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Blanton and Jaccard (2006) questioned the 4-test regression method used by Greenwald et al. (2002) to
test a pure multiplicative theory. The present authors address Blanton and Jaccard’s concerns with a
combination of simulations and meta-analysis. Simulations show that (a) Blanton and Jaccard’s preferred
simultaneous regression method has a severe power loss in testing multiplicative theories when predictor
variables’ means deviate from rational zero values, and (b) Greenwald et al.’s 4-test method has a more
limited weakness when predictor means deviate from rational zero in the positive direction. Meta-
analyses showed that aggregate analyses of Greenwald et al.’s 5 experiments confirmed a multiplicative
theory regardless of which analysis method was used. However, only the 4-test method could confirm a
pure multiplicative theory.
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Greenwald et al. (2002) proposed and tested a unified account of
four central constructs of social cognition research—attitude, ste-
reotype, self-esteem, and self-concept. They used a strategy that
simultaneously tested both their theory of triadic relationships
among the four constructs and their assumption that measures used
in testing the theory had rational zero values.1

The central hypothesis of Greenwald et al.’s (2002) theory was
that interrelations among triads of the four social–cognitive con-
structs could be described by a pure multiplicative model. A pure
multiplicative model asserts that the multiplicative product of two
variables is the sole predictor of some effect. Because of the
well-known association between interpretation of multiplicative
products and the scale properties of the numbers entering into the
multiplication, any test of this theory requires measures that have
rational zero values. If the measures do not have rational zero
values, then theory-disconfirming results might indicate only that
the measures lacked the needed rational zero property.

The results reported by Greenwald et al. (2002) largely conformed
to the expectations of their pure multiplicative theory, which meant
that their results supported both their theoretical conception and their
measurement assumption of rational zero values. In commenting on
the Greenwald et al. article, Blanton and Jaccard (2006) made three
points: (a) the theory confirmations reported by Greenwald et al.
might have been spurious because Greenwald et al.’s method is prone
to false confirmations in the presence of pure additive (rather than
pure multiplicative) models, (b) Greenwald et al.’s method of testing
a pure multiplicative theory (described under the next heading) was
inappropriate because of the inappropriateness of assuming that their
measures had rational zero values, and (c) Greenwald et al. should
have used the standard simultaneous multiple regression method
(SMR) analysis for testing multiplicative theories, even though that
method does not distinguish pure multiplicative theories from theories
that specify additional effects.

In this reply, we (a) summarize Greenwald et al.’s (2002)
method, (b) evaluate with simulations Blanton and Jaccard’s
(2006) concern about that method’s susceptibility to false-positive
results (demonstrating that there is some susceptibility), (c) exam-
ine whether Greenwald et al.’s several studies had properties
making them susceptible to such false-positives (finding that for
the most part they did not), (d) examine what Blanton and Jac-
card’s recommended SMR method reveals for Greenwald et al.’s
data (showing that it also confirms the presence of multiplicative
models), and (e) demonstrate that the SMR method has a previ-

1 This strategy was in accordance with the widely held view (cf. Curd &
Cover, 1998) that, necessarily, conducting empirical tests of a theory will
simultaneously appraise the theory and any auxiliary measurement as-
sumptions made in testing it (cf. Duhem, 1906/1954; Lakatos, 1970;
Popper, 1959; Quine, 1953).
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ously unrecognized severe loss of power in detecting multiplica-
tive effects when component factors of predictor variables have
values displaced from zero on rational-zero measurement scales.

The 4-Test Regression Method

A familiar example of a pure multiplicative model is the area of
a rectangle being a function purely of the multiplicative product of
its length and width. Area can be predicted perfectly from the
multiplicative product of length and width, with no need to use
length and width as supplementary individual predictors. How-
ever, this perfect prediction will occur if (and only if) length and
width are measured on scales with rational zero values, which we
define more fully in the next section.

Greenwald et al. (2002) described a sequence of four tests that
are based on the example just given of a rectangle’s area. Each of
the four tests provides an opportunity for a pure multiplicative
model to fail. We repeat here Greenwald et al.’s description (pp.
9–11) of their 4-test method, which was built on the two-step
hierarchical regression analysis represented by Equations 1 and 2,
below. The present description of the 4-test method changes the
symbols originally used to identify criterion and predictor vari-
ables to correspond to Blanton and Jaccard’s (2006) notation. In
Equations 1 and 2, Y represents a criterion measure, XZ represents
the multiplicative product that is assumed to be a sole predictor
(i.e., a pure multiplicative model), X and Z are measures of the
variables that constitute the multiplicative predictor’s component
factors, and e represents random error.

Y � b0 � b1�XZ� � e (1)

Y � b0 � b1�XZ� � b2�X� � b3�Z� � e (2)

Test 1. The R in Step 1 of the regression (Equation 1) should
account for substantial variance in the criterion, and Step 1 should
estimate a numerically positive value for b1.

Test 2. The estimate of b1 should also be positive in Step 2
(Equation 2).2

Test 3. The increment in R on Step 2 should not be statistically
significant.

Test 4. Neither b2 nor b3 should differ significantly from zero
(positively or negatively) in Step 2.

The conclusion that passing all of Tests 1–4 provides support
for a pure multiplicative model depends on a measurement as-
sumption—that numeric zero values for measures X and Z corre-
spond to rational zero values of the variables that they measure.
Failure of this scaling assumption, even in the presence of a pure
multiplicative relationship, might produce a significant increment
in R at Step 2, along with significant deviations of b2 and/or b3

from zero (see Aiken & West, 1991, Appendix A).
As previously noted, Blanton and Jaccard (2006) regarded Green-

wald et al.’s (2002) 4-test method as improper because (as Blanton &
Jaccard asserted) psychological measures could not confidently be
assumed to have rational zero values (“Psychologists typically are
reluctant to make such strong assumptions, given the arbitrary metrics
that they so often rely upon,” p. 156). As an alternative, they proposed
use of the standard SMR method for testing multiplicative models.
The SMR method uses the test of significance of the multiplicative
product term in a three-term SMR analysis that includes the multi-
plicative predictor along with the two variables that constitute its

component factors. This test is well established in statistics texts (e.g.,
Cohen, Cohen, Aiken & West, 2003). However, as previously noted,
this test cannot distinguish a pure multiplicative theory from any other
multiplicative theory.3

Justifying the Assumption of Rational Zero Values for
Psychological Difference Measures

Greenwald et al. (2002) and Blanton and Jaccard (2006) agreed
that measures with rational zero values are needed to test a pure
multiplicative model using the 4-test method. They disagreed
about when it is appropriate to assume that measures have rational
zero values.

The phrase “rational zero” may be subject to multiple interpreta-
tions. We therefore are explicit about our definition: For a measure
described as having a rational zero value, the value of zero should
indicate absence of the quantity being measured. For example, zero
length, zero weight, zero calories, zero correlation, and zero words per
minute as typing speed are interpretable as absence of length, weight,
calories, correlation, and words typed in a minute. At the same time,
it is much less obvious what should be meant by zero intelligence,
zero achievement, or zero enthusiasm—these dimensions may lack
the possibility of having rational zero values.

The context of considering multiplicative models allows an
extension of the definition of rational zero: When it is appropriate
to contemplate multiplication of a quantity measured on a scale
having a rational zero value, the zero result of multiplication by a
zero value on that scale should likewise be validly interpretable as
absence of the new quantity represented by the multiplication. As
an example, a zero value for a rectangle’s width, measured on a
rational zero scale, implies a zero value of the product of multi-
plication with a length measure, regardless of whether length is
measured on a scale with rational zero value.

For the Implicit Association Test (IAT) measures that were used
in Greenwald et al.’s (2002) research, zero values were taken to
indicate absence of difference in strengths of the sets of associa-
tions measured by the IAT’s two combined tasks. In the context of
Greenwald et al.’s theory, the zero product of multiplying two IAT
measures (both assumed to have rational zero values) is interpret-
able as absence of consistency pressure on the third IAT measure
in a triad of interrelated measures.

Blanton and Jaccard (2006) took the very cautious position that
one should be reluctant to assume that any psychological differ-
ence measures have rational zero values. They illustrated their

2 The b1 coefficients Tests 1 and 2 should be positive if the predictors (X
and Z) have been scored so that the sign of their multiplicative product (XZ)
is consistent with the theoretical expectation of a positive relationship of
that product with the criterion measure, Y. An appropriate basis for deem-
ing that b1 explains “substantial variance” in Test 1 is a statistically
significant result, whereas Test 2 requires only a numerically positive (i.e.,
greater than zero) estimate of b1.

3 As a relevant historical observation, we note that the initially submitted
version of the Greenwald et al. (2002) article used the same SMR method
advocated by Blanton and Jaccard (2006). However, as a result of the
review process, Greenwald et al. were persuaded to use the 4-test method
and adopted it. We can report that the authors of Greenwald et al. remain
persuaded of the method’s value and take full responsibility for their
published conclusions using that method.
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concern with an example of differences in ratings of height for a
group of men versus a group of women. Indeed their example did
not warrant the assumption of a rational zero value. However, it
does not follow that rational values of psychological difference
measures are generally unwarranted. For example, in a signal
detection paradigm, zero difference between a perceiver’s hit and
false alarm rates has a rational zero interpretation as absence of
sensitivity to the signal source. Similarly, differences in latencies
in time to identify presence of a target amid varying numbers of
distracters can be assumed to measure search time required per
distracter on a scale with a rational zero value. It is possible to
generate many examples of psychological difference measures for
which the assumption of rational zero values is plausible.4

Simulations to Evaluate the 4-Test and SMR Methods

Method

All simulations reported in this article generated data from two alterna-
tive theoretical models and compared the statistical analyses of resulting
data sets when analyzed by the SMR method and the 4-test method. One
theoretical model for generating data sets was always the pure multiplica-
tive model of Equation 3. The comparison theoretical model was usually
one containing only an additive predictor (shown in Equation 4)—the
model identified by Blanton and Jaccard (2006) as one for which the 4-test
method was susceptible to false-positive results. In Equations 3 and 4, a
represents the Y intercept (alternately, the regression intercept).5

Y � a � 1.0 XZ � e (3)

Y � a � 1.0�X � Z� � e (4)

The coefficients of 1.0 in Equations 3 and 4 are arbitrary and inconse-
quential to simulation outcomes. Simulations were carried out by a com-
puter program6 that controlled several parameters of interest. The pro-
gram’s modifiable parameters included ones known to affect covariances
of variables with their sums and products (Goodman, 1960)—namely,
means and standard deviations of the predictor variables (X and Z) and
intercorrelation of the predictors (rXZ).

Simulations generated data for samples of N � 100 cases, with estimates
of Type I error rate and power being based on 3,000 iterations of a
simulation for given parameters. Taking the null hypothesis to be absence
of a pure multiplicative model, we counted a Type I error whenever a
simulation that was not based on a multiplicative model (e.g., one gener-
ated from the additive model of Equation 4) confirmed a multiplicative
model by the SMR or 4-test method. Similarly, power was indicated by the
observed proportion of multiplicative-model confirmations when the sim-
ulated data were generated by the pure multiplicative model of Equation 3.

Simulations were conducted in pairs that differed only in whether data
were generated from the pure multiplicative model or the pure additive
model. These paired simulations differed only in the regression coefficients
that generated the two types of models. Results from each simulation were
tested statistically in two ways. The SMR method used the procedure
advocated by Blanton and Jaccard (2006); with this method, the test that
confirms a multiplicative model is the test for significance of the XZ
product term in the three-term SMR analysis that predicts Y from X, Z, and
XZ. The 4-test method used the procedure advocated by Greenwald et al.
(2002); this test indicates confirmation of the pure multiplicative model
when all 4 tests are passed. All tests involving possible null hypothesis
rejections used a two-tailed � � .05 criterion. The proportion of confir-
mations in 3,000 runs of a pure multiplicative model was taken as the
estimate of each analysis method’s power. Likewise, the proportion of
(spurious) multiplicative-model confirmations in 3,000 runs of a nonmul-

tiplicative (e.g., pure additive) model was taken as the estimate of each
method’s Type I error rate.

Because the SMR and 4-test methods generally differed in both power and
Type I error rate, it was insufficient to compare them on these criteria singly.
The sensitivity (d�) index of signal detection analysis provides a well-
established metric for comparing the abilities of decision procedures to dis-
tinguish signal (pure multiplicative model in this case) from noise (pure
additive model). The d� measure was computed from the combination of hit
rate (power) and false alarm rate (Type I error rate) for each analysis method.
This use of d� to measure sensitivity of test methods entails no assumptions
about the relative costs of a Type I error (confirmation of a pure multiplicative
model when the data were not generated by one) and a Type II error (failure
to detect a pure multiplicative model that generated the data). If these two types
of error do have differential costs, the criterion for confirming a multiplicative
model can be adjusted for either method. For the SMR method, for example,
this would be done by making � smaller (than .05) to reduce both Type I errors
and power (i.e., increasing Type II errors). Raising � to a value higher than .05
would increase both Type I errors and power. For the 4-test method, such
adjustments are possible for each of the 4 tests.

Preliminary Test

Blanton and Jaccard (2006) reported a simulation that used a
single data set produced by a pure additive model as an existence
proof that the 4-test method could produce false-positives. The
first test using our simulation method was a large-scale replication
of their simulation, using the same parameters used in their sim-
ulation. We generated 3,000 simulated experiments from each
form of model (multiplicative and additive) with N � 100 cases in
each simulated experiment using the means, SDs, rXZ, and Multi-
ple R (� .40) described by Blanton and Jaccard for their simula-
tion. We found the 4-test method had a Type I error rate of .372,
compared with .051 for the SMR method. This appeared to be a
poor result for the 4-test method. However, the power of the 4-test
method was .886, compared with only .471 for the SMR meth-
od—a poor result for the SMR method. Using signal detection
analysis, the sensitivities of the two methods were nearly identical
(4-test method: d� � 1.53; SMR: d� � 1.56).

Blanton and Jaccard (2006) described their simulation in terms
of variables contained in one of the five data sets (Banaji, Green-
wald, & Rosier, 1997) that had been analyzed by Greenwald et al.
(2002). However, their simulation did not use estimates of simu-
lation parameters that were available from that data set. Our
second preliminary test was a repeat of the first, replacing Blanton
and Jaccard’s choices of means, SDs, and rXZ with the estimates
that were available from the Banaji et al. (1997) data set. The
results were strikingly different. For the 4-test method, power was

4 Further consideration of when a zero value of a difference measure can be
taken as a rational zero value appears in Greenwald, Nosek, and Sriram (2006).

5 The simulations that we shall report did not consider ability of either
the SMR method or the 4-test method to distinguish models containing
both additive and multiplicative predictors from ones with only multipli-
cative predictors. However, the simulation methods we developed (see
footnote 6) can perform such tests.

6 All simulations reported in this article can be reproduced with Excel
spreadsheets that are downloadable at http://faculty.washington.edu/agg/
MeanXZ.Simulations.Model2&3.13Jul05.zip

The spreadsheets provide instructions enabling their use both to repro-
duce this article’s simulations and to generate a wide variety of other
simulations.
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.896 and Type I error rate was .002 (d� � 4.14), whereas for the
SMR method, power was .966 and Type I error rate was .049 (d�
� 3.48). Especially noticeable was that the Type I error rate of the
4-test method had dropped to an extremely low value, while the
power of the SMR method had risen to an extremely high value.

The wide fluctuation in power of the SMR method was entirely
unexpected. Also, the great increase in sensitivity from the first to
second simulation for both methods was quite surprising given that
the value of Multiple R (� .40) was identical for the two simula-
tions. These observations led us to pursue a set of further simula-
tion studies, seeking to shed light on properties of both analysis
methods.

Further Comparisons of the 4-Test and SMR Methods

Our main sets of simulations focused on effects of variation in
means of the X and Z predictors on power and Type I error rate for
tests of pure multiplicative theories compared with pure additive
theories. This focus on predictor means was prompted partly by
observing that the most obvious difference between the two pre-
liminary tests was in the means of their predictors. Also, it was
prompted by known relations among means of variables, variances
of their multiplicative products, and covariances of the variables
with their multiplicative products (Bohrnstedt & Goldberger,
1969; Goodman, 1960).

Values of the X and Z predictors were generated so as to have
normal distributions with SD � 1.0. Values of the mean of each of
the X and Z variables were varied orthogonally from �2.0 to 2.0
in steps of 0.5. The simulations generated latent values of X and Z,
with correlation maintained at rXZ � 0 and then generated ob-
served values of X and Z so as to maintain a correlation of these
observed values of X and Z with their respective latent values of r
� .75. This latent–measured variable correlation corresponds to a
reliability of .56 (� .752), which approximates the average ob-
served test–retest reliability of IAT measures (Nosek, Greenwald,
& Banaji, in press).

Values of Y (criterion) were generated from latent values of X
and Z to simulate pure multiplicative (Equation 3) or pure additive
(Equation 4) models. The latent value of Y was either the product
of latent values of X and Z, or their sum. The method of adding
error to Y was varied in different sets of simulations. In the first set
of simulations to be reported, error variance in Y was set at the
level needed to achieve a fixed correlation of latent Y with ob-
served Y (at r � .6) regardless of means of X and Z.

The results are shown in Figure 1, revealing that the power of
the 4-test method was consistently high, in the vicinity of 85% (see
Figure 1D).7 By contrast, power of the SMR method varied con-
siderably with variations in the X and Z means (see Figure 1A),
such that increasing displacement from zero of means for X and/or
Z was associated with reduced power. This loss of power can be
understood by recognizing that the SMR test is the test of signif-
icance of a partial correlation and by considering the factors that
affect the magnitude of this partial correlation.8

Type I error rates (Figure 1B and 1E) revealed a very different
pattern. For the SMR method, the Type I error rate was consis-
tently very close to the expected 5% rate for a two-tailed test of
significance with � � .05. For the 4-test method, Type I error rates
varied considerably, being mostly well below 5%, but increasing
to much higher levels when predictor means were positively po-

larized—to a maximum of 45% when means of both X and Z were
at the maximum positive values (2.0 SDs) used in the simulations.
Unlike the SMR method, Type I error rates for the 4-test method
are not limited at the low end by the 5% alpha level of the
two-tailed tests used in the simulation—they can be as low as
zero.9

As explained previously, the information contained jointly in
power and Type I error rates is captured by the signal detection
sensitivity measure, d�. For all 81 pairs of simulations, the sensi-
tivity of the 4-test method exceeded that of the SMR method. For
the SMR method, mean d� � 1.55, compared with mean d� � 3.73
for the 4-test method. Comparison of sensitivities is shown in
Figure 2A, in the form of difference between d� values. The
average difference in d� was 2.18, t(80) � 17.93, p � 10�29.

For the simulations shown in Figure 1, error was added to the
criterion Y by maintaining a fixed correlation of r � .60 between
latent Y and observed Y. For the pure multiplicative model, vari-
ance of latent Y increases as means of X and Z are increasingly
displaced from zero. Correspondingly, with this simulation
method, the simulated error component of Y increases with in-
creasing displacements from zero of means of X and Z. This

7 Power of the 4-test method is limited to a maximum of approximately
90% because passing each of Tests 3 and 4 involves accepting a null
hypothesis that has a Type I error rate of 5%. At least one of these two tests
will fail approximately 10% of the time.

8 In most of the present simulations of pure multiplicative theories, each
of X and Z is composed of a true-score (or latent) component and an error
component, such that the XZ product also has true-score and error com-
ponents. The true-score component of the XZ product then generates the
observed value of the criterion Y, adding an independent error component.
With nonzero means of X and Z, the XZ product includes variance shared
with X and Z (multicollinearity). With no measurement error in X and Z, the
regression analysis effectively partials the variance contributions of X and
Z from the XZ product, leaving a residual that fully captures the multipli-
cative relationship that generates Y. However, measurement error reduces
the regression analysis’s effectiveness in partialing variance associated
with true-score components of X and Z from the true-score component of
the XZ product. This reduces the portion of the XZ variance that is
associated with Y independently of associations of X and Z with Y, reducing
the partial correlation corresponding to the SMR method’s test of the
multiplicative product term. Increased displacement of the X and Z means
from zero exacerbates this problem because of the associated increases in
correlations of X and Z with XZ. It is beyond the scope of this article to
describe these relationships formally, although such description could
follow the lines of previous work by Goodman (1960), Borhnstedt and
Goldberger (1969), Busemeyer and Jones (1983), and McClelland and
Judd (1993).

9 An end-point correction is needed to compute signal detection sensi-
tivity measures, either when power reaches 1.0 or Type I error rate drops
to 0.0. The correction that was used replaces these extreme values of 0.0
with (.25 � k) and 1.0 with 1.0 – (.25 � k), where k is the number of
simulations used to estimate the proportion. For the simulations in this
article, k � 3,000, such that 0.0 and 1.0 were replaced with .000083 and
.999917, respectively. The logic of this end-point correction is to treat an
observed value of 1�k as if it were the midpoint of a range between
0.5�k and 1.5�k. Extending that reasoning to interpret 0�k as the ob-
served value for a true-value range from 0�k to 0.5�k, we can replace it
by 0.25�k. The logic of replacing 1.0 with 1.0 – (.25�k) is the same. This
end-point correction method was first reported by Banaji and Greenwald
(1995, Footnote 5).
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increase in the error component of Y contributes to adverse effects
on power of the SMR method while having little effect on power
of the 4-test method. An alternative was to keep the error compo-
nent of Y fixed through all simulations. Use of this alternative
strategy was the only change made for the second major set of
simulations. The error variance of Y was set at a value that
produced a correlation of r � .6 between latent Y and observed Y
when means of X and Z were zero. Error variance of Y was retained
at that same value through all variations in means of X and Z. With
this change (see Figure 2B), the SMR method achieved sensitivity
superior to the 4-test method for 14 of the 81 paired-simulation
comparisons. Still, the difference in sensitivity strongly favored
the 4-test method, with average difference in d� of 1.28, t(80) �
11.15, p � 10�17.

The change to a fixed error for Y attenuated the power losses of
the SMR method for multiplicative models when means of X and
Z were displaced from zero, while having little effect on perfor-
mance statistics for the 4-test method. There is no obvious way to
conclude that one of the two methods of simulating the error
component of Y is superior. Each has a rationale and each has
drawbacks. Consider first the method of fixed correlation of latent
Y with observed Y. Actual data frequently show such a correlation
between means and variances, suggesting the reasonableness of

this method. Nevertheless, this method allows the error component
of Y to rise to rather large values when X and Z means are
substantially displaced from zero. In the context of the multipli-
cative model, the alternate strategy of keeping the error in Y fixed
allows the correlation between latent and measured Y to rise to
perhaps unrealistically high values when means of X and Z are
displaced from zero (e.g., the average latent–observed correlation
for Y was r � .92 when means of X and Z were � 2.0 SD,
compared to average latent–observed correlation for Y of r � .60
when means of X and Z were 0.0). If it is reasonable to assume that
criterion error variance in actual data of multiplicative models is
intermediate between these two simulation strategies, then Figures
2A and 2B estimate upper and lower bounds, respectively, of
sensitivity differences between the 4-test and SMR methods.

Additional simulations examined effects of (a) varying the in-
tercorrelation of X and Z (rXZ varied from �.40 to .40), (b) varying
the Multiple R of the three-term regression (varied from .3 to .7),
(c) varying the value of t used as criterion for passing the 4-test
method’s Test 2, and (d) replacing the pure additive noise model
with a null model in which all predictors (X, Z, and XZ) had zero
coefficients. Except for the last, all of these additional simulations
were run with varied displacement from zero of means of X and Z
to determine whether variations in the other parameters might

Figure 1. Summarized results of simulation studies with analyses by the simultaneous multiple regression
method (SMR) (A, B, C) and the 4-test method (D, E, F), for nine values of true means of each of predictors
X and Z, varied orthogonally. Results are averaged over 3,000 iterations of each simulation, with N � 100 cases
per iteration. Means of predictors are on scales with rational zero values and are in standard deviation units. The
method of simulating error in the criterion, Y, was a fixed correlation between its latent and observed values.
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Figure 2. Summarized results from simulation studies indicating sensitivity differences between the simulta-
neous multiple regression method (SMR) and 4-test method for the simulations shown in Figure 1 (panel A).
Panel B summarizes results for a parallel set of simulations in which the method of simulating error in the
criterion, Y, was changed to maintaining a fixed magnitude of error variance through all variations of mean
values of the X and Z predictors.
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moderate the already-observed strong effects of polarization of
means.

Variations of rXZ (from �.40 to .40) had complex effects on
power of the SMR method and Type I error rate of the 4-test
method when means of X and Z were both nonzero. Power of the
SMR method decreased with increasing magnitude of rXZ when all
three of rXZ and means of X and Z were nonzero, with either all
positive in sign or two of the three having a negative sign. In
contrast, power of the SMR method increased with increasing
magnitude of rXZ when all three of rXZ and means of X and Z were
nonzero, with either all negative in sign or just one of the three
having a negative sign. For the 4-test method limited to the
situation of positive means of both X and Z, negative rXZ corre-
lations reduced Type I error rate and positive rXZ correlations
increased Type I error rate. These effects were smaller in magni-
tude than the effects of polarized means shown in Figure 1.

Increased Multiple R (which was varied from .30 to .70) in-
creased power for both methods but did so more for the SMR
method, which is not restricted by the 4-test method’s upper limit
of about 90% power.10 For the 4-test method, increases in Multiple
R also decreased the Type I error rate when predictor means were
positively polarized. The net effect of increased Multiple R was a
generally increased sensitivity for the SMR method and increased
sensitivity for the 4-test method when true means of predictors
were positively polarized. Even at the highest value of Multiple R
used in these simulations, power and sensitivity of the SMR
method were substantially impaired with polarized means of pre-
dictors, whereas Type I error and sensitivity of the 4-test method
were impaired selectively for positively polarized predictor means.

In Greenwald et al. (2002), Test 2 was passed if the regression
coefficient for XZ in the regression that also included X and Z as
simultaneous predictors was numerically positive (i.e., the crite-
rion was t � 0). Simulations varied the criterion for passing Test
2 by requiring increased positive values of t. Increased value of t
used as criterion for passing Test 2 of the 4-test method had the
expected effects of simultaneously decreasing power and Type I
error rate of the 4-test method, with virtually no effect on
sensitivity.

Simulations using a null model produced an average Type I
error rate for the 4-test method of .021. This Type I error rate is
below .05 chiefly because Test 1 of the 4-test method requires a
significant positive result, which occurs with probability of .025
for the null model. Combining this Type I error rate with the
average power of .825 for the two methods of simulating error in
Y yields an average sensitivity of d� � 2.96 for the 4-test method.
In comparison, the average power for the SMR method was .610,
which coupled with the theoretically expected Type I error rate of
.05, yields an average sensitivity of 1.92, considerably below that
of the 4-test method.11

In summary of observations from these simulations, the SMR
method was consistent in Type I error rate across all combinations
of parameters but had a very substantial loss of power and sensi-
tivity to the extent that true values of predictor means were
displaced in either direction from zero. The 4-test method was
consistently high in power but had an increase in Type I error rate
and consequent reduced sensitivity when predictor means were
positively polarized. The 4-test method showed reduced Type I
error rate and therefore had much higher sensitivity than the SMR

method when predictor means were negatively polarized (see
Figure 1F).

Although this summary suggests that the 4-test method is supe-
rior to the SMR method in sensitivity to presence of a pure
multiplicative model under a wide variety of conditions, the two
methods approached similar sensitivity—both showing impair-
ment—when predictor means were positively polarized (see Fig-
ure 2).

To examine properties of the two methods under a sampling of
conditions that arise in research, we used the 16 data sets from the
five experiments that were analyzed by Greenwald et al. (2002) as
natural sources of simulation parameters. The parameters taken
from the 16 analyses were (a) means and standard deviations of
predictors, (b) intercorrelation of predictors (rXZ), and (c) Multiple
R of the three-term regression model (see footnote 10).

The first set of these simulations used N � 100 cases for each
of 1,000 simulated experiments for each of the 16 data sets, for
each of a pure multiplicative and a pure additive generating model.
The sample size of N � 100 cases was approximately the size of
the largest of the sample sizes in Greenwald et al.’s (2002) five
experiments. The resulting data can be summarized by the aver-
ages, across the 16 pairs of simulations, of power, Type I error, and
sensitivity for the two analysis methods. For the SMR method,
average power � .713, average Type I error � .052, and average
sensitivity (d�) � 2.45. For the 4-test method, average power �
.872, average Type I error � .106, and average sensitivity (d�) �
3.12. A paired-sample t test on the obtained 16 pairs of sensitivity
values showed superiority of the 4-test method, t(15) � 2.89, p � .01.

An additional set of simulations was done identically except for
using N � 60, slightly smaller than the smallest of Greenwald et
al.’s (2002) sample sizes. The corresponding results for power,
Type I error, and sensitivity for were .551, .053, and 1.82, respec-
tively, for the SMR method, and .806, .136, and 2.53, respectively,
for the 4-test method. The t test for comparison of sensitivities
again yielded a result showing superiority of the 4-test method,
with numerically the same value of t as for the test with larger
sample sizes, t(15) � 2.89, p � .01.12

Sensitivity of the 4-Test Method to Rational Zero Values

Greenwald et al. (2002) observed that the 4-test method could
fail when measures of the multiplicative predictor’s component

10 To use the Multiple R as a simulation parameter, it was necessary to
return to the Y-error strategy of the preliminary simulations. This strategy
treats X and Z as measured without error and incorporates error only into
the criterion, Y, at the level required to produce the target value of R.

11 The theoretical Type I error rate of .05 was used in place of the
observed value of .054, which was presumably a chance deviation from
theoretical expectation.

12 Details of the data and results of the 16 pairs of simulations are given
in Table 1. The 16 pairs of simulations were repeated using the two
alternative methods that permitted modeling measurement error in X and Z.
(In these simulations, R could not be used as a parameter.) With fixed error
variance in Y, the 4-test and SMR methods were similar in sensitivity to
multiplicative models (average sensitivities over the 16 data sets were,
respectively, d� � 3.20 and d� � 3.21). With fixed correlation (r � .6)
between latent Y and observed Y, the 4-test method was generally more
sensitive than the SMR method (sensitivities, respectively, of d� � 3.17
and d� � 2.30).
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variables lacked rational zero values. The aim of a final set of
simulations was to assess the 4-test method’s sensitivity to devi-
ation from these rational zero values, using a minor variation on
the 81 pairs of simulations for which results were presented in
Figure 1. After generating values of X and Z with means that varied
for each of X and Z from �2.0 to 2.0 in SD units and computing
the XZ product, we subtracted the true means of X and Z from
values of the respective variables for each simulated case. This
effectively centered the predictors while destroying rational zero
values.13 As expected, the 4-test method deteriorated in power and
did so when means were displaced from rational zero values by
even half a standard deviation. When measures had accurately
located zero values, power in these simulations was 89%. When
the zero value of each measure was misplaced by only half a
standard deviation, power dropped to 29%. Type I error rates of
the 4-test method were consistently near zero in these simulations.
These simulations confirmed the appropriateness of regarding the
4-test method as useful only when zero values of predictor mea-
sures are quite close to rational zero values of their underlying
latent variables. These simulations results further confirmed
Greenwald et al.’s (2002) expectation that the 4-test method would
serve simultaneously to test their theoretical prediction of a pure
multiplicative model and their measurement assumption that their
measures had rational zero values.

Summary of Simulation Findings

The present simulations demonstrated surprisingly low power
for the SMR test of a product term when X and Z variables had
means that were polarized relative to meaningful zero values.
Under conditions in which the SMR method thus has sharply
reduced power, Greenwald et al.’s (2002) 4-test method was often
considerably more sensitive to presence of a pure multiplicative
model (see Figures 1A, 1D, and 2). The 4-test method has the
added advantage of being able to confirm pure multiplicative
models, something not possible for the SMR method. However,
the 4-test method also had problems with reduced sensitivity,
which were limited to the situation in which means of X and Z
were positively polarized (see Figures 1E and 2).

Meta-Analysis of Greenwald et al.’s (2002) Findings

Blanton and Jaccard (2006) suggested that Greenwald et al.’s
(2002) tests of pure multiplicative models were untrustworthy
because the 4-test method was prone to false-positives. It is indeed
true that the 4-test method is prone to false-positives when pre-
dictor means are positively polarized and the true model is additive
(see Figure 1E), although it is not prone to false-positives when the
true model is a null model. Blanton and Jaccard (2006) did not
provide evidence to justify their implied further conclusion that
Greenwald et al.’s. (2002) published results should be treated as
likely false-positives resulting from true additive models.

To evaluate what should be concluded from the results reported
by Greenwald et al. (2002), we conducted a meta-analysis of the
16 analyses they reported. The 16 data sets were first analyzed
using the SMR method. The meta-analysis (see the Appendix for
details) revealed that (a) the SMR method confirmed a multipli-
cative model in 9 of the 16 data sets; (b) in aggregate analyses of
Greenwald et al.’s five studies, the SMR test for presence of a

multiplicative model was statistically significant in two of three
aggregate analyses; and (c) there was limited evidence for heter-
ogeneity among the five studies, with one of the five studies
(Mellott & Greenwald, 2000) appearing to be discrepant from the
others.

As previously described, simulations using as input parameters
means and standard deviations of each data set’s X and Z variables
and its observed values of rXZ and Multiple R were used to obtain
estimates of power, Type I error rate, and sensitivity of both the
4-test and SMR methods for these 16 data sets. Only 3 of the 16
data sets (all from the study identified as FG in Table 1) were
found to have parameters that made them prone to spurious con-
firmation of a pure multiplicative model when the generating
model was purely additive rather than purely multiplicative.

Although the SMR method confirmed the multiplicative rela-
tionship expected from Greenwald et al.’s (2002) theory in 9 of the
16 data sets, the added value of the 4-test method was its indication
that most of the observed multiplicative effects were plausibly
interpreted as pure multiplicative effects and, simultaneously, that
the measures used in these tests were plausibly interpreted as
having rational zero values.

Blanton and Jaccard (2006) raised the question of whether
regression product-term effects in Greenwald et al.’s (2002) stud-
ies were bilinear in shape. This is indeed an expectation of the pure
multiplicative theory, as was noted by Blanton and Jaccard (2006).
Blanton and Jaccard further reported an analysis to test whether the
Rudman, Greenwald, and McGhee (2001) data (one of the five
experiments analyzed by Greenwald et al.) conformed to this
expected bilinear shape of the product-term effect. They used a
method described by Kenny and Judd (1984), which requires
fitting regression models of the form of Equation 5:

Y � a � b1X � b2Z � b3Z
2 � b4XZ � b5XZ 2 (5)

Significance of the b5 effect indicates a deviation of the multi-
plicative effect from bilinearity. Blanton and Jaccard (2006) re-
ported that “when the above equation was tested for the Rudman
et al. [data], b5 was statistically significant” (p. 165). Because there
are three variables that can be used as criterion (Y) and, for each of
these three, the remaining two variables can be switched between
the roles of X and Z, it is actually possible to conduct six tests of
the form shown in Equation 5 for the Rudman et al. (2001) data.
In conducting all six of these tests, we found a significant b5

coefficient ( p � .0378) for just one—for the other five, the
two-tailed p values were .39, .50, .80, .81, and .97. By contrast, the
linear product term was statistically significant in the appropriate
tests corresponding to all six of these analyses—these are the tests

13 The presubtraction measures X and Z had rational zero values because
the XZ product values generated from them had a value of zero if either or
both of the original measures had a value of zero. The linear (subtraction)
transformations destroyed this rational-zero property except when both
pre-subtraction means were zero. These simulations used the method of
fixing the Multiple R (at R � .40), treating X and Z as measured without
error.
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shown in the “Test 2 pr” column of Table 1 for the three data sets
identified there as RGM. In summary, and contrary to Blanton and
Jaccard’s conclusion, the Kenny and Judd (1984) method that they
advocated clearly indicated lack of complication due to quadratic
contributions.

Summary and Conclusion

Blanton and Jaccard (2006) criticized the 4-test method that
Greenwald et al. (2002) used as support for the conclusion of a
pure multiplicative model underlying balance-like relations among
implicit attitudes, stereotypes, self-concepts, and self-esteem. This
article has examined both Greenwald et al.’s conclusions and their
methods in light of Blanton and Jaccard’s critique. We reexamined
all of Greenwald et al.’s data sets using the SMR method preferred
by Blanton and Jaccard. That method provided very substantial
support for presence of a multiplicative model underlying the
triadic interrelationships of variables in the majority of Greenwald
et al.’s data sets. However, the SMR method has the limitation of
not being able to test the pure multiplicative model that was
proposed in Greenwald et al.’s theory.

In further examining Blanton and Jaccard’s (2006) critique, we
confirmed that Greenwald et al.’s (2002) 4-test method had a
susceptibility to spurious conclusions as was suggested by Blanton
and Jaccard. Our various simulation studies showed that this
susceptibility (a) was much more delimited than implied by Blan-
ton and Jaccard and (b) was a plausible complicating factor in only
one of the five experiments analyzed by Greenwald et al. An
unanticipated result of our simulation studies was to show that

Blanton and Jaccard’s preferred SMR method has a previously
unrecognized weakness in the form of sharply reduced power in
testing pure multiplicative models when predictor means are dis-
placed from rational zero values.

Blanton and Jaccard (2006) went so far as to conclude by
proposing that physicists could effectively use the SMR method to
test pure multiplicative models. “Had Einstein or Newton been
stuck with the types of measures that psychologists typically work
with, and if their experimental designs were such that they had to
work with correlational data and regression models, then they
would indeed have needed to include component parts of the
product term in their empirical tests of their models” (p. 162). Our
simulations show that this conclusion was mistaken. With fallible
measures, the SMR method has severe power loss in tests such as
the illustration they chose—predicting rectangle area from the
product of length and width. Physicists would indeed be unwise to
use that method, and psychologists should likewise not judge it
wise to follow Blanton and Jaccard’s suggestion to rely on the
SMR method to test pure multiplicative models.

In advocating the SMR method for detecting multiplicative
effects of predictor variables, Blanton and Jaccard (2006) aban-
doned two significant possibilities: (a) identifying pure multipli-
cative models and (b) assessing whether measures used in tests of
multiplicative models have rational zero values. We believe that
Blanton and Jaccard might reasonably have had greater faith in the
possibility of psychological measures having rational zero values,
might have had greater faith in the strategy of simultaneously
testing theoretical and measurement assumptions, and might have

Table 1
Summary of Results for Greenwald et al’s (2002) Four-Test Procedure Applied to 16 Analyses from Their Five Experiments

Study
Measure

typea N

Criterion (Y)

rXZ

Test 1
beta

Test 2
pr

Test 3
R2 gain

Test 4a
pr

Test 4b
pr

No. of tests
passed

Simulatedb

Measure d
Type 1
error Power

FG SG 65 self-female 1.39 .340 .472* .269* .018 �.146 �.066 4 .471 .854
FG SA 65 self-esteem 2.00 .380 .428* .216 .014 �.110 �.017 4 .425 .874
FG GA 65 female-positive 2.43 .320 .445* .100 .008 .022 .091 4 .389 .874
BGR SG 61 self-white 0.25 .020 .578* .250* .122* �.236 .196 3 .009 .908
BGR SA 61 self-esteem 1.54 .640 .267* .394* .093* �.292* .042 2 .124 .899
BGR GA 61 white-positive 0.91 �.060 .700* .357* .001 .031 .022 4 .000 .900
MG SG 98 self-old �0.80 �.380 .375* .019 .027 �.175 .103 4 .001 .886
MG SA 98 self-esteem 1.25 .290 .403* .031 .059* �.140 �.258* 2 .000 .897
MG GA 98 old-positive �1.21 �.380 .298* �.112 .092* .193 �.305* 1 .001 .879
RGM SG 95 self-female 0.04 �.030 .363* .390* .045 �.227* �.057 3 .108 .899
RGM SA 95 self-warm 0.43 .110 .296* .343* .046 �.219* �.030 3 .100 .840
RGM GA 95 female-warm 1.33 .130 .355* .336* .001 �.008 �.004 4 .024 .867
NBG SG 91 self-male �0.05 �.070 .407* .094 .023 .129 �.115 4 .017 .903
NBG SA 91 self-math �0.06 �.140 .433* .173 .005 .082 �.008 4 .020 .899
NBG GA 91 male-math 1.37 .410 .228* .216* .015 �.102 �.023 4 .007 .666
NBG AA 91 math-positive �1.19 .410 .449* .302* .013 �.058 .112 4 .001 .905

Note. These data are from five experiments that were described in Greenwald et al. (2002); FG � Farnham and Greenwald (1999); BGR � Banaji,
Greenwald, and Rosier (1997); MG � Mellott & Greenwald (2000); RGM � Rudman, Greenwald, & McGhee (2001); NBG � Nosek, Banaji, &
Greenwald (2002). d � mean of indicated criterion measure in SD units, rXZ � inter correlation of the predictor variables X and Z, pr � partial correlation.
Tests 1 through 4 are the respective tests of Greenwald et al.’s (2002) 4-test procedure. Test 4 involves two effects, identified as 4a and 4b.
a IAT measures of associations involved three types of concepts: self (S); groups (G — e.g., male, old, Black); and attributes (A — e.g., valence, math).
The 2-letter codes indicate the two types of concept included in the criterion IAT measure in each analysis. The two predictor variables for each analysis
are the measures indicated as criterion measures in the other two rows for the same study. For the last row of the table, the two predictors were NBG’s
GA and SG measures. b The simulated Type I error and power figures are based on 1,000 repetitions of simulations with samples of N � 100 cases.
* p 	 .05.
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recognized that the 4-test method has real advantages over the
SMR method in testing pure multiplicative theories.
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Appendix

Meta-Analysis of the Sixteen Analyses in Greenwald et al.’s
(2002) Five Studies

Here we report details of analyses conducted to determine what conclu-
sions can be justified by considering as a group the 16 analyses (from five
experiments) that were reported in the Greenwald et al. (2002) article.
Tests based on SMR analyses use standard meta-analytic procedures, as
described below. Those based on the 4-test method are in a box-score
format, there not being available techniques for meta-analysis of the 4-test
method. Table 1 shows results of all tests for the 16 analyses included in
Greenwald et al.’s (2002) article.

We consider first the results from the SMR method, which uses the same
statistic as Test 2 of the 4-test method. Whereas the 4-test method requires
only a numerically positive result of this test, the SMR method requires a
statistically significant result to confirm a multiplicative model. To assure
independence of the effects that were meta-analytically combined in ag-
gregated SMR results, we conducted three separate meta-analyses, each
including one partial correlation from each of the five studies. The tests for
significance of aggregate effect sizes were t tests against the null hypoth-
esis of zero, with each of the five samples weighted by the square root of
its sample size. The tests for homogeneity were Fisher tests for the
homogeneity of correlations (cf. Kenny, 1999). These meta-analyses used
data in rows of Table 1 that had the same type of criterion measure—either

a self–group association, a self–attribute association, or a group–attribute
association.A1

The average product term coefficient for the SMR method (the pr for
Test 2 in Table 1) was statistically significant in meta-analyses for self–
group associations as criteria (SG in Table 1; average pr � .20, t(4) � 2.86,
p � .05) and for self–attribute associations (SA; average pr � .23, t(4) �
3.61, p � .02). For group–attribute associations (GA), the average effect
size was almost as large (average pr � .18), but was not statistically
significant, t(4) � 2.00, p � .12. These results are consistent with the
conclusion that the SMR method demonstrated the presence of a multipli-
cative predictor in the majority of the 16 data sets.

In tests of the hypothesis that effect sizes were homogeneous, tests for
criterion measures of types SG and SA met criteria of homogeneity,
�2(4) � 8.56 ( p � .07) and �2(4) � 7.35 ( p � .12), but not measures of
type GA, �2(4) � 13.13 ( p � .01). Because of the low power of these
tests—each being based on only five effect sizes—and because of indica-
tions (see just below) that results for the Mellott and Greenwald (2000)

A1 We thank Betsy Becker for recommending the meta-analytic strategy
of conducting three separate tests, each including five independent effect
sizes.
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study deviated from the other four, we are reluctant to accept the conclu-
sion that effect sizes were homogeneous.

We next considered results for the 4-test method. For 10 of the 16 data
sets, the 4-test method confirmed a pure multiplicative model by yielding
a passing result for all four tests. Fewest tests were passed in the Mellott
and Greenwald (2000) study (MG in Table 1), which involved young and
old subjects’ implicit attitudes toward the concepts old and young, their
implicit identification (association of self) with old and young, and their
implicit self-esteem. Mellott and Greenwald’s study produced the surpris-
ing observation that elderly subjects tended to associate self more with
young than with old on the IAT. This was an unexpected discovery that a
group of subjects (elderly) did not implicitly identify with a group to which
they nominally belonged. In discussing this study, Greenwald et al. (2002)
had noted that its results did not fit well with the multiplicative-model
expectations of their theory.

The study that conformed next least well to the expectations of the pure
multiplicative model was Banaji et al.’s (1997) study (BGR in Table 1),
which involved Black and White subjects’ implicit attitudes toward and
implicit identification with their racial groups, in relation to their implicit
self-esteem. For this study, the SMR test for all three analyses revealed a
significant effect of the multiplicative predictor. Two of the three analyses
nevertheless failed at Test 3 of the 4-test method, meaning that—even
though a multiplicative predictor was strongly indicated—there were sig-

nificant increments in explained variance when the component factors were
added as predictors to the solitary product term of Test 1. This pattern
indicated either that the model was not a pure multiplicative model (i.e.,
component factors were additionally involved) or that the measurement
scales deviated from having rational zero values, or both.

To assess the plausibility of regarding some of the 10 confirmations by
the 4-test method in Table 1 as Type I errors, we used means and standard
deviations of predictors and intercorrelations of predictors to generate
simulations that appraised both the power of the 4-test method and its
proneness to Type I error (i.e., spurious confirmation when the true model
was additive, rather than multiplicative). The results for simulated sample
sizes of N �100, shown in Table 1’s two rightmost columns, indicated that
3 of the 16 analyses had high potential for Type I error. These three tests
were all from the Farnham and Greenwald (1999) study (FG in Table 1).
At the same time, Table 1 shows that one of these three analyses had a
statistically significant product term in the SMR test, indicating presence of
a multiplicative model. Five of the 16 data sets passed both the 4-test and
the SMR test for a multiplicative model. For these five data sets, the
evidence for a pure multiplicative model was especially strong.
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Postscript

Anthony G. Greenwald
University of Washington

Laurie A. Rudman
Rutgers University

Brian A. Nosek
University of Virginia

Vivian Zayas
University of Washington

Blanton and Jaccard (2006) drafted a Postscript in response to
our Reply (Greenwald, Rudman, Nosek, & Zayas, 2006). Their
Postscript has two types of arguments: (a) repetitions of statements
made previously in their article and already addressed in our Reply
(thus needing no further comment here) and (b) regrettably, re-
sponses to arguments that they themselves constructed and attrib-
uted to us. The latter type need no comment beyond pointing them
out and documenting that they are indeed misstatements. To do
this thoroughly, we created a table that includes the misstatements,
together with quotations of what we actually said. The table can
be accessed at http://faculty.washington.edu/agg/Postscript.Table
.6Sep05.pdf. The table amplifies the brief comments that appear
after each of the five misstatements (quoted in italics) that are
listed here:

1. On several occasions in their reply, Greenwald et al. stated
our positions in the extreme (e.g., that we argued that no psycho-
logical measure can have ratio level properties) (p. 166). This
specific attribution about ratio properties is in error, in addition to
which their Postscript documents not even one misstatement by us
(let alone several).

2. . . . in their reply, Greenwald et al. took the position that as
long as the result is consistent with theory, then one need not
consider possibilities of measurement artifact because the result
affirms both theory and measurement (p. 167). This attribution is
inconsistent with quotable passages from our Reply.

3. Greenwald et al. introduce the notion of an absolute zero for
the IAT . . . absolute zeros typically imply no negative numbers (p.
167). No mention of “absolute zero” appears in our Reply.

4. Greenwald et al. suggested that their method can test a
“pure” multiplicative model, whereas a traditional least squares
regression analysis cannot (p. 168). Our Reply’s point was that the
“traditional” (standard multiple regression) method is incapable of
distinguishing a pure multiplicative model from other multiplica-
tive models.

5. [Greenwald et al.] applied a statistically questionable meta-
analytic method that assumes a fixed-effect model, whereas a
random-effect model seems more appropriate (p. 168). Our Re-
ply’s meta-analytic test of aggregate effects used a random effects
test.
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