• Indoor Air Quality
 – Introduction
 – HVAC
 – Source of IAQ Problems
 – Contaminants & Health Effects
 – Evaluation & Control

Introduction

• Indoor air quality (IAQ) refers to the quality of air in:
 – offices
 – schools
 – homes
 – health care settings
 – settings other than industrial
Introduction

- EPA ranks indoor air pollution in the top 5 environmental risks to public health
- EPA studies indicate that indoor air levels of many pollutants may be 2-5 times, and occasionally, more than 100 times higher than outdoor levels
Introduction

• IAQ is a relatively new field
• energy conservation efforts in 70’s play a role in IAQ problems
• approximately 90% of time spent indoors
• IAQ investigations often find no specific cause

Introduction

• Standards/Guidelines
 – OSHA proposed an IAQ standard in 1994 - put on the shelf
 – ASHRAE has guidelines for ventilation specs
 – EPA/NIOSH has Building Air Quality Action Plan
 – EPA has developed report “Healthy Building - Healthy People”
Sources of information

Building Managers Guide to IAQ
 http://www.epa.gov/iaq/largeblnds/baq_page.htm
IAQ Building Education and Assessment Model (I-BEAM) Computer Software
 http://www.epa.gov/iaq/largeblnds/ibeam_page.htm
EPA Indoor Air Quality: Tools for Schools.
 http://www.epa.gov/iaq/schools/index.html
IAQ Clearinghouse
 http://www.epa.gov/iaq/iaqinfo.html

Introduction

• Terminology
 – sick-building syndrome
 – tight-building syndrome
 – building-related disease
Introduction

• Sick or Tight-building syndrome
 – a series of acute complaints for which there is no obvious cause and where medical tests reveal no particular abnormalities
 – symptoms generally subside after leaving building

• Building-related illness
 – identifiable illness traceable to building conditions
 – includes:
 • hypersensitivity pneumonitis
 • Legionnaire’s disease
 • humidifier fever
Introduction

• IAQ can be a complex issue:
 – numerous sources
 – often there is no point source as in industrial settings
 – psychogenic components

Introduction

• Psychogenic illness
 – controversial
 – symptoms resulting from psychological or psychosocial origin
 • stressors
 • suggestions from co-workers
Introduction

• Mass psychogenic illness components
 – Poor work environments
 – Labor/management problems
 – Persistence of complaints following removal of “offending components”
 – Excessive work loads
 – Boring and repetitive work
 – Gender-specific complaint rates

Introduction

• Multiple chemical sensitivity
 – Even more controversial!
 – Other names for the syndrome:
 • Environmental illness, ecologic illness, allergic toxemia, cerebral allergy
 – Assertions:
 • failure to adapt to low-dose exposure to man-made chemicals resulted in sensitivity to these chemicals
 • Immune system becomes “overloaded”
Introduction

- **Multiple chemical sensitivity**
 - Vague symptoms: depression, irritability, mood swings, fatigue, drowsiness, respiratory symptoms, etc.
 - Possible triggers: organics, perfumes, building materials, paints, exhaust, smoke, etc.
 - Most physicians who diagnose this ailment are “clinical ecologists”

- **Opponents to MCS**
 - No scientifically plausible mechanism
 - No diagnostic tests have been substantiated
 - MCS has not been clearly defined
 - No ICD-9 code
HVAC System

• Purpose:
 – thermal comfort
 – mix and distribute adequate amounts of outdoor air
 – isolate & remove odors and contaminants through pressure control, filtration & exhaust fans

HVAC System

• Components:
 – furnaces & boilers
 – chillers
 – cooling towers
 – air handling units
 – exhaust fans
 – ductwork
 – filters
HVAC System

- Thermal comfort
 - factors:
 - relative humidity
 - air movement
 - activity level
 - clothing
 - physiology
HVAC System
ASHRAE standard 55-1981

<table>
<thead>
<tr>
<th>RH</th>
<th>Winter Temp (°F)</th>
<th>Summer Temp (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>68.5 – 76.0</td>
<td>74.0 – 80.0</td>
</tr>
<tr>
<td>40%</td>
<td>68.5 – 75.5</td>
<td>73.5 – 79.5</td>
</tr>
<tr>
<td>50%</td>
<td>68.5 – 74.5</td>
<td>73.0 – 79.0</td>
</tr>
<tr>
<td>60%</td>
<td>68.0 – 74.0</td>
<td>72.5 – 78.0</td>
</tr>
</tbody>
</table>

HVAC System

- Ventilation to meet occupant needs
 - most air handling units distribute a blend of outdoor air with recirculated indoor air
 - conditioned air is a blend that is heated or cooled, filtered and sometimes humidified
HVAC System

• ASHRAE std. 62-1999
 – For a typical office space
 • 15-20 cubic feet per minute (cfm) of outside air per occupant
 – 15 CFM for reception areas
 – 20 CFM for office space & conference rooms
 – 60 CFM for smoking rooms

HVAC Systems

• Control of odors & contaminants
 – in office buildings - dilution
 – ventilation efficiency
 • the ability of the ventilation system to distribute supply air and remove odors and pollutants
 – local exhaust ventilation
 • isolate and remove contaminant at the source
 – fume hoods
 – kitchen range hood exhaust
HVAC

• Control of odors & contaminants
 – isolation - controlling pressure relationships between rooms
 • positive pressure
 – more air is supplied than is exhausted
 • negative pressure
 – less air supplied than is exhausted
 – used in “mixed use” buildings

OVERHEADS….
Sources of IAQ Problems

• Outside Building
 – contaminated outdoor air
 – emissions from nearby sources
 – moisture or standing water
 – Soil gas

• Equipment
 – HVAC system
 • dust or dirt in ductwork & other components
 • microbial growth in drip pans, humidifiers, coils & water spray systems
 • refrigerant leakage
Sources of IAQ Problems

• Equipment
 – Non-HVAC equipment
 • office equipment
 – VOCs
 – ozone from copier
 • supplies (solvents, toner, cleaners)
 • emissions from shops, labs, cleaning processes

Sources of IAQ Problems

• Building materials
 – chemicals released from materials
 • formaldehyde from adhesives, particle board
 • other VOCs from carpeting & adhesives
Sources of IAQ Problems

– microbial contamination
 • Water-damaged carpeting, ceiling tile, furniture, etc.
– dust or fibers
 • friable asbestos
 • old or deteriorated furnishings

Source of IAQ Problems

• Human activities
 – Housekeeping
 – Maintenance
 – Smoking
 – Too many people
 • OLF unit
Source of IAQ Problems

- Miscellaneous
 - chemical spills
 - flooding
 - fire damage
 - redecorating & remodeling activities

Classes of Contaminants

- Combustion products
- VOCs
- Bioaerosols
- Particulates (non-viable)
- Radon
- Environmental tobacco smoke
IAQ Problems

- NIOSH Study found:
 - 52% - poor ventilation
 - 17% - indoor pollutants
 - Unknown – 12%
 - Outside Pollutants – 11%
 - Microbiological – 5%
 - Furnishings – 3%

Contaminants

- Combustion products
 - Types
 - carbon monoxide
 - nitrogen oxide
 - sulfur dioxide
 - Sources:
 - boilers
 - kerosene space heaters
 - generators
 - trucks & cars (re-entrainment)
Contaminants

• Carbon monoxide
 – health effects
 • asphyxiant which converts hemoglobin to carboxyhemoglobin
 • symptoms:
 – fatigue, SOB, headache, nausea, death at high levels
 • standard: TLV-TWA = 25 ppm

Contaminants

• Oxides of nitrogen
 – Respiratory irritant (lower tract)
 • Low water solubility
 – in susceptible individuals
 • decreased lung function
 • exacerbation of asthma
Contaminants

• Sulfur dioxide
 – Eye & upper respiratory tract irritant
 • higher water solubility
 – in susceptible individuals
 • decreased lung function
 • exacerbation of asthma

Contaminants

• VOCs
 – types:
 • aliphatic hydrocarbons
 • halogenated hydrocarbons
 • aromatics
 • alcohols
 • ketones & esters
 – can be a problem in new buildings or renovated areas
Contaminants

- Formaldehyde
 - used in numerous building materials
 - bonding/laminating agents
 - adhesives
 - paper/textiles
 - foam insulation (urea foam)
 - off-gassing of new materials can produce significant levels

Contaminants

- Formaldehyde
 - health effects
 - > 1-3ppm mucous membrane irritation, respiratory symptoms
 - chronic exposures may increase risk of cancer
Contaminants

• Bioaerosols
 • airborne particles that are living organisms or once living organisms
 • fungi
 • bacteria
 • virus
 • endotoxins (outer membrane of gram-)
 • protozoa
 • mites
 • pollen, spores, mycotoxins, etc.

Contaminants

• Basic concepts of bioaerosol exposure
 – reservoir
 – amplification
 – dissemination
• no applicable regs for bioaerosol exposures
Guidelines, etc.

- Resources/Guidelines
- Legislation
 - Toxic Mold Safety & Protection Act (6/02)

Contaminants

- Legionnaire’s disease
 - caused by *Legionella pneumophilia*
 - mild to severe pneumonia exposure to water contaminated with bacterium
 - Elderly & immunosuppressed most susceptible
 - symptoms:
 - fever, cough, SOB
 - fatigue, headache
 - chest pain
Contaminants

• Hypersensitivity pneumonitis
 – allergic reaction from exposure to airborne antigens
 – Often traced to contaminated humidifiers and AC systems
 – symptoms include:
 • acute & recurrent pneumonia
 • cough, SOB, fatigue, fever

Contaminants

• Humidifier fever (self-limiting)
 – respiratory illness caused by exposure to endotoxins from microorganisms found in humidifiers and air conditioners.
 – symptoms:
 • fever, chills, muscle aches and malaise
 • chest tightness/breathlessness on exertion.
Contaminants

- Non-viable particulates
 - particulates from combustion sources
 - fibers such as asbestos

Contaminants

- Radon
 - natural breakdown product from radioactive decay of uranium-238
 - EPA estimates approximately 5-20,000 people die annually of lung cancer from radon exposure
 - found in rocks & soils with granite, shale, phosphate & pitchblend
Contaminants

• Radon
 – EPA guidelines:
 • acceptable: <4 pCi/L
 • above avg: 4 - 20 pCi/L
 • greatly above avg: 20 - 200 pCi/L
 • grave level: > 200 pCi/L

Contaminants

• Radon
 – source of entry into homes
 • soil gas
 – cracks in foundation
 – cracks in basement flooring
 – loose-fitting pipes
 • building materials - granite
 • water
Contaminants

• Reducing levels:
 – sealing points of entry
 – basement ventilation
 – sub-slab depressurization

IAQ Evaluation

• Initial walkthrough
• Workplace inspection
• Worker Interview
• Estimating Outdoor Air Quantities
 – Thermal balance
 – Carbon dioxide balance
• Measuring airborne contaminants
 – indirect
 – direct
Initial Walkthrough/Inspection

– contact building manager
– identify types, affected workers & areas of complaints
– Identify HVAC zones, maintenance schedules
– Identify recent renovations/design changes
– identify potential sources of contaminants

Inspection

• Check the following elements:
 – Temperature
 – Humidity levels
 – Odors
 – Carbon dioxide levels
 – HVAC initial inspection
 – other
Worker Interview

• Worker interview(s)
 – description & temporality of symptoms
 – description & temporality of any odors
 – work activities & materials
 – possible causes?
 – Any other employees with symptoms?

Further Evaluation

• Collect additional info:
 – Worker surveys
 – HVAC system(s)
 – Pollutant pathways & sources
Evaluation

• Worker survey
 – description of symptoms
 – temporality of symptoms
 – work activities & materials
 – description & temporality of any odors

T = \frac{T_{\text{return air}} - T_{\text{mixed air}}}{T_{\text{mixed air}} - T_{\text{outdoor air}}} \times 100 \quad \text{T = temperature in °F}

\% \text{OA} = \frac{T_{\text{return air}} - T_{\text{outdoor air}}}{T_{\text{return air}} - T_{\text{outdoor air}}} \times 100

return air - in return air system before the mixing chamber
mixed air - upstream of heating/cooling unit - before the fan
outdoor air - local outdoor temperature near air handling intake
Evaluation

- Carbon dioxide measurements

\[
\% \text{ OA} = \frac{C_{\text{supply air}} - C_{\text{return air}}}{C_{\text{outdoor air}} - C_{\text{return air}}} \times 100
\]

- Converting %OA to CFM/person

\[
\text{OA (cfm)/person} = \frac{\text{Outdoor air (}) \times \text{total airflow (cfm)}}{\# \text{ of building occupants}}
\]
Example

Thermal Mass Balance Approach:
- \(T_{OA} = 53^\circ F \)
- \(T_{MA} = 65^\circ F \)
- \(T_{RA} = 77^\circ F \)
- 250 occupants in building
- HVAC CFM = 10,000

Example

Answer:

\[
\%OA = \frac{77 - 65}{77 - 53} \times 100\% = 50\%
\]

\[
\text{CFM OA/person} = \frac{10,000 \times 0.5}{250} = 20
\]
Evaluation

• Indirect methods for contaminants
 – carbon dioxide levels
 • CO₂ is an indicator of adequate/inadequate ventilation
 • levels exceeding 800 ppm are often associated with occupant complaints
 • can be measured with:
 – colorimetric detector tubes
 – electrochemical detectors
 – IR

• Total hydrocarbons:
 – levels exceeding 5 mg/m³ tend to be associated with IAQ complaints

• Levels of bioaerosols
 – sample, identify & quantify biological agents
 – No widespread standards exist
Evaluation

• Perform air sampling only if you know what you are looking for
 – direct-reading instruments
 – air sampling & collection

Control

• HVAC maintenance & operation
• maintenance of equipment and building materials
• remove materials that become damp
• remove or remediate contaminant source
• follow-up on worker complaints
References

Available at: http://www.cdc.gov/niosh/pdfs/iaq.pdf