects. We
deployed each survey to 400 people selected randomly in
non-overlapping sets from this list. In an effort to increase
participation, we gave US$100 gift certificates to five
randomly-selected survey respondents.

We received 427 responses overall (18% response rate), 60-
76 responses to each survey, resulting in 130-152 responses

per scenario. Respondents were 81% software developers,
11% development leads, 5% architects, and 3% other.
Respondents were 7% female, 85% were 20-39 years old,
and the median as a professional developer was 7 years.

RESULTS
In this section we describe the visual conventions
developers used in their drawings, and then describe the
scenarios where developers use drawings. Where possible,
we provide quotes from the transcript of the interviews,
which have been edited for clarity. Italics in the captions
indicated vocal emphasis from the speaker.

Visual conventions
Developers used a variety of informal visual conventions,
often mixing them freely. Boxes-and-arrows diagrams were
by far the most common, representing entities and the
relationship between them (Figure 2, Figure 3, and Figure 4).
Iconic pictures were used instead of boxes to represent
special kinds of entities, e.g. database (cylinder), OLAP data
cube (cube), computer (CPU tower), or person (stick figure).
Circles were used instead of boxes to represent states in
state-transition and security threat model diagrams. Boxes
or their equivalents were almost always labeled with text.
The size of the box sometimes encoded the importance or
size of the entity being represented. They were sometimes
grouped into higher-order structures, usually using large
boxes or dividing lines.

> During meetings we sketch block diagrams now and then. Not necessarily
complicated. In this case the boxes represent components or object entities
that can live in this scenario. We tried to distinguish big pieces from small
components, highlighting things that are more important. [Colin]

> We used this drawing to explain who is contained in whom, who manages
whom or who maintains whom. [Colin]1

Relationships between entities were usually represented
with arrows. They were almost always directed and
generally pointed rightward or downward (though some
drawing types had different conventions, such as class-
inheritance where arrows pointed upwards). Arrows were
sometime labeled, or numbered to indicate sequence. Often
the type of relationship represented by an arrow was not
explicitly stated, even when multiple types of relationships
were present.

> In a deep dive of a data structure we use boxes and arrows to show the
points of connectivity, inheritance, etc. between two teams, one working on
the data structure and the other working on the main system. [John]

> Being a database designer, I use a lot of Visio to produce ERD diagrams.
We have projects with thousands of tables partitioned over several

1 To explain the nature of the relationships in the code and in their
drawings, developers often used anthropomorphic metaphors. The
“whos” in this quote referred to classes in the code that were
represented in the drawing with some boxes. These references
were consistent with Herbsleb’s observations [11].

CHI 2007 Proceedings • Programming by Professionals April 28-May 3, 2007 • San Jose, CA, USA

559

databases. Sometimes we produce diagrams to show the data flow in the
system. [Daniel]

Boxes were abutted, in lieu of arrows, when there was a
simple chain of relationships between the entities, and for
architectural layering models. One-to-many relationships
were represented by revealing a second box slightly down
and right, graphically suggesting a stack of boxes. We
observed many types of entities in diagrams, including
classes, methods, executable binaries, processes, databases,
database tables, hardware devices, UI screens, states,
process steps, and people. We also observed many types of
relationships, such as inheritance, data reference (e.g.
pointer or foreign-key), data access (“talks to”), procedure
call, message passing, transition, and containment.

The boxes were arranged such that related things were close
in proximity. Boxes were arranged so that relationships
“flowed” in a dominant direction, usually left-to-right or
top-to-bottom. Colors were rarely used to encode meaning.

Results from the survey showed that the adoption of
standards of any sort and the level of accuracy in the
diagrams was low across all the scenarios (Figure 1f, which
is explained in the next section).

Motivations and Scenarios
Based on our interview notes we identified nine scenarios
where developers employed drawings. We categorized the
scenarios on two independent dimensions: the developer’s
motivation in creating the diagram, and the stage of
investment in producing it. The association between the
scenarios, motivation, and investment is shown Table 2,
where we identify each scenario with a short phrase. Each
scenario is described in detail in this subsection, which is
organized by motivation. We will return to the stages of
investment in the next subsection.
 Motivation →
 Understand Design Communicate

Transient 1) Understand 3) Refactor
Reiterated 2) Ad-hoc 5) Onboarding

6) Secondary
stakeholders

Rendered 4) Design review 7) Customer

←
 In

ve
st

m
en

t

Archival 8) Hallway art
9) Documentation

Table 2: The model of diagram use derived from interviews and
survey responses. Scenarios are categorized by the developer’s

motivation for creating the drawing and the developer’s
investment in the evolution process of the drawing.

We found three main reasons why developers produced
visualizations: to understand, to design and to
communicate. There is a natural progression to these
motivations: a thing must be understood before it can be
designed, and must be designed before it can be
communicated. We assigned each scenario to one of these
motivations . There was variation in the importance of each
scenario to the developer’s work, and in the importance of
the drawings in the scenario, as shown in Figure 1a.

Scenarios motivated by understanding
Developers maintained complex mental models of their
code during development and used diagrams to update and

Figure 1: Survey results per scenario (see text).

CHI 2007 Proceedings • Programming by Professionals April 28-May 3, 2007 • San Jose, CA, USA

560

expand these models as familiar code evolved and while
exploring unfamiliar code. We observed two scenarios
where our interviewees used diagrams in this way.

1) Understanding existing code: Developers examined the
source code and its behavior in order to develop an
understanding of it. Survey respondents rated this as the
most important of the nine scenarios (see Figure 1a, which
shows that 95% of survey respondents agreed or strongly
agreed with the statement, “Participating in this activity is
an important part of my job function”), as well as the one
they engaged in most frequently (Figure 1d). It was the
scenario most likely to be done alone, but was often
performed in small groups (Figure 1e). Drawings were not
particularly important to save in this scenario (Figure 1a).

> Before I go to someone else to ask for specific information I try to
understand the thing for myself. In this case I sketch a diagram on everything
that is available. In this way I am not wasting someone else’s time. [Nigel]

> States are almost invisible in code. We draw state diagrams for threat
modeling. [Geremy]

In all scenarios, sketches predominated, reverse-
engineering tools were used least, and computer-based
drawing tools were used an intermediate amount (Figure
1b). Reverse-engineering tools were used to a limited
degree in this scenario, but less than many others.

> I remember this one time where I wanted to quickly see the inheritance of a
bunch of classes. So I quickly created a diagram with the Object Browser
feature of Visual Studio and then I throw it away. [Colin]

As for almost all scenarios, office whiteboards were the
most common medium for sketches. This was one of the
scenarios in which paper-based sketches were most
prevalent (Figure 1c). Developers were the least concerned
with accuracy in these drawings and the least likely to use a
graphic standard (e.g., UML: Unified Markup Language)
(Figure 1f).

2) Ad-hoc meeting: When a developer reached an impasse
while trying to understand existing code or needed to vet a
design decision with a teammate, he would walk to another
developer’s office, interrupt her, and then engage her in a

brief discussion. Impromptu meetings like this were crucial
for transferring knowledge among the development team.
This was among the most-frequent scenarios (Figure 1c).

As the discussion progressed, sometimes one of the
participants turned to the whiteboard to sketch (Figure 2),
typically drawing a very rough caricature of a portion of the
architecture, often with nearly-illegible labels. The drawing
was produced during the conversation and was secondary to
it. If the other participant engaged in the drawing she
typically used a pen of a different color, leading to a kind of
informal authorship record.

> When a developer comes to me to discuss a new Addin we use this
diagram to check whether its implementation respects the criteria. [John]

> I use the whiteboard when I am brainstorming with a colleague. Even the
visualization tool Source Insight would not give you multiple inheritance
hierarchy. [Tom]

> One of the PMs came to me and drew this picture on the board to ask my
opinion on this model. He did that incrementally while he was talking. [John]

> When I need to explain to a colleague how some stuff works then I use the
whiteboard. [Nigel]

Developers were more likely to use sketches in this
scenario than any other, and the least likely to use reverse-
engineering tools and drawing tools (Figure 1b). This was
among the scenarios where developers were least concerned
with the accuracy of the drawings (Figure 1f).

Scenarios motivated by designing
There were two scenarios in which developers used
drawings in design phases before changing code.

3) Designing/refactoring: Developers planned how to
implement new functionality, fix a bug, or make the
structure better match its existing functionality. This was
one of the most important scenarios; diagrams were
somewhat important in this process (Figure 1a). An example
is shown in Figure 3.

> I look at the diagram and if I see lots of fields in a certain table I see that is
a potential candidate for restructuring. Or maybe I have a small table with lots
of joint connections out of it. The diagram helps identify design problems.
[Daniel]

Figure 2: A developer's office whiteboard,
with drawings produced during multiple ad-

hoc meetings [Tom].

Figure 3: A notebook sketch supporting the
design/refactoring scenario [Andrew].

Figure 4: An example of hallway art [Colin].
We masked confidential information (same as

in Figure 2).

CHI 2007 Proceedings • Programming by Professionals April 28-May 3, 2007 • San Jose, CA, USA

561

This was one of the scenarios in which paper-based
sketches were most prevalent (Figure 1c). The resulting
drawings served as a visual to-do list, and helped to keep
the developer oriented in the “big picture” when later
implementing the details of the design.

> I use diagrams to make explicit each assumption I have while I am writing
algorithms. I use a block diagram style: each function is represented with a
block or eventually a block represents a logical step that my code needs to
accomplish. [Andrew]

4) Design review: When a proposed design change was
complex or far-reaching, developers performed a design
review to inform and seek input from the affected people.
Design reviews were performed face-to-face, by email, or,
in rare circumstances, by teleconferencing. Design reviews
were important, but relatively infrequent among the
important scenarios (Figure 1a and d). Design reviews were
often done in pairs and rarely done with more than a few
people (Figure 1e). Diagrams were used to evaluate the
design of the system or to propose changes.

> We did go through different meetings to understand what is what we call
the game and what we call the engine. We wanted to be sure that the core
was abstract enough and diagrams helped in figuring out where these
boundaries were. [Tom]

> We had many discussions to evaluate different scenarios of
implementations at group level. This diagram was a great tool in these
situations to keep the focus of the conversation. [Geremy]

> I remember when one of these diagrams triggered a discussion to find a
hole in our logic. We had to go back and change the design. [Geremy]

Drawing tools were most likely to be used in this scenario,
this was among the top scenarios for reverse-engineering
tools, and sketches were used somewhat less than in other
scenarios involving team members (Figure 1b), suggesting a
level of formality and refinement. Engineering notebooks
were used more in this scenario than any other (Figure 1c).

Scenarios motivated by communicating
Five scenarios involved using drawings to communicate.

5) Onboarding: When a developer joined a team he
apprenticed with a more-senior developer to acquire a
mental model of the code. This process included focused
meetings where the mentor explained the code, and ad-hoc
meetings and email discussions to answer questions as they
occurred. Diagrams were crucial to this scenario (Figure
1a). This was one of the scenarios for which reverse-
engineering tools were unusually useful (Figure 1b). This
was one of the scenarios where developers were least
concerned with the accuracy of the drawings (Figure 1f).

> My manager used this diagram to explain the code to me when I first
started. Recently I realized that I used kind of the same diagram to introduce
a new hire to the project. [Andrew]

6) Explaining to secondary stakeholders: For any
particular component in a software system, there were
many stakeholders beyond the core development team,
including testers, project managers, and internal

“consumers” of code. Developers typically communicated
with these people through face-to-face, scheduled but
informal meetings. Informing these “secondary
stakeholders” about the code was less important to the
developer’s job function than other core scenarios, and it
was the rarest among them (Figure 1a and d). This was
among the scenarios where drawings were most important
(Figure 1a). Whiteboard sketches were the dominant form
of drawing (Figure 1b), with an unusually high usage of
meeting-room whiteboards (Figure 1c).

> I was implementing a new feature and I had to make a design decision and
I wanted my PM to approve it. As it was complicated to explain what I had in
mind, I sketched it on paper. [Andrew]

Sometime these drawings took a more formal character
when the communication spread outside the team to reach
other departments of the same company.

> We used the diagram tool of SQL server to reverse engineer the structure
of the database and then we stuck the generated diagram in the
documentation. [Geremy]

7) Explaining to customers: Developers were responsible
for presenting the architecture or usage of the software to
external customers. This took the form of a live or recorded
lecture, hands-on lab, or other setting. Developers judged
this to be one of the least important activities, and one for
which sketching was least common (Figure 1a and c). It was
the scenario in which developers most strived for accuracy
and to use graphic standards in their drawings (Figure 1f),
suggesting a high degree of formality.

> I had to use this diagram with customers, but the state diagrams that we
were using were too complicated so I had to simplify it focusing on the
individual components. [Geremy]

8) Hallway art: Developers sometimes tried to foster team
awareness of aspects of the architecture by displaying
information about the code in the team’s space. This was
one of the techniques used by team leads to maintain every
developer “on the same page,” and which encouraged in the
Agile Methodology. However, most developers considered
it an unimportant activity and it was performed with a low
frequency (Figure 1a and d). This was among the scenarios
for which sketches were used least (Figure 1b), although
developers had the highest standards of accuracy for
hallway art (Figure 1d). Figure 4 shows an example.

> We put these diagrams in the conference rooms and in the hallways so that
the developers could stare at them while writing a piece of code. [Geremy]

> When we do planning or spec writing, we come out with this kind of design.
Then we dive into implementation. We refer to these diagrams every now
and then to communicate with the rest of the team. [Colin]

While we were interested primarily in developers’
drawings, much of the hallway art that we observed was
created by other stakeholders, particularly program
managers and user interface designers, for developers’ use.
Unlike developers’ drawings, these represented the function
of the code but not its implementation.

CHI 2007 Proceedings • Programming by Professionals April 28-May 3, 2007 • San Jose, CA, USA

562

9) Documentation: Developers created documents
describing the architecture, usage, or internals of the code
for teammates, other internal customers, or external
customers. This activity was rated as very important, in
which drawings played a crucial role (Figure 1a). Reverse-
engineering tools were used more in this scenario than any
other; this was among the scenarios where drawing tools
were most likely to be used and sketches least (Figure 1b).
This was the scenario with the largest audience size (Figure
1e), the most likely scenario for a drawing to be refined
through iteration, and among the scenarios where care was
taken to make the drawings accurate (Figure 1f). Together
these suggest a high degree of effort, formality, and
refinement in drawings made for documentation.

>We have many sectors, which contain a rigid number of servers. We wanted
to change that for scalability issues and so I was using these diagrams to
explain [to the sustained-engineering group] the inner working of each
machine and the proposed change. [Geremy]

Levels of investment
The previous section organized the scenarios by the
developer’s motivation in creating them. This section
presents the same scenarios from the perspective of the
effort involved in their production. Most drawings were
transient, such as a simple sketch or reverse-engineering
visualization that served a task and had no later value.
Some such sketches were of sufficient value to be
reiterated, recreated from memory in different contexts.
Through repetition these sketches became touchstones for a
project. When persistence was needed, some touchstone
sketches were rendered using computer-based drawing
tools. Finally, when these rendered drawings were to be
presented in an asynchronous manner or in a more formal
setting, greater care was put into creating archival-quality
renderings (see Table 2).

Transient sketches and reverse-engineering visualizations
Most drawings created while understanding code or
designing and refactoring (scenarios 1 and 3), were one-off,
transient whiteboard or notebook sketches. Visualizations
from reverse-engineering tools were also transient.

> Whenever there is something that I am trying to workout in my own head I
just write it down, using the whiteboard to map out all the cases. [Tom]

> Diagrams [on the whiteboard] have a short-term functionality. They solve
the purpose of discussing or detailing the current problem. They rarely get
updated. If a diagram needs to be consulted for a long period of time then it
is usually rendered or copied in a notebook. [Andrew]

> I wrote down the diagram that I visualized in Source Insight so that I could
annotate it. [Tom]

The value of the diagrams was secondary to that of the
setting in which they were generated. As soon as the setting
ended, their value decreased immediately.

> Most of the whiteboard drawings that I do are not used in other meetings.
They are just useful during the one to one meeting. [Tom]

> The role of the whiteboard drawing during meetings is to direct the natural
flow of the conversation. To quickly sketch something on the whiteboard is
more convenient that using a laptop and a projector. [Colin]

> Usually I use diagrams in one-to-one meetings. The discussion that I am
having while I am drawing is always more important than the drawing. I keep
referring to the drawing to remember the discussion. [Ray]

Reiterated sketches
In some cases, a transient sketch was redrawn in different
contexts, in whole or in part, evolving over time. This was
particularly true in ad-hoc meetings, onboarding, and
explaining to secondary stakeholders (scenarios 2, 5, and
6). These drawings typically captured either the high level
architecture or some particularly crucial part of the design.
Through reiteration they became touchstones for the team.

> The design of this current release started with this diagram. It started on
the whiteboard, and then it evolved over time. As it started to become more
static, after a month, it was still used to brainstorm new ideas. [Geremy]

> This diagram was developed over three years. It is a canonical version of
what we call ‘Addin’ model. We have copies of this all over. The labels
changed over time. We decided to give it this butterfly shape to emphasize
that the contract in the center shouldn’t change and should be small… [John]

Interviewees reported reiterating these dozens of times.

Rendered drawings
In some cases, a diagram—typically a reiterated sketch—
became so important that it warranted the investment of
time and effort to transform it to a more permanent form.
This occurred particularly in design reviews and when
communicating with secondary stakeholders (scenarios 4
and 7). Sketches were sometimes transcribed to another
sketch medium, e.g. notebook or Tablet PC. When greater
permanence, portability, or malleability was required the
drawing was rendered in Visio, PowerPoint or Word, or
even ASCII art embedded in code.

> There have been a number of meetings where we had to copy the
diagrams done on the whiteboard down on paper because they need to be
elaborated by each developer individually. [Colin]

> Sometimes a design refactoring starts in a chalk session. If the changes
are fairly complex then we tend to copy the diagram down. [Daniel]

> A Tablet PC is very helpful. Pictures make more sense to me than words,
so each meeting I start from a diagram and the tablet helps me to take notes
in visual format in the meeting. Later I can render these in Visio. [Geremy]

> I use ASCII art to attach the most relevant diagrams to the code. In this
way is very relevant and it is right there where it need to be used. [Tom]

Moving the sketch to electronic form allowed developers to
modify it. Figure 5 shows an example of transformation of a
tablet sketch done during a group meeting into a Visio
drawing used later as hallway art and in documentation.

Archival drawings
When a diagram was for documentation, greater care was
taken to refine its content and visual presentation, and to
create surrounding text to explain it (Figure 1e).

> The rest of this diagram is there only to give context to the people looking
at it, only this portion is relevant. [Geremy]

CHI 2007 Proceedings • Programming by Professionals April 28-May 3, 2007 • San Jose, CA, USA

563

> To explain this diagram, I had to write a paragraph to explain what each
element does. What was very tough was trying to superimpose multiple
instances on top of a sector, which was very difficult in Visio. [Geremy]

> This diagram isn’t self-explanatory. People should still come to me and ask
for complementary information to understand some design decision.
[Geremy]

The maintenance of the diagrams in sync with the evolution
of code was easier when the visualization existed in an
electronic format. However, even in this scenario
maintenance had a high cost, and so these diagrams were
often out-of-date.

> These VISIO drawings are mainly used for communications with PMs. I
don’t think I have ever updated one of these. [Colin]

DISCUSSION
We return to the four questions posed in the introduction.

A. How do engineers use diagrams in their work?
Developers used transient forms for exploration activities,
creating diagrams with reverse engineering tools and
sketches on whiteboards, scrap paper, or notebooks. On the
other hand, they used permanent solutions when
communicating with the larger group or with other people.

The majority of diagrams observed were sketched on
whiteboards during ad-hoc meetings. The whiteboard
offered great advantages as it was ubiquitous and easy to
use. The few elements of interest could be easily abstracted
and then annotated with additional information focusing on
the particular discussion. These results were in line with
Dekel’s findings [5], which describes how group of
developers used sketches while collaborating.

Reverse engineering tools were preferred for quick solo
code explorations. These visualizations were discarded
immediately after the desired information was acquired.

The transience of casual sketches seems to be a difference
with other disciplines like architecture, where these are
often archived with great care as a record of design process.

B. Why do engineers use diagrams in their work?
Similarly to the studies of Tversky [21], developers
produced visualization for three main reasons: to
understand, to design and to communicate. However, while
for other disciplines diagrams might be the standard way of

communicating (e.g., architecture, mechanical engineering,
etc.), this is not the case for computer science, where the
“code is the king” [16]. In our observations, this resulted in
the tendency to adopt informal, ad-hoc notations.

C. Which graphical conventions are used?
During solo explorations or peer-to-peers meetings,
developers did not follow any graphical standard, and used
an informal, ad-hoc style. In the majority of cases the
developers used a simple boxes-and-arrows visual language
whose elements assumed meanings depending on the
context. This may be because of convenience rather than
preference or specific requirement. However, for
documentation, a more formal style was chosen, though
standard notational systems were rarely used.
Visualizations in documentation were often out-of-date and
they were rarely used for the core of the development
process.

The use of formal graphical modeling languages, such as
UML, was very low. We do not have precise results to
explain why this was so, but we can speculate that UML
requires too much effort to learn and that is too formal for
the majority of the visualizations that were produced in
informal settings. It is clear that UML does not, in general,
reach a sufficient cost-benefit ratio in the minds of
developers to warrant its use. However, we have to say that
all the diagrams in the situations we observed could have
been rendered proficiently using an UML notation. Some of
the developers we talked to said explicitly that there was
not a culture of modeling languages in their team.

Of course, another issue is whether the use of such
standards would be beneficial at all. Our results suggest the
importance of context in drawings and the necessity of
rendering multiple levels of detail within a single drawing.
These are properties that UML and other such notations
provide little support for.

D. What is the culture around these drawings?
Our findings show a limited adoption of drawing tools, and
adherence to standards of any sort. This result is consistent
with the work of LaToza et al., who report that despite the
availability of visual editors such as tools for UML,
developers remain focused on the code itself [16].
Particular diagrams retained a high value for the group,
which brought the developers to reiterate their design in a
similar way as described by Henderson [10].

Production costs
Today’s tools make the production of diagrams easy, but
despite this, the effort required was perceived as exceeding
developers’ time resources. Whiteboards were the most
adopted tool for producing visualizations because they were
ubiquitous and their perceived cost of use was extremely
low. A smaller number of visualizations were produced for
internal communication purposes. Here the production costs

Figure 5: On the left, the hand-sketch created on a Tablet PC

during the group meeting; on the right, its rendering in Visio. It is
possible to see that the some aspects of the first diagram were
changed and elaborated in the second version of it. [Geremy]

CHI 2007 Proceedings • Programming by Professionals April 28-May 3, 2007 • San Jose, CA, USA

564

increased, as the images had to be rendered electronically
for sharing. These images did not require lots of details
because the contextual information necessary to understand
them was already part of the group knowledge. Finally, few
diagrams were produced for an external audience. This
because the drawings included in documentation had a high
production cost due to the effort necessary for providing
contextual information to make them intelligible.

Optimal collaborative effort
In this study we found some evidence that when diagrams
were generated automatically, they seemed to be regarded
as less interesting than diagrams that were produced
manually in a collaborative effort. At group level it is
important to maintain an Optimal Collaborative Effort [6]
to ensure a proper grounding process: when the task is too
challenging, people might be overwhelmed; while if the
task is not challenging enough, as in the case of
automatically provided information, participants may not be
fully engaged in the cognitive activity. Manually produced
diagrams could capture the developer’s attention and
efficiently scope to the information necessary to the task or
conversation. On the other hand, automatically-produced
visualizations do not require developers to externalize their
mental models nor do they allow for flexibility in the level
of detail. This may be why digital diagrams resulted in less
useful and less appreciated diagrams.

Validity
Several factors influence the validity of our results. We
developed the entire model within a single company, which
might not be representative of companies with different
cultures or practices. The use of drawings of code in highly-
distributed or open-source software development is likely to
be different. Our interview sample is small compared to
Microsoft’s developer population and it was also biased by
our selection for developers actively using visualizations in
their work. However, in our validation survey, we had a
much broader and representative sample. Finally, surveys
and interviews are well known to be subject to respondents’
self-perceptions. Our findings should be compared to
studies of software development work in the field.

TOOL SUPPORT FOR CODE DRAWINGS
Our results reveal many opportunities for tools that help
developers capture, create, and share their drawings

Capture
Many design decisions are made during one-to-one
meetings [14, 16], In many of these meetings developers
produced a diagram as the conversation was occurring.
Developers might benefit from recording these events. Such
a recording could encompass the conversation, the sketch as
it evolves, and the deictic references made to the sketch.
These recordings could be especially relevant to ad-hoc
meetings (scenario 1) and design reviews (scenario 4).

Many of the developers interviewed suggested that they
desired some sort of “intelligent whiteboard” to augment
the drawing process and capture the result in electronic
form. Tablet PC’s, which are capable of exactly that, are in
wide deployment in Microsoft, yet few developers used
them for this purpose. Digital cameras make whiteboard
capture trivial, and are ubiquitous, yet we saw little use of
them for this purpose. There are many commercial products
for digitizing whiteboards, yet we saw no adoption of these
technologies. There are many potential explanations for this
lack of adoption, such as the perceived cost of their use we
found in our surveys. These explanations should be
investigated further.

Virtually all developers had whiteboards in their offices,
every team had whiteboards in the hallways, and every
meeting room had a substantial portion of its wall space
dedicated to whiteboards. Were a whiteboard capture
system implemented it would ultimately be rolled out to the
tens of thousands of whiteboards, with an exorbitant cost of
deployment and maintenance. Despite these problems, and
lack of adoption of existing capture techniques, the benefits
of capturing meetings (including the whiteboard contents as
it evolves) could be substantial.

Integrating reverse-engineering and sketching
In their sketches developers often combined aspects of the
current state of the code with proposed changes when
understanding existing code, designing/refactoring, and
onboarding (scenarios 1, 3, and 5). This need might be
addressed by a tool that combines reverse-engineering with
sketching or drawing. Furthermore such a tool might be
able to reduce the barriers to iterating and rendering
drawings, aiding the transition to design reviews,
explaining to stakeholders and customers, and creating
documentation (scenarios 4, 6, 7, and 9).

Levels of abstraction
When understanding existing code, designing/refactoring,
and onboarding (scenarios 1, 3, and 5) developers need to
understand both the microscopic details of the code and the
macroscopic conceptual structure. The microscopic level of
abstraction includes the mechanics of classes and methods,
which can be examined in the text of the code or reverse-
engineering tool. The macroscopic level of abstraction
includes concrete higher-level concepts such as modules
and systems and conceptual structures that are not manifest
directly in the code. No current view conveys both levels of
abstraction simultaneously. Developers might benefit from
an interactive visualization that allowed them to explore the
microscopic details while remaining oriented in the
macroscopic structures. Such a tool might be particularly
effective if combined with sketching capabilities as
suggested above.

CHI 2007 Proceedings • Programming by Professionals April 28-May 3, 2007 • San Jose, CA, USA

565

Staying oriented using spatial memory
A visualization that was spatially stable, yet up-to-date with
the evolution of the code, could help a developer stay
oriented while understanding existing code and
designing/refactoring (scenarios 1 and 3). If the
visualization were shared among the development team
then ad-hoc meetings, design reviews, and especially
onboarding (scenarios 2, 4, and 5) could benefit from the
common ground that it would create, which might be
enhanced by using it as hallway art (scenario 8).

CONCLUSION
This study tried to answer two basic questions on software
visualizations: how and why developers use diagrams. Our
results indicate that in most cases, informal notation was
used to support face-to-face communication and that
current tools were not capable of supporting this need
because they did not help developers externalize their
mental models of code. Our results also suggest some ways
in which the role of diagrams in software development
differs from other engineering disciplines. For example, not
only is code lacking many spatial features to support its
rendering, but it also lacks any conventional level of
abstraction. Instead, developers reported that the level of
abstraction differs with every conversation and even within
a conversation.

Our approach of performing a series of interviews and then
validating our results with a large-scale structured survey
gives us confidence in our findings. However, this
technique offered only a static, introspective, and
retrospective view. There is much more to discover in
observing the active production of visualizations, especially
in moments of conflict that reveal mismatches in
developers’ mental models. We hope to explore this in our
future work.

REFERENCES
1. M. W. Alibali, M. Bassok, K. O. Solomon, S. E. Syc,

and S. Goldin-Meadow. Illuminating mental
representation through speech and gesture.
Psychological Science, 10:327–333, 1999.

2. V. Bellotti and S. Bly. Walking away from the desktop
computer: Distributed collaboration and mobility in a
product design team. In Proc. CSCW, pp. 209–218.

3. M. Cherubini and J. van der Pol. Grounding is not
shared understanding: Distinguishing grounding at an
utterance and knowledge level. In CONTEXT 2005.

4. H. H. Clark and E. F. Shaeffer. Contributing to
discourse. Cognitive Science, 13:259–294, 1989.

5. U. Dekel. Supporting distributed software design
meetings: What can we learn from co-located meetings?
In Proc. HSSE 2005. ACM.

6. P. Dillenbourg, D. Traum, and D. Schneider. Grounding
in multi-modal task-oriented collaboration. In Proc.
EUROAIED 1996, pp. 415–425.

7. E. Do and M. D. Gross. Reasoning about cases with
diagrams. In J. Vanegas and P. Chinowsky, editors,
ASCE, pp. 314–320, 1996.

8. S. Goldin-Meadow. Hearing gesture: How our hands
help us think. Belknap Press, Cambridge, MA, USA,
2003.

9. J. Heiser, B. Tversky, and M. Silverman. Visual and
spatial reasoning in design III, chapter Sketches for and
from collaboration, pp. 69 – 78. 2004.

10. K. Henderson. On Line and On Paper: Visual
Representations, Visual Culture, and Computer
Graphics in Design Engineering. Cambridge, MA: MIT
Press, 1999.

11. J. D. Herbsleb. Metaphorical representation in
collaborative software engineering. In Proc. WACC
1999, pp. 117–126. ACM.

12. M. Hertzum and A. M. Pejtersen. The information
seeking practices of engineers: Searching for documents
as well as for people. Information Processing and
Management, 36(5):761–778, 2000.

13. E. Hutchins. Cognition in the Wild. MIT Press,
Cambridge, MA, USA, 1995.

14. A.J. Ko, H.H. Aung, B.A. Myers (2005), Eliciting
Design Requirements for Maintenance-Oriented IDEs:
A Detailed Study of Corrective and Perfective
Maintenance Tasks, In Proc. ICSE 2005. ACM.

15. J. H. Larkin and H. Simon. Why a diagram is
(sometimes) worth ten thousand words. Cognitive
Science, pages 65–99, 1987.

16. T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In
ICSE ’06: Proc ICSE 2006, pp. 492–501. ACM.

17. D. W. McDonald and M. S. Ackerman. Just talk to me:
A field study of expertise location. In Proc. CSCW
1998, pp. 315–324.

18. D. E. Perry, N. A. Staudenmayer, and L. G. Votta.
People, organizations and process improvement. IEEE
Software, pages 36–45, July 1994.

19. B. A. Price, R. M. Baecker, and I.S. Small. A Principled
Taxonomy of Software Visualization. Journal of Visual
Languages and Computing, 4(3):211-266, 1999.

20. M. Suwa, J. Gero, and T. Purcell. Unexpected
discoveries and s-invention of design requirements:
Improving vehicles for a design process. Design
Studies, 18(4):539–567, 2000.

21. B. Tversky, M. Suwa, M. Agrawala, H. J, C. Stolte,
P. Hanrahan, D. Phan, J. Klingner, M. Daniel, P. Lee,
and J. Haymaker. Human behavior in design:
Individuals, teams, tools. In Sketches for Design and
Design of Sketches, pp. 79–86. Springer, 2003.

22. B. Tversky. Spatial schemas and abstract thought. In
Spatial Schemas in Depictions, pp. 79–111. MIT, 2001.

CHI 2007 Proceedings • Programming by Professionals April 28-May 3, 2007 • San Jose, CA, USA

566

