Revised Top Ten List of Things Wrong with the IAT

Anthony G. Greenwald, University of Washington

Attitudes Preconference SPSP - Austin, Texas January 29, 2004

Outline

- *6. Top 10 <u>Unsolved problems</u> in IAT research
- 5. Top 10 Ways in which the <u>IAT is used improperly</u> in research
- *4. Top 10 Things not actually wrong with the IAT
- *3. Top 5 Excessive claims for what the IAT can do
- *2. An important development in measuring IAT effects
- 1. The original (Oct, 2001) Top 10 List of Things wrong with the IAT (and current status of these)

The Original (Oct, 2001) Top 10 List: Things Wrong with the IAT

- 6. IAT effects tend to increase with age of respondent Current status: Solved
- 7. No strong rationale for standard data cleaning procedures Current status: Solved [See Slides 5 & 6]
- 8. IAT effects are reduced with repeated administrations Current status: Partially solved
- 9. IAT effects are smaller with picture stimuli than with word stimuli

Current status: Still a problem (unsolved)

10. Order of combined tasks influences the measure Current status: Partially solved

The Original (Oct, 2001) Top 10 List: <u>Things Wrong with the IAT</u>

1. How the IAT measures association strengths is not yet well understood

Current status: Unsolved, perhaps approaching solution

2. IAT actually only measures relative strengths of pairs of associations

Current status: Partially solved

- 3. IAT must measure more than just association strengths Current status: Partially solved
- 4. IAT appears to be slightly fakeable Current status: Still a problem (unsolved)
- 5. IAT measures are influenced by measurement context variables Current status: Still a problem (unsolved)

"Latency Operating Characteristics" (LOCs) for IAT Scores Election 2000 (Bush v. Gore) IAT

This slide reveals cognitive skill confound in millisecond-unit scoring of the IAT (red) and, to a lesser extent, in the log-transform measure (triangles). The new D measure (blue) is most free of this confound. The development of the new algorithm is described in the Greenwald, Nosek, & Banaji article in JPSP, Aug, 2003.

Step	Conventional algorithm	Improved algorithm	Approximately equivalent alternatives for improved algorithm	
1	Use data from B4 & B7	Use data from B3, B4, B6, & B7		
2	Nonsystematic elimination of subjects for excessively slow responding and/or high error rates	Eliminate trials with latencies > 10,000 ms; eliminate subjects for whom more than 10% of trials have latency less than 300 ms	Syntax available at http://faculty.washington.edu/agg/	
3	Drop first two trials of each block	Use all trials		This is a copy of Table
4	Recode latencies outside 300/3,000 boundaries to the nearer boundary value	No extreme-value treatment (beyond Step 2)	Delete trials with latencies below 400 ms	4 in the Greenwald, Nosek, & Banaji article
5	indice country cand	Compute mean of correct latencies for each block	Also compute SD of correct latencies for each block	in JPSP, Aug, 2003. The full article is
6		Compute one pooled SD for all trials in B3 & B6; another for B4 & B7	Compute these pooled SDs just for correct responses	downloadable from my home page. SPSS and
7		Replace each error latency with block mean (computed in Step 5) + 600 ms	Replacement = block mean + 2 × block SD computed in Step 5; alternately, use latency to correct response in a procedure that requires a correct response after an error	SAS syntax for scoring the D measure are available as shown above.
8	Log-transform the resulting values	No transformation		
9	Average the resulting values for each of the two blocks	Average the resulting values for each of the four blocks		
10	Compute the difference: B7 - B4	Compute two differences: B6 - B3 and B7 - B4	Differences can be computed in the opposite direction	
11		Divide each difference by its associated pooled- trials SD from Step 6		
12		Average the two quotients from Step 11		

Table 4Conventional and Improved Implicit Association Test (IAT) Scoring Algorithms Compared

Excessive claims for what the IAT can do

- 1. IAT measures can/should be used to (de-)select people for work in contexts in which intergroup biases might interfere (law enforcement, judgeship, management, jury duty)
- 2. The only difference between IAT and self-report is that IAT is not subject to self-presentational pressures
- 3. IAT measures 'true attitude'
- 4. IAT provides a pure measure of association strengths
- 5. IAT measures are unaffected by experience or measurement situation

Things not actually wrong with the IAT

- 6. IAT has an arbitrary zero point (Blanton & Jaccard)
- 7. IAT measures cultural associations rather than personal associations (Olson & Fazio) [See Slide 9]
- 8. IAT measures environmental associations, rather than internalized associations (Karpinski & Hilton)
- 9. IAT assesses salience asymmetries (Rothermund & Wentura)
- 10. Positivity of IAT self-esteem indicates negativity of 'other' (Karpinski)

Implicit Bias and Percent Black

displayed with 95% confidence interval

Things not actually wrong with the IAT

- **1.** The IAT provides a relative measure of association strengths
- 2. The IAT is unrelated to any interesting behavior [See Slides 11 & 12]
- 3. The IAT is uncorrelated with other implicit measures
- 4. The IAT lacks validity because it is (un)correlated with explicit measures
- 5. If the IAT is influenced by any non-associative factors it is an invalid measure (Blanton & Jaccard)

Ways in which the IAT is used improperly in research

- 6. Discarding error trials prior to data analysis
- 7. Making target-concept items indistinguishable in font from attribute-concept items
- 8. Not counterbalancing order of administration of multiple IATs when comparing magnitudes of these IAT effects
- 9. Randomizing the series target and attribute items rather than alternating them
- 10. Having subjects practice the attribute contrast before the target concept contrast

Ways in which the IAT is used improperly in research

- 1. Use of non-categories (unrelated words, nonsense words) as presumably neutral categories in the IAT
- 2. Use of millisecond-unit IAT-effect measures (known to contain a cognitive skill artifact)
- 3. Treating subsets of IAT trials as measures of distinct associations
- 4. Using stimulus items that permit alternate interpretations of category contrasts
- 5. Confounding category contrasts with positive-negative valence

Unsolved Problems in IAT Research

- 6. How should the IAT be used to measure implicit self-esteem? (What do different representations of the contrast 'other' category achieve?)
- 7. (former #4): IAT appears to be slightly fakeable
- 8. (former #5): IAT measures are influenced by measurement context variables
- 9. (former #9): Is there a difference between properties of IATs with picture vs. word stimuli?
- 10. (former #8): IAT effects are reduced with repeated administrations

Unsolved Problems in IAT Research

- 1. How to minimize the reactivity commonly experienced by those who take the IAT?
- 2. (former #1): How the IAT measures association strengths is not yet well understood
- 3. Can administration procedures be designed to minimize effects of the immediate research context on IAT measures?
- 4. How to use the IAT to measure associations involving representationally complex concepts (e.g., associations that may be at the root of health-care disparities)
- 5. (former #2): How should the IAT best be used to measure strengths of single associations?

CONCLUSIONS

(Jan, 2004): The IAT has benefited greatly from criticisms, even though all have not been offered in a constructive spirit.

(Oct, 2001): Nevertheless, there is room for substantial improvement in the IAT as a measure of automatic association strengths.

(Oct, 2001): The IAT is therefore presently quite useful in research on group differences, and even as a measure of individual differences.

(Oct, 2001): There is a good deal of evidence for construct validity of the IAT as a procedure for measuring automatic association strengths.