
- 1 -

Visually Testing Recursive Programs in Spreadsheet Languages*

* This work was supported in part by NSF under ITR-0082265, CCR-9806821, and CAREER Award CCR-9703198.

Abstract

Although there has been recent research into ways
to design visual programming languages and
environments, little attention has been given to
systematic testing in these languages, and what work
has been done does not address “power” features such
as recursion. In this paper, we discuss two possible
ways the “What You See Is What You Test”
methodology could be extended to accommodate
recursion. The approaches are presented in terms of
their testing theoretic aspects and then implementation
strategies and algorithms. Since the ultimate goal is to
help the people using these languages, we also present
an empirical study and use its results to inform our
choice as to which of the two approaches to adopt.

1. Introduction

Although there has been a fair amount of research
into mechanisms for coding and understanding
programs written in visual programming languages,
there has been little attention to other aspects of the
software lifecycle for programs written in these
languages. To address one such aspect, we have been
working on a visual testing methodology for testing
programs written in declarative visual languages,
prototyping our results in spreadsheet languages—the
most widely used type of visual programming language
in practice. We use the term “spreadsheet language” to
denote not only commercial spreadsheet systems, but
also research spreadsheet languages for a wide variety
of purposes, such as for producing high-quality
visualizations of complex data [5], for specifying GUI
interfaces [9, 16], for manipulating matrices [1], and for
working with user-defined objects [2, 3]. Our visual
testing methodology is called the “What You See Is
What You Test (WYSIWYT)” methodology [13, 14].

The testing problem is particularly challenging for
visual programming languages that aim toward diverse
audiences ranging from end users to professional
programmers, as is the case with spreadsheet languages.
In such languages, the testing approach must make

sense to end users, while at the same time supporting an
organized approach to testing backed by a firm
foundation to provide the testing power needed by
professional programmers. Further, it is well
documented that spreadsheets contain many faults
(logic errors); virtually every study that looks for faults
in spreadsheets finds them. (See [11] for a survey of
this work.) Finally, spreadsheet languages’ highly
interactive, incremental characteristics such as
automatic and immediate visual feedback impose the
constraint that a testing methodology for such
languages must also be interactive and incremental, and
must feature automatic and immediate visual feedback
as well. For these reasons, spreadsheet languages make
a particularly good “acid test” for an approach to a
testing methodology for declarative visual
programming languages.

Our previous work presented the WYSIWYT
methodology for individual spreadsheet cells [14], later
extended it to large grids in which some cells share the
same formula [4], and empirically validated its
usefulness to both programmers and end users [6, 15].
However, recursive programs had not been supported
by this methodology. It is important to support even
these more powerful features, not just the “easy parts,”
to support the professional programmers end of the
spectrum. In this paper, we extend the WYSIWYT
methodology to support recursive spreadsheets and
linked copied spreadsheets in general.

2. Spreadsheet Design Patterns

Recursive programs in languages supporting end
users can include programming structures that are
rarely found in traditional languages, and this is
demonstrated well by spreadsheets. Design patterns
have become widely used in understanding program
structures in traditional programming paradigms, and
we will use that device here.

In Figure 1, four linked spreadsheet design patterns
are shown. The dataflow arrows in the graphs represent
cell references, and the nodes represent the
spreadsheets.

Margaret Burnett, Bing Ren, Amy J. Ko, Curtis Cook, Gregg Rothermel
Department of Computer Science, Oregon State University, Corvallis, OR 97331

{burnett, ren, koan, cook, grother}@cs.orst.edu

- 2 -

Figure 1(a) shows the equivalent of a traditional
call-return relationship of one procedure calling
another; in a recursive situation, the
procedure/spreadsheet on the left is a copy of the
procedure/spreadsheet on the right. However, as Figure
1(b) shows, linked spreadsheets, some of which can be
copies of the others, can exist without a complete call-
return relationship, such as in a pipeline-like
arrangement. In contrast to this, in traditional
languages, pipelines are not usually allowed. Figure
1(c) shows what might be classified as “co-routines” in
traditional programming literature, in which some cell
on the left spreadsheet references a cell on the right,
which in turn references another cell on the left, and so
on. Figure 1(d) is a combination of (a) and (b).

As these examples show, spreadsheet languages
allow non-traditional programming structures. This
suggests that a testing methodology for such languages
must be flexible enough to handle cell referencing and
linked spreadsheet “design patterns” beyond the
ubiquitous call-return pattern of traditional programs.

3. Testing Recursive Spreadsheets

Prior to this work, we developed WYSIWYT for
spreadsheets without recursion and prototyped it in the
visual spreadsheet language Forms/3 [2, 3]. With the
WYSIWYT methodology, cells are initially colored
with red borders (red means “untested”). If the user
validates a cell’s value by checking it off in a checkbox
in the cell’s corner, borders change color along a
continuum of red to blue (“untested” to “tested”).

3.1 Extended WYSIWYT Approach

To test spreadsheets with recursion, one possible
approach is a seemingly straightforward extension of
the above testing methodology for non-recursive
spreadsheets, maintaining testedness information about
each cell individually based upon its dataflow
relationships. We term this approach the “Extended
WYSIWYT” approach. Figure 2 is an example of a
recursive spreadsheet, because a copy has been made of
Factorial, and the original refers to the copy for some of
its calculations. (The notation S:X means a cell X on
spreadsheet S. For example, Factorial:N means cell N
on a spreadsheet named Factorial.) The main thing to
notice in the figure at this point is how the WYSIWYT
methodology appears to the user. Red-bordered cells
(light gray) are untested, blue-bordered cells (black) are
tested, and purples (grays) are between. A user can
check off a correct value, as in 56_Factorial:N. If there
is a question mark in a cell, checking off the cell will
increase testedness. The upper right corner of each
spreadsheet reports a spreadsheet’s overall testedness.

To reason about testedness in the Extended
WYSIWYT approach as well as in the original
WYSIWYT approach, behind the scenes a cell relation

(a) (b)

(c) (d)
Figure 1: Four design patterns for linked spreadsheets.
Arrows are in the direction of dataflow. (a) Analogous to
call-return. (b) Pipeline. (c) Analogous to co-routines. (d)
Pipeline with return-to-start.

Figure 2. Forms/3 Factorial recursive spreadsheet. The user first created a spreadsheet Factorial (at left), then copied it
and changed cell N’s formula on the copy to Factorial:N–1 (at right). Finally the user entered the formula on
Factorial:Answer (left) and the system automatically created any other copies needed to calculate the results.

- 3 -

graph (CRG) is used. The CRG is used as both a
theoretical model and an implementation device. A
CRG is a pair (V, E) modeling the spreadsheet, where V
is a set of formula graphs, and E is a set of directed
edges modeling dataflow relationships between pairs of
elements in V (see Figure 3). A formula graph models
flow of control within a single cell’s formula, and is
comparable to a control flow graph. In the simplest
non-recursive spreadsheets, there is one formula graph
per cell; however, in spreadsheets in which some
formulas have been replicated/shared, some sharing of
formula graphs takes place [4].

This CRG model has been used to define several test
adequacy criteria [13, 14]. The strongest criterion we
have defined, du-adequacy, is the criterion we use in
this paper to define when a spreadsheet has been tested
“enough”. Under this criterion, a cell X will be said to
have been tested enough when all of its definition-use
associations (abbreviated du-associations) have been
covered (executed) by at least one test. In this model, a
test is a user decision as to whether a particular cell
contains the correct value, given the constants upon
which it depends. Decisions are communicated to the
system when the user checks off a cell to validate it.
Thus, given a cell X that references Y, du-adequacy is
achieved with respect to the interactions between X and

Y when each of X’s uses (references to Y) of each
definition in Y has been covered by a test. For example,
nodes 7 and 15 in the figure are definitions. Node 7 also
refers to (uses) node 15, and thus (15,7) is one du-
association that needs to be tested. We assume that
cells whose formulas are simply constant values, such
as Factorial:N in Figure 2 and 3, do not need testing,
and refer to them as “input cells” in this paper.

In the Extended WYSIWYT approach, information
on recursive copies is kept individually for each copied
cell, just as is true of the original, and the user thus has
the flexibility to validate any cell on any spreadsheet or
copy. This has the advantage of being completely
consistent with the way WYSIWYT works on non-
recursive spreadsheets.

To maintain and make use of testedness information,
the system’s work is divided into four tasks, each of
which is triggered by a user action. The algorithms for
Tasks 2-4 are the same as with non-recursive
spreadsheets, but Task 1 requires further discussion.

Task 1: When a cell C’s formula is edited, static du-
associations are collected for the cell, the
collection of which is denoted C.DUAs.

Task 2: When a cell C is executed, the most recent
execution trace of its nodes, denoted C.Trace, is
stored (via a probe in the evaluation engine).

5:if Factorial:N < 2

 7:Factorial:N *
56_Factorial:Answer6:1

4:E

8:X

T F

Factorial:Answer

1:E

2:constant

3:X

Factorial:N

56_Factorial:Answer

9:E

10:Factorial:N - 1

11:X

56_Factorial:N

17:E

18:56_Factorial:N - 1

19:X

70_Factorial:N

70_Factorial:Answer

13:if 56_Factorial:N < 2

 15:56_Factorial:N *
70_Factorial:Answer

14:1

12:E

16:X

T F

21:if 70_Factorial:N < 2

 23:70_Factorial:N *
someCopy :Answer

22:1

20:E

24:X

T F

Figure 3. Cell relation graph for factorial recursive spreadsheets under the Extended WYSIWYT approach. Dashed
arrows indicate dataflow relationships between cells. Within the formula graphs, E indicates entry into a formula and X
indicates exit. Note, on the 70_Factorial:Answer, someCopy:Answer means the system doesn’t have such a cell.

- 4 -

Task 3: When a cell C is validated, C.Trace is
consulted to find which of the du-associations in
C.DUAs should be marked “covered.”

Task 4: When a formula for a (non-input) producer
of C is edited, C.DUA’s du-associations need to be
reset to “not covered.” (C’s direct producers are
the cells C references; in general, we recursively
define C’s producers as its direct producers and
their producers.)

3.1.1 A Problem with Task 1

In non-recursive spreadsheets, static du-
associations are incrementally collected whenever the
user edits cell C’s formula. The underlying assumption
is that all cells that C references exist at the moment of
a formula being accepted by the system; otherwise an
error message would be produced and the formula
rejected. However, for recursive spreadsheets, this
assumption is not valid.

We term a spreadsheet created from scratch by a
user a model spreadsheet, and the cells on it model
cells. These have a white background in Forms/3 such
as the leftmost spreadsheet in Figure 2. Copies have
gray backgrounds, except for cells whose formulas have
been edited; since they now have their own formulas,
these too are shown in white. In recursive spreadsheets,
Forms/3 automatically generalizes what references to a
spreadsheet copy mean [17]. If it did not, formulas such
as the one for 56_Factorial:Answer in the copied
spreadsheet in Figure 2 would be circular. After
generalization, concrete references to specific copies,
which reflect the way the user entered them, are
underlined to indicate that they are just samples.
Moving the mouse over the underlined references
displays a legend with the generalized reference for
which the concrete version is a sample, as shown at the
bottom of the figure.

In Figure 2, when the user enters the formula of the
cell Factorial:Answer, all cells that Factorial:Answer
references exist, allowing the system to collect du-
associations. However, when the formula is copied to
its copy 56_Factorial:Answer, a problem arises: there is
a reference to a cell named Answer (see legend at the
bottom right) on another copy that has not yet been
created by the system. Thus, for 56_Factorial:Answer,
there is not yet enough information for the system to
collect all the static du-associations.

To solve the problem, it is necessary to store some
temporary du-associations as placeholders, thereby
delaying the collection of some “static” du-associations
until after the runtime evaluation of formulas reveals
new static du-associations to collect. Doing so is

necessary because both the original spreadsheet and its
(modified) copy are visible and available to the user for
viewing, editing, and referencing.

Algorithm CollectIncomingAssoc of Figure 4 is
called when the user edits cell C’s formula or when a
formula is copied to C. If C’s referenced cells exist, the
system statically collects du-associations as usual; if
not, the system builds temporary du-associations that
are almost identical to the final ones. When the system
eventually evaluates the formula, the algorithm
RebuildAssoc (Figure 4) is called. If, as a result of
evaluation, the system created copies containing use’s
missing references, the system replaces the temporary
du-associations with real du-associations. The time cost
does not change from that of the original WYSIWYT
version of this algorithm, which is analyzed in [13].

3.1.2 Infeasible DU-Associations

Even without recursion it is not always possible to
test all du-associations. For example, one of Y’s
definitions might depend on some cell Z being less than
0, with X’s use of Y occurring only if Z is greater than
0, and thus X-Y du-associations will never execute.
Such du-associations are termed infeasible. It is well
known that infeasible elements such as these present a
problem for testing methodologies, and we do not
propose a comprehensive solution, but we need to avoid
exacerbating the problem in dealing with recursion.

Unfortunately, the Extended WYSIWYT approach
does exacerbate the problem, because the temporary
du-associations solution (Section 3.1.1) is not sufficient
for cells on spreadsheet copies that compute base

Algorithm CollectIncomingAssoc (C)
For each use ∈ C.Uses
If a directProducer exists for use
For each def ∈ directProducer.Defs
Let DUA = (def, use, false)
Add DUA to C.DUAs.Incoming
Add DUA to directProducer.DUAs.Outgoing

Else
Let tempProducer be an identical copy of

the directProducer referenced in use
For each def ∈ tempProducer.Defs
Let DUA = (def, use, false)
Set DUA.temporary = true
Add DUA to C.DUAs.Incoming
Add DUA to tempProducer.DUAs.Outgoing

Add use to C.TemporaryUseList

Algorithm RebuildAssoc (C)
For use ∈ C.TemporaryUseList
If a directProducer exists for use
Let temporaryDUAs = use.DUAs.Incoming
DeleteDUAs (temporaryDUAs)
For each def ∈ directProducer.Defs
Let DUA = (def, use, false)
Let C be the cell containing use
Add DUA to C.DUAs.Incoming
Add DUA to DP.DUAs.Outging

Remove use from C.TemporaryUseList

Figure 4. Collecting incoming du-associations.

- 5 -

conditions. For example, 70_Factorial:Answer’s
reference in Figure 5 to another copy of Factorial will
never be created or executed because
70_Factorial:Answer computes the base (see node 23 in
Figure 3).

Even if the user decides to change N to a larger
input value, the problem does not go away. Although it
is solved for 70_Factorial, it re-materializes for
whatever new copies the system automatically creates
to compute the base condition. Thus, there will always
be infeasible static du-associations under the Extended
WYSIWYT approach, and 100% testedness of all
viewable spreadsheets is unattainable.

3.2 Copy Representative Approach

Another possible approach was inspired by the
Region Representative approach we developed to
remove the tedium of testing groups of cells with
replicated formulas [4]. The idea behind the Region
Representative approach was to share most of the
testing data among these similar cells. Recursive
spreadsheets also introduce similar cells via copied
formulas. The idea behind the Copy Representative
approach is to allow these copies also to share testing
data. A potential advantage is that users might think it
logical for copies of spreadsheets to share testing data.

3.2.1 Changes to the CRG Model

In the Copy Representative approach, when cells
have the same formula, they share a single formula
graph. Thus, instead of building a formula graph for
every cell, as in the Extended WYSIWYT approach,
the system builds a generalized formula graph for the
model cell and its unedited copies, as in the Figure 6.
Further, as with the Region Representative approach,
all copies of input cells (with constant formulas) are

represented by a single formula graph.
The CRG in this figure is much smaller than the

CRG in Figure 3. This difference carries significant
implications for the user’s interaction: a validation of
one cell C now propagates to every other cell relating
to the same model. For example, if the user validated
Factorial:Answer, all Answer cells in Factorial’s copies
would also be validated.

3.2.2 Algorithms

When a cell is created or edited, it must be given
either a new or an existing formula graph. If a model or
copied cell’s formula has been edited directly by the
user, the cell requires a new formula graph. Otherwise,
the cell is an identical copy, and can point to an
existing formula graph.

The Copy Representative algorithms’ time costs
presented below are the same per formula graph as the
Extended WYSIWYT’s, but the Copy Representative
approach produces fewer formula graphs since some of
them are shared.

Task 1 (collecting static du-associations): Du-
associations among generalized representatives of cells,
not among cells themselves, are collected statically,
and are later resolved dynamically to the concrete cells
they represent. For example, in Figure 6, the top left

Figure 5. 70_Factorial is the copy of the spreadsheet
in Figure 2 that computes the base condition.

8:N < 2

 10:N *
someFactorial:Answer

9:1

7:E

11:X

T F

someFactorial:Answer

1:E

2:constant

3:X

const:N

4:E

 5:someFactorial:N - 1

6:X

nonconst:N

Figure 6. Cell relation graph for factorial recursive
spreadsheets under the Copy Representative approach.

- 6 -

formula graph represents all N cells with constant
formulas. The top right formula graph represents all the
other N cells, which have a single shared (non-constant)
formula. Similarly, the bottom formula graph represents
cell Answer on all copies of Factorial.

Algorithm CollectIncomingAssoc in Figure 7 uses a
shared formula graph (SharedGraph) for all copies
instead of collecting static du-associations for each
concrete cell. When a user edits a cell, that cell’s
SharedGraph is passed to algorithm
CollectIncomingAssoc. For each generalized use cell
sharing this formula graph (possibly on multiple
spreadsheet copies), the algorithm considers all
definition cells which contribute to the use. From these
definition cells, the system can build du-associations
between the definition cells’ formula graphs, and the
use cells’ formula graphs. With this algorithm, the
system does not need the temporary du-associations of
the Extended WYSIWYT approach.

Task 2 (collecting trace information): When a cell is
executed, a trace of its execution is saved. Unlike the
du-associations and formula graphs, the execution
traces are not shared among cells, under the Copy
Representative approach, because different cells with
the same formulas may execute different parts of that
formula. For example, in Figure 2, cell
Factorial:Answer executes the else-expression of the
formula whereas Figure 5’s 70_Factorial:Answer
executes the then-expression. Execution traces are
collected via an O(1) probe in the evaluation engine.

Task 3 (marking du-associations “covered” when
the user validates cell C). Figure 8 gives the validation
algorithm. The system gets the du-association of a cell
reference from the shared formula graph, and then
validates the du-association. The call to
dynamicResolve finds the concrete cell represented in
this du-association in the context of C and recursively
validates further.

Task 4 (resetting affected cells to “not covered”
when the user edits a formula) is analogous to Task 1,
and does not warrant separate discussion.

4. Experiment

To guide our choice of method, we conducted an
experiment to compare the two approaches. The
specific objectives of the study were to investigate the
following research questions:
RQ1. In which approach are spreadsheet programmers

more effective in terms of du-adequacy?
RQ2. In which approach do spreadsheet programmers

have fewer redundant test cases?
RQ3. In which approach are spreadsheet programmers

more effective at finding faults?
RQ4. Which approach do spreadsheet programmers

expect while testing?

4.1 Method and Procedures

The participants were 47 undergraduate and
graduate computer science students enrolled in software
engineering courses. Half of the subjects used the Copy
Representative approach and half used the Extended
WYSIWYT approach. Each of the students was given
extra credit in their class for participation.

Subjects completed a background questionnaire and
were given a 20-minute tutorial on Forms/3 that
included a 2-minute open-ended practice session. Then,
subjects performed three 5-minute testing sessions in
which problem order was counter-balanced. Following
the three sessions, participants completed a
comprehension quiz intended to extract subjects’
understanding of the importance of testing, of how to
choose appropriate test cases, and of the behavior of the
underlying testing approach.

The subjects were given three recursive programs to
find faults in: one calculated xn, another calculated the
greatest common divisor of two numbers, and the third
calculated a class grade by accumulating scores from
three copied spreadsheets. Before running the actual
experiment, we evaluated its design, including the
problems, tutorial, and user interface, using Cognitive
Walkthroughs [7] and pilot studies.

4.2 Results

Brief summaries of the analyses of the data are

Algorithm CollectIncomingAssoc (SharedGraph)
For each use ∈ SharedGraph.Uses
Let useCells = {copies sharing SharedGraph}
Let allDefCells = { definition cells that

 contribute to use }
Let defSharedGraphs = {defCell.SharedGraph

| defCell ∈ allDefCells}
For each defSharedGraph ∈ defSharedGraphs
For each def ∈ defSharedGraph.Defs
Let DUA = (def, use, false)
Add DUA to useSharedGraph.DUAs.Incoming
Add DUA to defSharedGraph.DUAs.Outgoing

Figure 7. Collecting incoming du-associations under the
Copy Representative approach.

Algorithm ValidateCell (C)
Let aSharedGraph = C.SharedGraph
For each use ∈ C.Trace
For each DUA ∈ aSharedGraph.DUAs.incoming
If DUA.use = use then
Let defCellRef = DUA.def
DUA.exercised = true
directProducer =

dynamicResolve(defCellRef,C)
validateCell (directProducer)

Figure 8. Algorithm for updating testedness following a
validation.

- 7 -

provided below. For all analyses, α = .05.
To address RQ1 (testing coverage), the total

spreadsheet testedness (du-associations covered out of
total number of du-associations) for each problem was
recorded for each subject. A Repeated Measures
ANOVA showed that the level of coverage of the Copy
Representative group was significantly higher than that
of the Extended WYSIWYT group across the three
problems (F=59.1, df=1,45, p<.001). There was also a
significant difference in coverage for the three
problems (F=9.0, df=2,44, p<.001) and an interaction
effect (F=12.1, df=2,44, p<.001), which says that the
influence of the approach differed across problems.

To address RQ2 (redundancy), for each subject we
recorded the percentage of redundant test cases out of
the total number of recorded test cases. A Repeated
Measures ANOVA showed that the redundancy of the
Copy Representative group was greater than the
redundancy of the Extended WYSIWYT group
(F=19.79, df=1,45, p<.001). There were no differences
in redundancy among the problems or interaction
effects between the groups and the problems.

To address RQ3 (faults), the number of faults found
by each group was counted. Though the two groups did
not differ significantly in the number of faults they
found, more subjects from the Copy Representative
group found all faults and fewer found no faults than
the Extended WYSIWYT group (Table 1).

To gather data about the groups’ understanding of
their respective testing approach (RQ4), we asked
subjects which of four cells on model and copy
spreadsheets would become more tested if a cell on a
copied spreadsheet was validated in an example
problem. In both groups, approximately 17% answered
correctly for the given approach.

The same data were also analyzed regarding whether
the subjects expected testedness information to be
passed onto the model spreadsheet when they validated
a cell on a copied spreadsheet. A binomial test for
proportions revealed that more subjects expected the
model spreadsheet to share testing information with its
copies (p<.01). The magnitude of this expectation was
not different between groups (χ2=.537, p >.1).

A Repeated Measures ANOVA also revealed that
the Extended WYSIWYT group performed a greater
number of tests than the Copy Representative group
(F=8.52, df=1,45, p<.001), and also revealed a
interaction between the testing approach and problems
(F=3.68, df=2,44, p<.05).

4.3 Discussion

Two issues regarding testing are whether users can
achieve more coverage with less work and whether
increasing amount of work by users leads to finding
more of the faults. The Copy Representative group
achieved much higher testing coverage with fewer
clicks, while the Extended WYSIWYT group worked
harder but achieved less coverage. With the Extended
WYSIWYT approach, users are forced to test each
spreadsheet independently, and thus it requires more
work to achieve the same level of coverage. One might
hypothesize that the Extended WYSIWYT group would
find more faults since they did more tests. However, the
results of the experiment show that the groups did not
differ in their ability to find faults, and in fact, the Copy
Representative group found a few more overall.

The results of the experiment also showed that the
Copy Representative group performed more redundant
test cases while achieving higher coverage.
Redundancy is a two-sided issue: on the one hand,
Copy Representative users can be viewed as “wasting
effort;” on the other hand, the Extended WYSIWYT
group could be viewed as “wasting effort” in that they
tested the same formulas on multiple spreadsheets.

Regarding understandability, although results
indicated that most subjects could not accurately
predict the behavior of either of the testing approaches,
significantly more subjects expected the behavior to be
that of the Copy Representative approach.

In summary, the experiment certainly did not reveal
the understandability advantage of the Extended
WYSIWYT approach that we initially expected. Also,
from a theoretical standpoint, the Copy Representative
approach is better because it avoids the thorny
theoretical problems raised by the Extended
WYSIWYT approach. Taken together, these two
factors suggest that the Copy Representative approach
is the better choice.

5. Related Work

There is little previous work outside of our own
regarding testing of spreadsheets or in visual languages
in general. The spreadsheet-oriented work has mostly
focused on management devices to get users to test
spreadsheets better, although there is also some work
on comprehension aids for spreadsheet systems that
might be useful for testing. Panko recently presented a
summary of this work, and continues to update it [11].

In the larger software engineering community, most
previous research regarding testing methodologies has
been done in the context of traditional imperative

No faults 1 fault 2 faults
Copy Representative 2 7 15
Extended WYSIWYT 6 7 10

Table 1. The number of faults found in each group.

- 8 -

languages, but even in that research community, testing
techniques have paid little specific attention to whether
or not a program is recursive. Testing based on code-
based test adequacy criteria has potential to be
cognizant of recursion, but in many cases these criteria
are defined in a manner that renders them orthogonal to
whether or not programs involve any recursive calls.

Some test adequacy criteria, however, do consider
interactions among procedures. Dataflow test adequacy
criteria are among these: Some interprocedural data
dependence analysis techniques [8, 10] specifically
calculate interprocedural du-associations. For such
techniques, given a du-association, the all-uses
dataflow test adequacy criterion [12] (the criterion most
closely analogous to ours) calculates cases where
definitions can (statically) reach uses. However, it
considers all cases where definition d reaches use u as a
single equivalence class, even though d may reach u by
multiple paths. In contrast to this, the two approaches
presented in this paper both take context into account.

6. Conclusion

In this paper, we have presented two visual
approaches to testing recursive spreadsheets. The
approaches presented both extend the basic WYSIWYT
approach to support recursion. The Extended
WYSIWYT approach is dataflow-based, as is the
original WYSIWYT methodology but has several
testing-theoretic issues. However, its consistency with
basic WYSIWYT could have caused it to be the most
useful to the humans actually using it. The Copy
Representative approach honors not only dataflow
dependencies, but also shares testedness information
among multiple copies of the same cell. This allows the
user to avoid duplicating testing of identical logic and
also avoids the theoretical problems raised in the
Extended WYSIWYT approach.

To help inform our choice between these two
approaches, we implemented both and conducted an
empirical study. Users of the Copy Representative
approach achieved more testing coverage. Their efforts
to achieve this included more redundant testing, which
can be viewed as either a greater “safety net” or wasted
effort. Neither of the groups predicted behavior
accurately, but their expectations of propagation of
testedness were that of the Copy Representative
approach. These results, combined with its theoretical
advantages, lead us to view the Copy Representative
approach as the best choice for supporting testing of
recursive programs in this kind of language.

References
[1] A. Ambler, The Formulate visual programming language,

Dr. Dobb’s Journal, 21-28, Aug. 1999.
[2] M. Burnett and H. Gottfried, Graphical definitions:

Expanding spreadsheet languages through direct
manipulation and gestures, ACM Trans. Computer-Human
Interaction 5(1), 1-33, Mar. 1998.

[3] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J.
Reichwein, and S. Yang, Forms/3: A first-order visual
language to explore the boundaries of the spreadsheet
paradigm, J. Functional Programming (to appear).

[4] M. Burnett, A. Sheretov, G. Rothermel, Scaling up a ‘what
you see is what you test’ methodology to testing spread-
sheet grids, IEEE Symp. Vis. Lang., 30-37, Sept. 1999.

[5] E. Chi, J. Riedl, P. Barry, and J. Konstan, Principles for
information visualization spreadsheets, IEEE Computer
Graphics and Applications, July/Aug. 1998.

[6] V. Krishna, C. Cook, D. Keller, J. Cantrell, C. Wallace, M.
Burnett, G. Rothermel, Incorporating incremental
validation and impact analysis into spreadsheet
maintenance: An empirical study, TR 01-60-06, Oregon
State University, Jan. 2001.

[7] T. Green, M. Burnett, A. Ko, K. Rothermel, C. Cook, J.
Schonfeld, Using the cognitive walkthrough to improve
the design of a visual programming experiment, IEEE
Symp. Vis. Lang., Seattle, WA, 172-179, Sept. 2000.

[8] M. J. Harrold and M. L. Soffa, Efficient computation of
interprocedural definition-use chains, ACM Trans.
Programming Languages and Systems 16(2), 175-204,
Mar. 1994.

[9] B. Myers, Graphical techniques in a spreadsheet for
specifying user interfaces, ACM Conf. Human Factors in
Computing Systems, 243-249, May 1991.

[10] H. D. Pande, B. G. Ryder and W. Landi, Interprocedural
Def-Use Associations in C programs, IEEE Trans.
Software Eng. 20(5), 385-403, May 1994.

[11] R. Panko, What we know about spreadsheet errors, J. End
User Computing, 15-21, Spring 1998. (Also available at:
http://panko.cba.hawaii.edu/ssr/).

[12] S. Rapps, and E. Weyuker, Selecting software test data
using data flow information, IEEE Trans. Software Eng.
11, 367-375, Apr. 1985.

[13] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and A.
Sheretov, A methodology for testing spreadsheets, ACM
Trans. Software Eng. and Methodology, (to appear).

[14] G. Rothermel, L. Li, C. DuPuis, and M. Burnett, What
you see is what you test: A methodology for testing form-
based visual programs, Intl. Conf. Software Eng., 198-207,
Apr. 1998.

[15] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T.
Green, and G. Rothermel, An empirical evaluation of a
methodology for testing spreadsheets, Intl. Conf. Software
Eng., 230-239, June 2000.

[16] T. Smedley, P. Cox, and S. Byrne, Expanding the utility
of spreadsheets through the integration of visual
programming and user interface objects, ACM Wkshp.
Advanced Visual Interfaces, 148-155, May 1996.

[17] S. Yang and M. Burnett, From concrete forms to
generalized abstractions through perspective-oriented
analysis of logical relationships, IEEE Symp. Vis. Lang.,
St. Louis, MO, 6-14, Oct. 1994.

