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ABSTRACT

During debugging, a developer must repeatedly and manu-
ally reproduce faulty behaviors in order to inspect different
facets of the program’s execution. Existing tools for reproduc-
ing such behaviors prevent the use of debugging aids such as
breakpoints and logging, and are not designed for interactive,
random-access exploration of recorded behavior. This paper
presents Timelapse, a tool for quickly recording, reproduc-
ing, and debugging interactive behaviors in web applications.
Developers can use Timelapse to browse, visualize, and seek
within recorded program executions while simultaneously us-
ing familiar debugging tools such as breakpoints and logging.
Testers and end-users can use Timelapse to demonstrate fail-
ures in situ and share recorded behaviors with developers,
improving bug report quality by obviating the need for de-
tailed reproduction steps. Timelapse is built on Dolos, a novel
record/replay infrastructure that ensures deterministic execu-
tion by capturing and reusing program inputs both from the
user and from external sources such as the network. Dolos
introduces negligible overhead and does not interfere with
breakpoints and logging. In a small user evaluation, partici-
pants used Timelapse to accelerate existing reproduction ac-
tivities, but were not significantly faster or more successful in
completing the larger tasks at hand. Together, the Dolos in-
frastructure and Timelapse developer tool support systematic
bug reporting and debugging practices.
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INTRODUCTION

Debugging is often an iterative process in which developers re-
peatedly adjust their view on a program’s execution by adding
and removing breakpoints and inspecting program state at
different times and locations. This iteration requires a devel-
oper to repeatedly reproduce the behavior they are inspecting,
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which can be time-consuming and error-prone [36]. In the
case of interactive programs, even reproducing a failure can
be difficult or impossible: failures can occur on mouse drag
events, be time-dependent, or simply occur too infrequently
for a developer to easily reach a program state suitable for
debugging.

Deterministic record/replay [5] is a technique that can be used
to record a behavior once and then deterministically replay it
repeatedly and automatically, without user interaction. Though
it seems that the capability to record and replay executions
should be useful for debugging, no prior work has described
actual use cases for these capabilities, or how to best expose
these capabilities via user interface affordances. At most,
prior systems demonstrate feasibility by providing a simple
VCR-like interface [18, 33] that can record and replay linearly.
Many record/replay systems have no UI, and are controlled via
commands to the debugger or special APIs [9, 11, 27]. Finally,
prior work does not consider how record/replay capabilities
can interoperate with and enhance existing debugging tools
like breakpoints and logging. Prior tool instantiations [18, 25,
1] are inappropriate for debugging because they can interfere
with program performance, determinism, and breakpoint use,
and they are difficult to deploy.

This paper presents Timelapse, a developer tool for capturing
and replaying web application behaviors during debugging,
and Dolos, a novel record/replay infrastructure for web ap-
plications. A developer can use Timelapse’s interactive vi-
sualizations of program inputs to find and seek non-linearly
through the recording, and then use the debugger or other
tools to understand program behavior. To ensure determinis-
tic execution, Dolos captures and reuses user input, network
responses, and other nondeterministic inputs as the program
executes. It does this in a purely additive way—without im-
peding the use of other tools such as debuggers—via a novel
adaptation of virtual machine record/replay techniques to the
execution environment of web browsers. Debugging tools are
particularly important for interactive web applications because
the web’s highly dynamic, event-driven programming model
stymies traditional static program analysis techniques.

This paper makes the following contributions:

• Dolos: a fast, scalable, precise, and practical infrastructure
for deterministic record/replay of web applications.

• Timelapse: a developer tool for creating, visualizing, and
navigating program recordings during debugging tasks.

• The first user study to explore how and when developers
use record/replay tools during realistic debugging tasks.
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Dolos and Timelapse are free software: our source code, study
materials, and data are available on the project website1.

We first discuss the design of Timelapse, and use a scenario to
illustrate how Timelapse supports recording, reproducing, and
debugging interactive behaviors. Next, we present the design
and implementation of the underlying Dolos record/replay
infrastructure. We discuss the results of a small study to see
how developers use Timelapse in open-ended debugging tasks.
Finally, we conclude with related work and present several
implications for future interactive debugging tools.

REPRODUCING AND NAVIGATING PROGRAM STATES

The Timelapse developer tool is designed around two activities:
capturing user-demonstrated program behaviors, and quickly
and repeatedly reaching program states within a recording
when localizing and understanding a fault. The novel features
we describe in this section support these activities by mak-
ing it simple to record program behavior and by providing
visualizations and affordances that quicken the process of find-
ing and seeking to relevant program states without manually
reproducing behavior.

To better understand the utility of replay capabilities during
debugging, we first conducted a small pilot study with a pro-
totype record/replay interface. Using contextual inquiry, we
found that developers primarily used the prototype to iso-
late buggy output, and to quickly reach specific states when
working backwards from buggy output towards its root cause.
Towards these ends, we saw several common use cases: “play
and watch”; isolating output using random-access seeking;
stepping through execution in single-input increments, and
reading low-level input details or logged output.

This section introduces the novel features of the Timelapse
developer tool by showing how a fictional developer named
Claire might use Timelapse’s features while debugging.

Debugging Scenario: (Buggy) Space Invaders

Claire, a new hire at a game company, has been asked to
fix a bug in a web application version of the Space Invaders
video game2. In this game, the player moves a defending
ship and shoots advancing aliens. The game’s implementation
is representative of modern object-oriented interactive web
programs: it uses timer callbacks, event-driven programming,
and helper libraries. The game contains a defect that allows
multiple player bullets to be in flight at a time; there is only
supposed to be one player bullet at a time (Figure 1).

Reproducing Program Behavior

Claire is unfamiliar with the Space Invaders implementation,
so her first step towards understanding and fixing the multiple-
bullet defect is to figure out how to reliably reproduce it. This
is difficult because the failure only occurs in specific game
states and is influenced by execution conditions outside of
her control, such as random numbers, the current time, or
asynchronous network requests.

1
http://github.com/burg/timelapse/

2
http://matthaynes.net/playground/javascript/glow/

spaceinvaders/

Figure 1. Screenshots of normal and buggy Space Invader game mechan-

ics. Only one bullet should be in play at a time (shown on left). Due to
misuse of library code, each bullet fires two asynchronous bulletDied

events instead of one event when it is destroyed. The double dispatch

sometimes enables multiple player bullets being in play at once (shown

on right). This happens when two bullets are created: one between two

bulletDied events, and the other after both events.

With Timelapse, Claire begins capturing program behaviors
with a single click (Figure 2-6), plays the game until she repro-
duces the failure, and then finishes the recording. Recordings
created by Timelapse are compact, self-contained, and serial-
izable, so Claire can attach her recording to a bug report or
share it via email.

To reproduce the defect with traditional tools, Claire would
have to multitask between synthesizing reproduction steps,
playing the video game, and reflecting on whether the repro-
duction steps are correct. Once Claire finds reliable reproduc-
tion steps, she could then use breakpoints to further understand
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Figure 2. The Timelapse tool interface presents multiple linked views of

recorded program inputs. Above, the timelines drawer (1) is juxtaposed

with a detailed view of program inputs (2). The recording overview
(3) shows inputs over time with a stacked line graph, colored by cat-

egory. The overview’s selected region is displayed in greater detail in

the heatmap view (4). Circle sizes indicate input density per category.

In each view, the red cursor (5) indicates the current replay position
and can be dragged. Buttons allow for recording (6), 1× speed replay

(7), and breakpoint scanning (8). Details for the selected circle (9a) are

shown in a side panel (9b).
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the defect. But, breakpoints might themselves affect timing,
making the defect harder to trigger or requiring modified re-
production steps.

Navigating to Specific Program States

To focus her attention on code relevant to the failure, Claire
needs to know which specific user input—and thus which
event handler invocations—caused the second bullet to appear.

Claire uses Timelapse’s visualization and navigation tools
(Figure 2) to locate and seek the recording to an instance
of the multiple bullets failure. First, Claire limits the zoom
interval to when she actually fired bullets, and then filters out
non-keystroke inputs. She replays single keystrokes with a
keyboard shortcut until a second bullet is added to the game
board. Then, she seeks execution backward by one keystroke.
At this point, she is confident that the code which created the
second bullet ran in response to the current keystroke.

Without Timelapse, it would not be possible for Claire to iso-
late the failure to a specific keystroke and then work backwards
from the keystroke. Instead, she would have to insert logging
statements, repeatedly reproduce the failure to generate log-
ging output, and scrutinize logged values for clues leading
towards the root cause.

Navigation Aid: Debugger Bookmarks

Having tracked down the second bullet to a specific user input,
Claire now needs to investigate what code ran, and why.

With Timelapse, Claire sets several debugger bookmarks (Fig-
ure 3-6) at positions in the recording that she wants to quickly
revert back to, such as the keystroke that caused the second
bullet to appear or an important program point reached via the
debugger. Debugger bookmarks support the concept of tempo-
ral focus points [28],which are useful when a developer wants
to relate information [13]—such as the program’s state at a
breakpoint hit—that is only available at certain points of exe-
cution. Timelapse restores a debugger bookmark by seeking
to the preceding input, setting and continuing to the preced-
ing breakpoint, and finally simulating the user’s sequence of
debugger commands (step forward/into/out).

With traditional tools, Claire must explore an execution with
debugger commands such as “step into”, “step over”, and
“step out”. This is frustrating because these commands are
irreversible, and Claire would have to manually reproduce
the failure multiple times to compare multiple instants or the
effects of different commands.

Navigation Aid: Breakpoint Radar

Once Claire finds the code that creates bullets, she needs to
understand why some keystrokes fire bullets and others do not.

With Timelapse, Claire first adjusts the zoom interval to in-
clude keystrokes that did and did not trigger the failure. Then,
she sets a breakpoint inside the Bullet.create() method
and records and visualizes when it is actually hit during the
execution using the breakpoint radar feature (Figure 3-3a).
Breakpoint radar automates the process of replaying the execu-
tion, pausing and resuming at each hit, and visualizing when

3b
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Figure 3. Timelapse’s visualization of debugger status and breakpoint

history, juxtaposed with the existing Sources panel and debugger (1). A

blue cursor (2) indicates that replay execution is paused at a breakpoint,

instead of between user inputs (as shown in Figure 2). Blue circles mark
the location of known breakpoint hits, and are added or removed au-

tomatically as breakpoints change. A side panel (3b) shows the selected

(3a) circle’s breakpoints. Shortcuts allow for jumping to a specific break-

point hit (4) or source location (5). Debugger bookmarks (6) are set with

a button (7) and replayed to by clicking (6) or by using a drop-down

menu (8).

the debugger paused. Claire can easily see which keystrokes
created bullets and which did not.

With traditional tools, Claire would need to repeatedly set and
unset breakpoints in order to determine which keystrokes did
or did not create bullets. To populate the breakpoint radar
timeline, Claire would have to manually hit and continue from
dozens or hundreds of breakpoints, and collect and visualize
breakpoint hits herself. For this particular defect, breakpoints
interfere with the timing of the bullet’s frame-based anima-
tions, so it would be nearly impossible for Claire to pause
execution when two bullets are in flight.

Interacting with Other Debugging Tools

Once Claire localizes the part of the program responsible for
the multiple bullets, she still needs to isolate and fix the root
cause. To do so, Claire uses debugging strategies that do not
require Timelapse, but nonetheless benefit from it. Timelapse
is designed to be used alongside other debugging tools such
as breakpoints3, logging, and element inspectors; its interface
can be juxtaposed (Figure 3) with other tools.

Through code inspection, Claire observes that the creation
of a bullet is guarded by a flag indicating whether any bul-
lets are already on the game board. The flag is set in-
side the Bullet.create() method and cleared inside the
Bullet.die() method. To test her intuition about the

3To prevent breakpoints from interfering with tool use cases, Time-
lapse tweaks breakpoints in several ways: breakpoints are disabled
when recording or seeking, and enabled during real-time playback.
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code’s behavior, she inserts logging code and captures a new
execution to see if the method calls are balanced. The logging
output in Figure 4 is synchronized with the replay position:
as Claire seeks execution forward or backward, logging out-
put up to the current instant is displayed. Logging output is
cleared when a fresh execution begins (i.e., Timelapse seeks
backwards) and then populated as the program executes nor-
mally.

Claire has discovered that the multiple-bullet defect is caused
by the bulletDied event being fired twice, allowing a sec-
ond replacement bullet to be created if the bullet “fire” key
is pressed between the two event dispatches. In other words,
the failure is triggered by firing a bullet while another bullet is
being destroyed (by collision or leaving the game board).

With basic record/replay functionality, affordances for navi-
gating the stream of recorded inputs, and the ability to easily
reach program states by jumping directly to breakpoint hits,
Timelapse both eliminates the need for Claire to repeatedly
reproduce the Space Invaders failure and frees her to focus
on understanding the program’s logic. Our user evaluation
explores these benefits further.

RECORD/REPLAY INFRASTRUCTURE

Dolos is the underlying record/replay infrastructure that en-
ables the Timelapse tools and user interfaces. For Timelapse
to be useful during debugging tasks, Dolos must not disrupt ex-
isting developer tools and workflows. Concretely, this entails
the following four design goals:

1. Low overhead. Recording must introduce minimal perfor-
mance overhead, because many interactive web applications
are performance-sensitive. Replaying must be fast so that
users can quickly navigate through recordings.

2. Deterministic replay. Recordings must exactly reproduce
observable program behavior when replaying. Replaying
should not have external effects.

Figure 4. Screenshots of the logging output window and the defect’s man-
ifestation in the game. Claire added logging statements to the die and

init methods. At left, the logging output shows the order of method

entries, with the blue circle summarizing 3 identical logging outputs. Ac-

cording to the last 4 logging statements (outlined in red), calls to die

and init are unbalanced. At right, three in-flight bullets correspond to

the three calls to Bullet.init.

3. Non-interference. Recording and replaying must not inter-
fere with the use of tools such as breakpoints, watchpoints,
profilers, element inspectors, and logging.

4. Deployability. Recording and replaying must require no
special installation, configuration, or elevated user privi-
leges.

To the best of our knowledge, no prior record/replay tool sat-
isfies all of these constraints. Source-level instrumentation
of JavaScript [16] can perturb performance [25] and relies on
hard-to-deploy4 proxies to perform source rewriting. Rewrit-
ing techniques can interfere with a developer’s expectations by
obfuscating source code or by causing the debugger to unex-
pectedly interact with code the developer did not write. User-
space record/replay library tools [18, 27] execute in the same
address space as the target program and use wrappers to inter-
pose on nondeterministic APIs (such as the Date construc-
tor). These tools are inherently incompatible with breakpoint
debuggers: because they piggyback on the target program,
pausing at a breakpoint will also prevent the record/replay
library’s mechanisms from executing. Virtual machine replay
debugging [33] ensures deterministic execution of the entire
browser instead of one page context—preventing the use of
built-in debugging tools which cannot run independently from
other browser components. Macro-like replay tools such as
Selenium WebDriver [31], CoScripter [15], or Sikuli [34] are
commonly used for workflow automation; towards that end,
they only record and replay user input, and not other pro-
gram inputs such as network traffic, dates and times, and other
sources of non-determinism. Replaying only user input is not
deterministic enough to consistently reproduce web applica-
tion behaviors. These external tools are unaware of internal
system state or external server state: for example, they may try
to provide input while the program is paused at a breakpoint,
or cause the program to ask a server for resources that are no
longer valid.

Web Browser Architecture

We use the term web interpreter to refer to the interpreter-like
core of web browsers. The web interpreter processes inputs
from the network, user, and timers; executes JavaScript;
computes page layout; and renders output. We do not consider
features that do not affect the results of computation, such as
bookmarks and a browser’s address bar. The web interpreter
schedules asynchronous computation using a cooperative
single-threaded event loop. It communicates with embedders
(Safari, Google Chrome) and platforms (Linux, Mac OS X)
via embedder and platform APIs (Figure 5). Both APIs are
bidirectional: the web interpreter can call “out” to collect
environmental information from the platfrom or delegate
security policies to the embedder; the platform and embedder
can call “in” to schedule computation (asynchronous timers,
user input, network traffic) in the web interpreter’s event loop.

4Proxies used for instrumentation and debugging like Fiddler [29]
require elevated privileges, manual configuration, and intentional
man-in-the-middle attacks to subvert SSL encryption.
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Figure 5. The flow of inputs while recording execution. Boxes delineate

module boundaries. Arrows indicate the flow of program inputs. The

web interpreter receives input and sends output via embedder and plat-

form APIs (thick lines). During recording, input shims (striped regions)

record program inputs delivered via the public APIs, and pass on the

inputs to the unmodified event loop.

Design

Our requirements of low overhead, deterministic replay, non-
interference, and deployability are closest to the design goals
of virtual machine-based record/replay systems. Well-known
systems in this space, such as ReVirt [7] and VMWare Re-
play Debugging [33], achieve deterministic record/replay via
the “instruction-counting trick”. A hypervisor interposes on
nondeterministic machine instructions, but executes ordinary
instructions natively on the bare-metal processor. Interrupts
are captured and injected accurately by counting their position
in the instruction stream. This technique satisfies our four
design goals: it is fast, ensures precise replay, is compatible
with debuggers, and requires minimal modifications to the
runtime environment.

The execution model of web programs does not have ma-
chine instructions or interrupts, but there are parallels be-
tween virtual machines and web browsers. The Dolos in-
frastructure makes the following novel substitutions to make
the “instruction-counting trick” work for the web’s execution
model:

• Instead of simulating deterministic hardware, Dolos simu-
lates deterministic responses from embedder and platform
when the web interpreter calls out to them.

• Instead of hardware interrupts, Dolos captures and simulates
the subset of inbound embedder and platform API calls that
trigger computation within the web application.

• Instead of counting instructions as a unit of execution
progress, Dolos counts DOM event dispatches—precursors
to the execution of JavaScript code—that may have deter-
ministic or nondeterministic effects.

Implementation

The Dolos infrastructure is a modified version of the WebKit
browser toolkit. We chose WebKit because it contains the
most widely-deployed web interpreter (WebCore) and devel-
oper toolchain (Web Inspector). Our deployment model is
straightforward: a version of WebKit built with Timelapse
and Dolos support is distributed as a dynamic library, and can
be used with existing WebKit embedders such as Safari or
Google Chrome by adjusting the dynamic library load path.

!"!#$%

&''(%

Platform 

)#(*$+%

&',%

Web Interpreter Embedder 

Figure 6. The flow of inputs while replaying execution. During replay,

the interpreter’s replay controller uses the input log to simulate the se-

quence of recorded public API calls into the interpreter (blue arrows).

External calls to public APIs are ignored (solid black line) to prevent

user interactions from causing a different execution. Calls from the web

interpreter to platform APIs (i.e., to get the current time) use memoized

return values and do not have external effects.

Recording and replaying

Hypervisors (and record/replay systems based on them) are
fast in part because most execution occurs at full speed on
bare hardware. Similarly, Dolos achieves high record/replay
performance in part by using the same code paths as normal ex-
ecution when recording and replaying program inputs. Dolos
captures and replays calls to the embedder and platform APIs
using shims—thin layers used to observe external API calls
or simulate external API calls from within. During recording
(Figure 5), the shims record all API calls that affect program
determinism. During replay, these API calls are simulated
(Figure 6) to deterministically reproduce the recorded pro-
gram behavior. To prevent user interactions from causing a
different execution during replay, the shims block external
API calls while allowing simulated calls to proceed.

During recording, Dolos saves the timing, ordering, and de-
tails of inbound calls to the web interpreter that are pertinent
to the recorded web program’s execution. During replay, these
inbound calls are simulated by Dolos, rather than actually be-
ing issued by the embedder or platform. Dolos’s approach to
capturing and replaying computation-triggering calls is appli-
cable to programs implemented using an event-loop-based UI
framework. Dolos can seek to and/or pause execution prior to
any simulated inbound call. Because the event loop is transpar-
ent to web programs, Dolos “pauses” execution without using
breakpoints by simply not simulating the next computation-
triggering inbound call. One can use breakpoints to pause
JavaScript execution at any statement, but cannot use them
to pause execution before the web interpreter interprets an
inbound call.

Program inputs

Like hypervisor record/replay systems, Dolos classifies in-
puts to the web interpreter—that is, relevant inbound and
outbound embedder and platform API calls—as either inter-
rupts or environmental nondeterminism. Table 1 enumerates
the major sources of interrupt-like inputs and environmental
inputs. Conceptually, interrupts cause computation to happen,
while environmental inputs embody nondeterministic aspects
of the environment. Interrupts are API calls from the embedder
or platform to the interpreter; environmental inputs are API
calls to the embedder or platform from the interpreter.
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Input Classification DOM Derivatives

Keyboard strokes Interrupt keyboard events
Mouse input Interrupt mouse events
Timer callbacks Interrupt (none)
Asynchronous events Interrupt animation events
Network response Interrupt AJAX, images, data

Random values Environment Math.random
Current time Environment Date.now
Persistent state Environment cookies, local storage

Table 1. Major classes of input as defined by Dolos.

Dolos records and replays embedder/platform API calls rather
than individual DOM events [18, 21, 25] which result from
the web interpreter’s interpretation of inbound API calls. For
example, instead of recording individual DOM click events,
Dolos captures the embedder’s calls to the web interpreter’s
handleMousePress API. This in turn may trigger one,
many, or no DOM event dispatches, depending on the in-
terpreter’s state. Dolos’s strategy reduces log size, runtime
overhead, and implementation complexity because it does
not require event targets to be serialized when recording or
re-targeted when replaying.5

Dolos captures and replays network traffic in the same way that
other event loop callbacks are handled. When capturing, Dolos
caches the HTTP headers and raw data of network responses
as they are passed from the embedder to the web interpreter.
When replaying, Dolos blocks outbound network requests
from actually reaching the network. Dolos simulates determin-
istic network responses by reusing cached HTTP headers and
data. For example, when loading images asynchronously on
Flickr, Dolos caches all image data when capturing. When re-
playing, Dolos simulates network responses by reusing cached
image data, and never communicates with Flickr servers.

For environmental inputs, Dolos uses shims to memoize the
web interpreter’s C++ calls to the platform or embedder APIs
rather than memoizing calls to nondeterministic JavaScript
functions. For example, Dolos does not record the return value
of JavaScript’s Date.now() function; instead, Dolos memo-
izes the JavaScript engine’s calls to the currentTimeMS()
platform API inside the implementation of Date.now().

Replay fidelity

The Dolos infrastructure guarantees identical execution when
recording and replaying, up to the order and contents of DOM
events dispatched. JavaScript execution is completely deter-
ministic. There is no guarantee regarding number of layout
reflows or paints due to time compression or internal browser
nondeterminism. This is unimportant because visual out-
put cannot affect the determinism of JavaScript computation:
JavaScript client code can ask for computed layout data, but
will block until the layout algorithm runs on the current ver-
sion of the DOM tree. Rendering and painting activity is not
exposed to client code at all.

To the best of our knowledge, Dolos is the first web
record/replay infrastructure that detects execution divergence.
Timelapse warns users when divergences are detected or when

5Guo et al. [9] report on the space and time benefits of memoizing
application-level API calls instead of low-level system calls [27].

known-nondeterministic APIs are used, and allows them to
abort replay, ignore divergences, or report feature requests
to the Dolos developers. Dolos uses differences in measures
such as DOM node counts and event dispatch counts to detect
unexpected execution divergences caused by bugs in Dolos
itself. This has helped us find and address obscure sources of
nondeterminism, such as resource caching effects, asynchrony
in the HTML parser, implicit window size and focus state, and
improper multiplexing of inputs to nested iframe elements.

The Dolos prototype does not address all known sources of
nondeterminism, such as the Touch, Battery, Sensor, Screen,
or Clipboard APIs, among others. There are no conceptual
barriers to supporting these features: they are implemented
in terms of standardized DOM events and interfaces, making
them relatively easy to interpose upon using techniques de-
scribed in this paper. Each new program input requires local
changes to route control flow through a shim, plus a helper
class to serialize and simulate the program input.

Engineering cost

Dolos’s design scales to new platforms, embedders, and
sources of nondeterminism because inputs are recorded and
replayed at existing module boundaries. Implementing Dolos
required minimal changes to WebKit’s architecture: namely,
the insertion of shims just beneath the web interpreter’s pub-
lic embedder and platform APIs (shown in Figure 5 and in
Figure 6). The Dolos infrastructure consists of 7.6K SLOC
(74 new files, 75 modified files). For comparison, WebKit
contains about 1.38M SLOC.

Overhead

Dolos’s record/replay performance slowdown is unnoticeable
(< 1.1×) for interactive workloads and modest (≤ 1.65×) for
non-interactive benchmarks without any significant optimiza-
tion efforts (Table 2). Recording overhead and the amount of
data collected scales with user, network, and nondeterministic
inputs, not CPU time.

We report the geometric mean of 10 runs (except for interactive
runs, which were recorded once but replayed 10 times). We
cleared network resource caches between executions to avoid
memory and disk cache nondeterminism. We used local copies
of benchmarks to avoid network nondeterminism.

Recording has almost no time overhead: execution times are
dominated by the subject program. Replaying at 1× speed
is marginally slower than a normal execution due to extra
work performed by Dolos, and seeking (fast replaying) is
much faster because it elides user and network waits from the
recorded execution.

While being created or replayed, recordings are stored in-
memory and consume modest amounts of memory (first col-
umn in the data size section of Table 2). When serialized, the
recordings are highly compressible. A recording’s length is
limited only by main memory; in our experience, users at-
tempt to minimize recording length to reduce the number of
irrelevant inputs. Timelapse’s linear presentation of time does
not scale well to long executions. This could be ameliorated
by using nonlinear time scaling techniques [32, 14].
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Program Run Time Data Size (KB)

Name Description Workload Bottleneck Baseline Disabled Recording Replaying Seeking Log Site

JSLinux x86 emulator Run until login network 10.5s 1.00× 1.65× 1.65× 0.37× 24.7 / 71.4 / 8.5 4500
JS Raytracer ray-tracer Complete run CPU 6.3s 1.00× 1.01× 1.17× 1.02× 24.0 / 69.4 / 10.2 5.9
Space Invaders video game Scripted gameplay timers 25.8s 1.00× 1.03× 1.22× 0.25× 247 / 683 / 56.8 712

Mozilla.org home page Read latest news user 22.3s 1.00× 1.00× 1.09× 0.23× 187 / 502 / 29.5 2800
CodeMirror text editor Edit a document user 16.6s 1.00× 1.00× 1.03× 0.07× 57.6 / 163 / 17.1 168
Colorpicker jQuery widget Reproduce defect user 15.3s 1.00× 1.00× 1.07× 0.13× 112 / 302 / 26.7 577
DuckDuckGo search engine Browse results user 14.1s 1.00× 1.00× 1.08× 0.19× 119 / 309 / 29.6 1900

Table 2. Overhead for three non-interactive and four interactive programs. “Baseline” is unmodified WebKit, and “Disabled” is Dolos when neither

record nor replay is enabled. Log size is given for the in-memory representation, the uncompressed log file, and the compressed log file. Site content is

images, scripts, and HTML.

Limitations

Dolos only ensures deterministic execution for client-side

portions of web applications; it records and simulates client
interactions with a remote server, but does not directly cap-
ture server-side state. Tools that link client- and server-side
execution traces [35] may benefit from the additional run-
time context provided by a Dolos recording. Dolos cannot
control the determinism of local, external software compo-
nents such as Flash, Silverlight, or other plugins. However,
plugins interact via the embedder API; Dolos could handle
plugin nondeterminism in the same way that other embedder
nondeterminism is handled.

Web interpreters provide many API calls that do not affect
program determinism. For example, WebKit’s web interpreter
includes APIs for usability features like native spell-checking,
in-page search, and accessibility. Dolos does not record or
replay these API calls because a developer may wish to use
such features differently during replay, and these features do
not affect the determinism of the web program.

Dolos’s hypervisor-like record/replay strategy relies on the
layered architecture of WebKit. It is not directly applicable to
systems without clear API boundaries between the embedder,
platform, and web interpreter. For example, the Gecko web
interpreter used by Firefox is implemented by dozens of de-
coupled components rather than a monolithic module. This
design makes it easy to extend the browser, but difficult to
record and replay only the subset of components that affect the
specific web program’s execution, as opposed to those are used
by browser features, browser extensions, or several web pro-
grams at once. Shims for Gecko would have the same behavior
as Dolos’s shims, but they would be placed throughout the
web interpreter rather than at coarse abstraction boundaries.

HOW DO DEVELOPERS USE TIMELAPSE?

Prior work [7, 18, 27] asserts the usefulness of deterministic
record and replay for debugging. In this section, we present
a formative user study that investigates when, how, and for
whom record/replay tools and specifically Timelapse are bene-
ficial. Our specific research questions were:

RQ 1 How does Timelapse affect the way that developers
reproduce behavior?

RQ 2 How do successful and unsuccessful developers use
Timelapse differently?

Study Design

We recruited 14 web developers, 2 of which we used in pilot
studies to refine the study design. Each participant performed
two tasks. We used a within-subjects design to see how Time-
lapse changed the behavior of individual developers. For one
task, participants could use the standard debugging tools in-
cluded with the Safari web browser. For the other task, they
could also use Timelapse. To mitigate learning effects, we
randomized the ordering of the two tasks, and randomized task
in which they were allowed to use Timelapse.

The goal of this study was to explore the variation in how de-
velopers used Timelapse, so the tasks needed to be challenging
enough to expose a range of task success. To balance realism
with replicability, we chose two tasks of medium difficulty,
each with several intermediate milestones. Based on our re-
sults, our small exploratory study was still sufficiently large
to capture the variability in debugging and programming skill
among web developers.

Participants

We recruited 14 web developers in the Seattle area. Each partic-
ipant had recently worked on a substantial interactive website
or web application. One half of the participants were develop-
ers, designers, or testers. The other half were researchers who
wrote web applications in the course of their research. We did
not control for experience with the jQuery or Glow libraries
used by the programs being debugged.

Programs and Tasks

Space Invaders. One program was the Space Invaders game
from our earlier example scenario. The program consists of
625 SLOC in 6 files (excluding library code) and uses the
Glow JavaScript library6. We chose this program for two rea-
sons: its extensive use of timers makes it a heavy record/replay
workload, and its event-oriented implementation is represen-
tative of object-oriented model-view programs, the dominant
paradigm for large, interactive web applications.

We asked participants to fix two Space Invaders defects. The
first was an API mismatch that occurred when we upgraded the
Glow library to a recent version while preparing the program
for use in our study. In prior versions, a sprite’s coordinates
were represented with x and y properties; in recent versions,
coordinates are instead represented with left and top prop-
erties, respectively. After upgrading, the game’s hit detection

6
http://www.bbc.co.uk/glow/
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code ceases to work because it references the obsolete property
names. The second defect was described in the motivating
example and was masked by the first defect.

Colorpicker. The other program was Colorpicker7, an inter-
active widget for selecting colors in the RGB and HSV col-
orspaces (see in Figure 7). The program consists of about 500
LOC (excluding library and example code). The widget sup-
ports color selection via RGB (red, green, blue) or HSV (hue,
saturation, brightness) component values or through several
widgets that visualize dimensions of the HSV colorspace.

We chose this

Figure 7. The Colorpicker widget.

program be-
cause it makes
extensive use
of the popular
jQuery library,
which—by
virtue of being
highly layered,
abstracted, and
optimized—makes reasoning about and following the code
significantly more laborious.

The Colorpicker task was to create a regression test for a real,
unreported defect in the Colorpicker widget. The defect mani-
fests when selecting a color by adjusting an RGB component
value, as shown in Figure 7. If the user drags the G component
(left panel, orange), the R component spontaneously changes
(right panel, red). The R component should not change when
adjusting the G component. The bug is caused by unneces-
sary rounding in the algorithm that converts values between
RGB and HSV color spaces. Since the color picker uses the
HSV representation internally, repeated conversions between
RGB and HSV can expose numerical instability during certain
patterns of interaction.

We claim that both of these faults are representative of many
bugs in interactive programs. Often there is nothing wrong
with the user interface or event handling code per se, but
faults that are buried deep within the application logic are
only uncovered by user input or manifest as visual output.
The Space Invaders faults lie in incorrect uses of library APIs,
but manifest as broken gameplay mechanics. Similarly, the
Colorpicker fault exists in a core numerical routine, but is only
manifested ephemerally in response to mouse move events.

Procedure

Participants performed the study alone in a computer lab. Par-
ticipants were first informed of the general purpose and struc-
ture of the study, but not of our research questions to avoid
observer and subject expectancy effects. Immediately prior
to the task where Timelapse was available, participants spent
30 minutes reading a Timelapse tutorial and performing ex-
ercises on a demo program. In order to proceed, participants
were required to demonstrate mastery of recording, replaying,
zooming, seeking, and using breakpoint radar and debugger
bookmarks. Participants could refer back to the tutorial during
subsequent tasks.
7
http://www.eyecon.ro/colorpicker/

Each task was described in the form of a bug report that in-
cluded a brief description of the bug and steps to reproduce
the fault. At the start of each task, the participant was in-
structed to read the entire bug report and then reproduce the
fault. Each task was considered complete when the participant
demonstrated their correct solution. Participants had up to
45 minutes to complete each task. We stopped participants
when they had demonstrated successful completion to us or
exceeded the time limit.

After both task periods were over, we interviewed participants
for 10 minutes about how they used the tool during the tutorial
and tool-equipped task and how they might have used the tool
on the other task. We also asked about their prior experience
in bug reproduction, debugging, and testing activities.

Data Collection and Analysis

We captured a screen and audio recording of each participant’s
session, and gathered timing and occurrence data by reviewing
the video recordings after the study concluded.

Our tasks were both realistic and difficult so as to draw out
variations in debugging skill and avoid imposing a perfor-
mance ceiling. We measured task success via completion of
several intermediate task steps or critical events. For the Space
Invaders task, the steps were: successful fault reproduction,
identifying the API mismatch, fixing the API bug, reproduc-
ing the rate-of-fire defect, written root cause, and fixing the
rate-of-fire defect. For the Colorpicker task, the steps were:
successful fault reproduction, written root cause, correct test
form, identifying a buggy input, and verifying the test.

We measured the time on task as the duration from the start of
the initial reproduction attempt until the task was completed or
until the participant ran out of time. We recorded the count and
duration of all reproduction activities and whether the activity
was mediated by Timelapse (automatic reproduction) or not
(manual reproduction). Reproduction times only included time
in which participants’ attention was engaged on reproduction,
which we determined by observing changes in window focus,
mouse positioning, and interface modality.

Results

Below, we summarize our findings of how Timelapse affects
developers’ reproduction behavior (RQ1) and how this inter-
acts with debugging expertise (RQ2).

Timelapse did not reduce time spent reproducing behav-
iors. There was no significant difference in the percentage
of time spent reproducing behaviors across conditions and
tasks. Though Timelapse makes reproduction of behaviors
simpler, it does not follow that this fact will reduce overall
time spent on reproduction. We observed the opposite: be-
cause reproduction with Timelapse was so easy, participants
seemed more willing to reproduce behaviors repeatedly. A
possible confound is that behaviors in our tasks were fairly
easy to reproduce, so Timelapse only made reproduction less
tedious, not less challenging. We had hoped to test whether
Timelapse is more useful for fixing more challenging bugs, but
were forced to reduce task difficulty so that we could retain a
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within-subjects study design while minimizing participants’
time commitment.

8–25% of time was spent reproducing behavior. Even
when provided detailed and correct reproduction steps, de-
velopers in both conditions spent up to 25% (and typically
10–15%) of their time reproducing behaviors. Participants
in all tasks and conditions reproduced behavior many times
(median of 22 instances) over small periods. This suggests that
developers frequently digress from investigative activities to re-
produce program behavior. These measures are unlikely to be
ecologically valid because most participants did not complete
all tasks, and time spent on reproduction activities outside of
the scope of our study tasks (i.e., during bug reporting, triage,
and testing) is not included.

Expert developers incorporated replay capabilities. High-
performing participants—those who successfully completed
the most task steps—seemed to better integrate Timelapse’s
capabilities into their debugging workflows. Corroborating
the results of previous studies [26, 22], we observed that suc-
cessful developers debugged methodically, formed and tested
debugging hypotheses using a bisection strategy, and revised
their assessment of the root cause as their understanding of
the defect grew. They quickly learned how to use Timelapse
to facilitate these activities. They used Timelapse to accelerate
familiar tasks, rather than redesigning their workflow around
record/replay capabilities. In the Colorpicker task, participant
11 used Timelapse to compare program state before and after
each call in the mousemove event handler, and then used
Timelapse to move back and forth in time when bisecting the
specific calls that caused the widget’s RGB values to update
incorrectly. Participants in the control condition appeared to
achieve the same strategy more slowly by interleaving changes
to breakpoints and manual reproduction.

Timelapse distracted less-skilled developers. Those who
only achieved partial or limited success had trouble integrat-
ing Timelapse into their workflow. We partially attribute this
to differences in participants’ prior debugging experiences and
strategies. The less successful participants used ad-hoc, op-
portunistic debugging strategies; overlooked important source
code or runtime state; and were led astray by unverified as-
sumptions. Consequently, even when these developers used
Timelapse, they did not use it to a productive end.

Summary In our study, developers used Timelapse to automat-
ically reproduce program behavior during debugging tasks, but
this capability alone did not significantly affect task times, task
success, or time spent reproducing behaviors. For developers
who employed systematic debugging strategies, Timelapse
was useful for quickly reproducing behaviors and navigating
to important program states. Timelapse distracted developers
who used ad-hoc or opportunistic strategies, or who were un-
familiar with standard debugging tools. Timelapse was used
to accelerate the reproduction steps of existing strategies, but
did not seem to affect strategy selection during our short study.
As with any new tool, it appears that some degree of training
and experience is necessary to fully exploit the tool’s benefits.
In our small study, the availability of Timelapse had no statis-
tically significant effects on participants’ speed or success in
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Figure 8. A summary of task time and success per condition and task.

Box plots show outliers (points), median (thick bar), and 1st and 3rd
quartiles (bottom and top of box, respectively). There was no statis-

tically significant difference in performance between participants who

used standard tools and those who had access to Timelapse.

completing tasks. Figure 8 shows task success and task time
per task and condition. In future work, we plan to study how
long-term use of Timelapse during daily development affects
debugging strategies. We also plan to investigate how record-
ings can improve bug reporting practices and communication
between bug reporters and bug fixers.

RELATED WORK

Visualizing and Exploring Recordings and Traces

In contrast to the dearth of interactive record/replay tools,
there have been many tools [12, 24] to visualize, navigate,
and explore execution traces8 generated by logging instrumen-
tation. This is because execution traces are several orders
of magnitude larger and contain very low-level details: the
only way to understand them is to use elaborate search, anal-
ysis, and visualization tools. While Timelapse visualizes an
execution as the temporal ordering of its inputs, trace-based de-
bugging tools [12, 32] infer and display higher-level structural
or causal relationships observed during execution. Timelapse’s
affordances primarily support navigation through the record-
ing with respect to program inputs, while trace-based tools
focus directly on aids to program comprehension (such as sup-
porting causal inference or answering questions about what
happened [12]).

Unfortunately, the practicality of many trace-based debug-
ging tools is limited by the performance of modern hardware
and the size of generated execution traces. Modern profilers,
logging, and lightweight instrumentation systems [2] (and vi-
sualization tools [32] built on top of them) have acceptable
performance because they capture infrequent high-level data
or perform sampling. In contrast, heavyweight fine-grained ex-
ecution trace collection introduces up to an order of magnitude
slowdown [12, 20]. Generated traces and their indices [23, 24]
are very large and often limited by the size of main memory.

Supporting Behavior Reproduction and Dissemination

To the best of our knowledge, deterministic record/replay sys-
tems that support dissemination of behaviors have only been

8
Execution traces consist of intermediate program states logged over

time, while Dolos’s recordings consist only of the program’s inputs.
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widely deployed as part of video game engines [6]. Recordings
of gameplay are artifacts shared between users for entertain-
ment and education. These recordings are also a critical tool
for debugging video game engines and their network proto-
cols [30]. In the wider software development community, bug
reporting systems [8] and practices [36] emphasize the sharing
of evidence such as program output (e.g., screenshots, stack
traces, logs, memory dumps) and program input (e.g, test
cases, configurations, and files). Developers investigate bug
reports with user-written reproduction steps.

While we have focused on the utility of record/replay systems
for debugging, such systems are also useful for creating and
evaluating software. Prior work has used record/replay of
real captured data to provide a consistent, interactive means
for prototyping sensor processing [3, 19] and computer vi-
sion [10] algorithms. More generally, macro-replay systems
for reproducing user [31] and network [29] input are used
for prototyping and testing web applications and other user
interfaces. Dolos recordings contain a superset of these in-
puts; it is possible to synthesize a macro (i.e, automated test
case) for use with other tools. The JSBench tool [25] uses this
strategy to synthesize standalone web benchmarks. Derived
inputs may improve the results of state-exploration tools such
as Crawljax [17] by providing real, captured input traces.

CONCLUSION AND FUTURE WORK

Together, Timelapse and Dolos constitute the first toolchain
designed for interactively capturing and replaying web ap-
plication behaviors during debugging. Timelapse focuses on
browsing, visualizing, and navigating program states to sup-
port behavior reproduction during debugging tasks. Our user
study confirmed that behavior reproduction was a significant
activity in realistic debugging tasks, and Timelapse assisted
some developers in locating and automatically reproducing
behaviors of interest. The Dolos infrastructure uses a novel
adaptation of instruction-counting record/replay techniques to
reproduce web application behaviors. Our prototype demon-
strates that deterministic record/replay can be implemented
within browsers in an additive way—without impacting per-
formance or determinism, impeding tool use, or requiring
configuration—and is a platform for new debugging aids.

Prior work assumes that executions are in short supply during
debugging, and that developers know a priori what sorts of
analysis and data they want before reproducing behavior. In
future work, we want to disrupt this status quo. On-demand
replay (in the foreground, background, or offline) could
change the feasibility of useful program understanding
tools [12] or dynamic analyses [4] that, heretofore, have
been considered too expensive for practical (always-on)
use. Using the Dolos infrastructure, we intend to transform
prior works in dynamic analysis and trace visualization into
on-demand, interactive tools that a developer can quickly
employ when necessary. We believe that when combined
with on-demand replay, post mortem trace visualization and
program understanding tools will become in vivo tools for
understanding program behavior at runtime.
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