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Helicity and nuclear b decay correlations
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We present simple derivations of nuclear b-decay correlations with an emphasis on the special role

of helicity. This topic provides a good opportunity to teach students about helicity and chirality in

particle physics with exercises that use simple aspects of quantum mechanics. In addition, this paper

serves as an introduction to nuclear b-decay correlations from both a theoretical and experimental

perspective. This article can be used to introduce students to ongoing experiments searching for hints

of new physics in the low-energy precision frontier. VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4966197]

I. INTRODUCTION

Helicity is the projection of the spin of a particle onto the
direction of its momentum. Helicity plays an important role
in modern physics, and a good understanding of the associ-
ated rules is important for interpreting many atomic, nuclear,
and particle physics experiments. Thus, development of intu-
ition with respect to different aspects of helicity in quantum
mechanics is a worthwhile exercise for classes that are taught
to advanced undergraduate or beginning graduate students.

In this paper, we concentrate on the angular correlations
(for example, between the spin of a parent nucleus and the
direction of an emitted b particle) that arise in nuclear b
decays due to the combination of conservation of angular
momentum and the helicity of the leptons. Because we con-
centrate on nuclear b decays, we will use “weak interaction”
as a synonym of “charged weak interactions.” Measurements
of correlations from nuclear b decay originally established the
vector minus axial-vector nature of the weak currents, known
as V�A, about 50 years ago. We will describe the develop-
ment of V�A and new measurements of decay correlations
being pursued in search of new physics with helicity proper-
ties that differ from the prescriptions of the standard model
(SM) of particle physics.

The correlations can be calculated using trace techniques
of Dirac’s c matrices and are sometimes brought up in this
context as exercises for students learning relativistic quan-
tum mechanics or field theory. On the other hand, the calcu-
lated expressions are often presented to students without this
training, along with comments to show their plausibility. In
contrast, we present a more accessible derivation using tools
learned in elementary quantum mechanics classes for which
most advanced undergraduates should be well equipped to
understand. Moreover, those students capable of doing the
calculations via trace techniques may not appreciate that the
correlations arise simply from the conservation of angular
momentum and the left-handedness of the emitted leptons. It
is often far too easy to let the mathematical formalism over-
shadow the elegant and beautiful physical principles at work.

The present paper is intended for a broad audience. We feel
that it is well suited for students who have completed an
introductory quantum mechanics course, while providing sup-
plementary material for the more advanced readers with expe-
rience in quantum field theory. We begin with a simple
derivation of the b asymmetry with respect to the polarization
of the parent nucleus in Sec. II. In Sec. III, we present a brief
description of the weak-interaction Hamiltonian. Although we
present the interactions using Dirac’s c matrices, all that is

really needed to follow that section is a brief introduction to
the Dirac equation, and instructors can use Appendix A as a
guideline. In Secs. IV and V, we derive the so-called Fierz
interference term and the e-� correlation.1 The derivations are
presented alongside a brief historical narrative, including the
story of several experiments that wrongly led physicists to an
incorrect theory of the weak interactions. Finally, a few con-
temporary experiments involving b-decay correlations are
introduced in Sec. VI.

II. HELICITY AND CHIRALITY PROPERTIES

OF THE WEAK INTERACTION

The main features of b decay are described in many text-
books.2–4 Here, we briefly discuss the aspects that are rele-
vant for the present discussion. We start by considering the
correlations between the spin polarization of the parent
nucleus and the direction of the emitted electrons in the
famous experiment of Wu et al.;5 one of the first experiments
to confirm the hypothesis of parity violation in weak interac-
tions put forward by Lee and Yang.6 Wu and collaborators
polarized a sample of radioactive 60Co atoms and observed
the distribution of emitted electrons relative to the direction
of the initial nuclear spin polarization. The corresponding
decay scheme is shown in Fig. 1.

In this section, we first consider the transition from the
M¼ 5 initial state (M is the “magnetic quantum number”)
to the M¼ 4 final state. Following the b-decay transition,
one unit of angular momentum along the direction of the ini-
tial polarization is lost from the nucleus, and this angular
momentum must be carried away by the lepton spins.7 Thus,
the spin projections of the two leptons onto the z-axis must
be þ1/2 each, as shown in Fig. 2.

For an electron (or any other spin-1/2 particle) emitted at
an angle h relative to the z-axis, the positive and negative hel-
icity states jh6i can be expressed as linear combinations of
spin-up jþi and spin-down j�i states along the z-axis as8,9

jhþi ¼ cosðh=2Þjþi � sinðh=2Þj�i

and

jh�i ¼ sinðh=2Þjþi þ cosðh=2Þj�i: (1)

For electrons in the negative-helicity state jh�i, the proba-
bility of finding the þ1/2 spin projection onto the z-axis is
sin2ðh=2Þ. Thus, the probability per solid angle dP=dX of
emitting such an electron is given by
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dP

dX
¼ sin2 h=2ð Þ

2p
¼ 1� cos hð Þ

4p
; (2)

with that for positive-helicity electrons being

dP

dX
¼ cos2 h=2ð Þ

2p
¼ 1þ cos hð Þ

4p
: (3)

The parity transformation (which inverts the signs of coor-
dinates) turns a negative-helicity particle into a positive-
helicity particle. Under the assumption of parity conservation,
the emitted leptons from 60Co should show no preference for
either helicity state. The sum of the distributions in Eqs. (2)
and (3) with equal weights does not depend on h. Thus, one
would expect the electrons to be emitted uniformly in all
directions. In one of the greatest surprises in modern physics,
Wu and others5,10,11 found quite the opposite to be true. They
discovered that the electron angular distribution was close to
Eq. (2). It appeared as though only negative helicity electrons
were being emitted. Much to the surprise of researchers at that
time, and still a surprise to many of us today, the laws of
nature appear to have a preferred handedness.

In order to understand how this fact has been implemented
into the standard model, we need a new concept: chirality.
Note that for a massive particle, the helicity of a particle is
not a Lorentz invariant (which does not change under rota-
tions or boosts of the reference frame). An observer moving
faster than the particle will see its helicity in the opposite
direction. In contrast, chirality is a Lorentz invariant. We
follow Konopinski2 who gives an intuitive description of chi-
rality. Consider an electron moving in the þz direction with
momentum p, energy E, and spin along the þz direction. If
we want to measure the velocity of this electron, we need to
take an infinitesimal time period, so the energy uncertainty

goes to infinity according to Heisenberg’s uncertainty princi-
ple. However, particles with infinite energy move at the
speed of light c so the results of such a measurement are 6c.
We call this the internal velocity. The physical state moving
at velocity12 v ¼ p=E can be described as a combination of a
“forward-motion” along the path at speed c with a probabil-
ity ð1þ p=EÞ=2 and a “backward-motion” at speed c with a
probability ð1� p=EÞ=2. The physical velocity v is just the
mean velocity of this motion. We use u"#ðEpÞ to represent
physical states with definite momentum, energy, and spin (up
or down) along the z direction, and /"#ð6cÞ to represent the
states with internal velocity þc or –c and spin up or down
along the z direction. Then the physical state u"ðE; pÞ can be
expressed as a linear combination of /"ðþcÞ and /"ð�cÞ as

u" E; pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p=E

2

r
/" þcð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p=E

2

r
/" �cð Þ:

(4)

A particle’s chirality can be defined as “the spin projection
onto its internal velocity direction.” In this sense, the state
/"ðþcÞ has right-handed chirality and the state /"ð�cÞ has
left-handed chirality. Therefore, a state with well-defined
helicity, momentum, and energy, like u"ðE; pÞ, is a linear
combination of two states with opposite chirality and relative
amplitudes as in Eq. (4). If we build up a state like /"ðþcÞ
þ/#ð�cÞ, which has definite right-handed chirality, it is not
a free-particle state because its spin projection is not 61=2�h.
If the particle is massless, then only one internal velocity
state describes it, so the free-particle state contains only
one chirality component. In this case, helicity and chirality
describe the same property of the particle. Left-handed chi-
rality is equivalent to negative helicity for massless particles.

A formal description of free fermions is given in Appendix A
using Dirac spinors. The motion of a free fermion is governed
by the Dirac equation, which has two positive energy solutions,
or particle solutions, with well-defined energies, momenta,
and helicities [see Eq. (A4)]. This is due to the fact that
both momentum and helicity operators commute with the free
particle Hamiltonian. The spinor parts of these two solutions
u"#ðE; pÞ have opposite helicities, but both of them have non-
zero left-handed chirality projections with amplitudes

jPLu"ðE; pÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p=E

p
=
ffiffiffi
2
p

(5)

and

jPLu#ðE; pÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p=E

p
=
ffiffiffi
2
p

; (6)

where PL is the left-handed chirality projection operator.
This is consistent with Eq. (4).

In the SM, weak interactions involve only particles with
left-handed chirality. Therefore, for massive particles like elec-
trons, both helicity states are involved in the weak interaction
with amplitudes expressed in Eq. (6), and Eq. (2) for dW=dX
has to be modified to take this into account. The correct expres-
sion for dW=dX (for “M ! M � 1” transitions) in the SM is

dW

dX
¼ sin2 h=2ð Þ

2p
1þ pe=Eeð Þ

2

þ cos2 h=2ð Þ
2p

1� pe=Eeð Þ
2

¼ 1� pe=Eeð Þcos hð Þ
4p

: (7)

Fig. 1. Decay scheme for 60Co.

Fig. 2. Correlation between the initial polarization and the electron direc-

tion. In the decay of 60Co, one unit of angular momentum is lost by the

nucleus and has to be carried out by the leptons. Since the latter are spin-1/2

objects, they have to both align their spins in the direction of the initial

polarization. This, in conjunction with the helicities of the particles, deter-

mines the emission probabilities.
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In general, given that the nuclei experience a change of
projection of angular momentum DM (defined as Mparent

�Mdaughter) along a quantization direction z, the electron will
have an angular distribution of

dW

dX
¼ 1� DM pe=Eeð Þcos h

4p
; (8)

with DM ¼ 0;61. If the 60Co nucleus is in a state with
M 6¼ 65 (for example, M¼ 3), the final state can have
different M values (M¼ 2, 3, and 4). Usually, the spin
projection of the final state of the daughter nucleus is
difficult to detect, so one may sum over the probabilities
of final states with different M. The probabilities of
decaying into these final states are not equal, but propor-
tional to the square of the Clebsch-Gordan coefficients
hJf ;Mf ; Jl;MljJi;Mii, where Ji, Mi are the spin and spin pro-
jection of the initial nuclear state, Jf, Mf are the spin and
spin projection of the final nuclear state, and Jl¼ 1, Ml

¼ 0;61 are the total angular momentum and its projection
taken away by the leptons. After summing over the final
nuclear states, one gets the angular distribution

dW

dX
¼

1�Mi

Ji
pe=Eeð Þcos h

4p
: (9)

The proof of this equation is a bit too long to reproduce
here, but it can be a good exercise for students when learn-
ing angular momentum raising and lowering operators and
Clebsch-Gordan coefficients. Defining the polarization vec-
tor for the initial ensemble of nuclei as P ¼ hJii=Ji, it fol-
lows that:

dW

dX
¼ 1þ AP � pe

Ee
; (10)

with the b asymmetry correlation coefficient13 A¼�1 for
the decay of 60Co.

Note that the expressions above show that the decay
rate varies under the parity transformation which flips the
sign of pe but not P. The experimental determination of
A by Wu et al.5 showed clearly that parity conservation
was violated by the weak interactions. Another observable
worth discussing is the polarization of emitted electrons,
Pe. Using Eq. (6), one can show that

Pe ¼
1� p=Eð Þ þ1ð Þ þ 1þ p=Eð Þ �1ð Þ

1� p=Eð Þ þ 1þ p=Eð Þ ¼ �p=E; (11)

and this was later directly confirmed by several
experiments.14–16

We have shown (assuming electrons emitted in b decay
have left-handed chirality) that good agreement with experi-
ment is seen, but this does not completely determine the
formalism of the weak interaction. One important missing
piece of the theory is the helicity of the antineutrino, which
is almost impossible to measure directly. The relationship
between chirality and helicity for antiparticles is discussed
in Appendix A. According to the SM, the chirality of antineu-
trinos involved in weak interactions is also left-handed, and
left-handed antiparticles have positive helicity. If we take the
SM description of antineutrinos for granted, namely, that they

have positive helicity, the angular distribution of the antineu-
trino around the direction of nuclear polarization is

dW

dX
¼ 1þ BP � p��

E��
; (12)

with the antineutrino asymmetry correlation coefficient
B¼þ1 for the decay of 60Co. As we shall see in Secs. III–V,
neutrino helicities were determined through indirect meas-
urements and the complete weak interaction formalism was
built in the 1960s.

III. SCALAR, VECTOR, AND TENSOR CURRENTS

To understand the Fierz interference and the e-� correla-
tion described in Secs. IV and V, one has to go one level
deeper into the weak interaction theory and understand the
formalism of its Hamiltonian. Before the development of
weak interaction theories, Dirac had already shown how to
solve problems involving electromagnetic interactions within
a quantum theory that correctly takes into account relativ-
ity.17 For example, for electron scattering from a proton at
low-momentum transfer (so that internal nucleon excitations
can be neglected), the interaction Hamiltonian can be
expressed as a product of a nuclear current, a propagator for
the photon, and an electronic current18–20

HEM ¼ �wpc
lwp

� � �e2

�q2ð Þ
�weclwe

� �
: (13)

Here, the w0s are Dirac spinor operators that can annihilate a
particle (with certain momentum, energy, etc.) in the initial
state or create an antiparticle from vacuum, �w means w†c0,
and q2 is the square of the 4-momentum transfer in the scat-
tering process. The cl’s are Dirac’s c matrices with the prop-
erties that

clcl ¼ I for l ¼ 0

�I for l ¼ 1; 2; 3

�
(14)

and

cl c� ¼ �c� cl for l 6¼ �; l; � ¼ 0; 1; 2; 3; (15)

where I stands for a 4� 4 identity matrix. To follow the deri-
vations in the rest of this paper, it is adequate to remember
the properties of the c matrices in Eq. (15) without mastering
the full expressions shown in Appendix A.

Fermi proposed a similar structure for the weak
interactions21,22

HFermi ¼
Gffiffiffi

2
p �wpc

lwn

� �
�weclw�

� �
þ h:c:; (16)

where h.c. indicates the Hermitian conjugate. The first term
in HFermi describes an incoming neutrino (or an outgoing
antineutrino) and an outgoing electron, while the h.c. term
describes an incoming electron (or an outgoing positron)
and an outgoing neutrino. For massive bosonic force car-
riers, the propagator denominator is M2 � q2, where M is
the mass of the carrier. Because the mass of the carrier for
the weak interactions is much larger than the momenta
involved in the nuclear weak transitions, the propagator is
constant to a very good approximation. When Fermi
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proposed this form for the interaction, it was unknown what
the mass of the carrier was, but nowadays we know
MW� 80 GeV while the momentum transfer in nuclear b
decay is of the order of a few MeV. In fact, the weakness of
the weak interaction in nuclei is due to the large mass of the
W compared to the energy released in b decays.

Although Fermi focused on the hypothesis of the vector
interaction, he indicated that other possibilities were allowed.
Many years later, Lee and Yang6 explicitly included parity
violation. Thus, the general Hamiltonian for the weak interac-
tion can be expressed as58

Hint ¼
X

i¼S;P;V;A;T

ð�wpOiwnÞ ðCi
�weOiw�

þC0i
�weOic

5w�Þ þ h:c:; (17)

where the Ci’s are constants that could be determined experi-
mentally and the operators Oi are

OS ¼ 1; OP ¼ c5; OV ¼ cl; OA ¼ iclc
5; (18)

and

OT ¼ rl�=
ffiffiffi
2
p

¼ �iðclc� � c�clÞ=2
ffiffiffi
2
p

: (19)

The corresponding currents �wOiw are called, respectively,
scalar, pseudo-scalar, vector, axial-vector (or pseudo-vector),
and tensor.

The additional gamma matrix included here, c5, can be
expressed in terms of the other four: c5 ¼ ic1c2c3c0. Using
Eq. (15), one can show that

c5 c5 ¼ I and cl c5 ¼ �c5 cl: (20)

The property of the operators under parity transformation
becomes evident if one considers what happens when the
coordinates are inverted. Note that under the parity transfor-
mation the spatial components of pl are odd and its time-like
component (energy) is even. The kinetic term in the Dirac
equation clpl is a Lorentz scalar23 (or Lorentz invariant).
Because a Lorentz scalar has even parity, a Lorentz scalar
can only be the inner product of two vectors with the same
parity. Therefore, the spatial components of cl should be
parity-odd, while its time-like component should be parity-
even. Because the c5 matrix is the product of one time-like
matrix and 3 space-like matrices, it is parity-odd, and multi-
plication by it reverses the parity property of all operators.
This c5 matrix is by definition the chirality operator.18

Consequently, the operators,

PL=R ¼ ð16c5Þ=2; (21)

are the projectors onto left- and right-handed chirality states.
Under parity transformation, PL=R turns into PR=L, so a left-
handed state transforms to a right-handed state. In the
relativistic limit, when the masses of the particles are negli-
gible compared to their energies, chirality is equivalent to
helicity, so c5 becomes the helicity operator and the two pro-
jectors above become the projectors onto the helicity states.
The interaction Hamiltonian in Eq. (17) can be re-written in

terms of left- and right-handed lepton spinors. For the vector
and axial-vector currents, we have

HVA
int ¼

X
i¼V;A

ð�wpOiwnÞ½ðCi þ C0iÞ�w
L
e Oiw

L
�

þðCi � C0iÞ�w
R
e Oiw

R
� � þ h:c:; (22)

while for the scalar and tensor currents (potentially new
physics) we have

HST
int ¼

X
i¼S;T

ð�wpOiwnÞ½ðCi þ C0iÞ�w
R
e Oiw

L
�

þðCi � C0iÞ�w
L
e Oiw

R
� � þ h:c: (23)

The notation wL=R ¼ PL=Rw is used in Eqs. (22) and (23),
where we have ignored the pseudo-scalar currents because
they turn out to be very small in nuclear b decays. In this arti-
cle, we will assume the constants Ci to be real. As we will
describe later, present limits on these non-Standard Model
couplings (CS;C

0
S;CT ;C

0
T) are of order 10%.24 Allowing for

complex phases brings in time-reversal symmetry violation,
which is very interesting,25 but subject for another paper.
Notice that while the vector and axial-vector currents couple
incoming and outgoing particles with identical chiralities, the
scalar and tensor currents do the opposite; this is a direct con-
sequence of Eq. (20).

Though Wu et al. found that the electrons from nuclear b
decays mostly have negative helicity and thus only electrons
with left-handed chirality are involved in nuclear b decays,
they could not determine the helicity of the emitted antineu-
trino. Additional experiments were proposed to determine
whether the currents were scalar, vector, axial-vector, tensor,
or some combination of these. As we will see, eventually
they determined that the weak interaction is primarily medi-
ated by vector and axial-vector currents.

The form of hadronic currents also affects the changes of
nuclear angular momenta in b decays. Conventionally,
nuclear b decays are classified according to the change in
angular momentum J and isospin T (some basics on isospin
are given in Appendix B). “Fermi transitions” (F) are those
with DJ ¼ 0; DT ¼ 0 and “Gamow-Teller transitions”26

(GT) have DJ ¼ 61; 0; DT ¼ 0;61 (but not J ¼ 0! 0 or
T ¼ 0! 0). Fermi transitions are generated by the vector or
scalar hadronic currents (�wpc

lwn or �wpwn), and they do not
flip the nuclear spin. In contrast, Gamow-Teller transitions
are generated by the axial-vector or tensor hadronic currents
(i�wpc

lc5wn or �wpr
l�wn=

ffiffiffi
2
p

), and they can flip the nuclear
spin. Some transitions like the neutron b decay can have
both components. Derivations of these selection rules are
described in Appendix C for advanced readers.

IV. FIERZ INTERFERENCE

The differential decay rate is proportional to the product
of the transition matrix element hf jHintjii and its Hermitian
conjugate hijH�intjf i, where jii and jf i are the initial and final
states. Using the decomposition of Hint into HST

int and HVA
int ,

there are two cross terms in the differential decay rate,
hf jHVA

int jiihijHST�
int jf i and hf jHST

int jiihijHVA�
int jf i, which are also

called interference terms. If both vector (axial-vector)
and scalar (tensor) currents existed this interference effect
should be present. To fix these ideas, we first consider
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Fermi transitions, so that only vector and scalar currents
contribute. We also assume neutrinos are massless so the
antineutrino final state with definite helicity has only one
chirality component. Therefore, after substituting Eqs. (22)
and (23) into the interference terms, any product that
involves neutrino spinors with different chiralities vanishes.
Then, the non-vanishing terms are

ðCV þ C0VÞðCS þ C0SÞ hflj�w
L
eclw

L
� jilihilj�w

L
�w

R
e jfli

� hfhj�wpclwnjihihihj�wnwpjfhi; (24)

ðCV � C0VÞðCS � C0SÞ hflj�w
R
e clw

R
� jilihilj�w

R
�w

L
e jfli

� hfhj�wpclwnjihihihj�wnwpjfhi; (25)

and their Hermitian conjugates. Here, jili and jfli are the ini-
tial and final states of the leptons, and jihi and jfhi are the ini-
tial and final states of the nucleus.

Before completing the calculation of Eqs. (24) and (25),
one should pay attention to the chiral properties of these two
formulae. Suppose the final state jfli involves an electron

with positive helicity. In Eq. (24), �w
L
e projects out the left-

handed amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pe=Ee

p
while wR

e projects out the

right-handed amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pe=Ee

p
, so Eq. (24) is propor-

tional to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pe

Ee

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pe

Ee

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pe

Ee

� �2
s

¼ me

Ee
: (26)

Similarly, for a final state jfli with a negative helicity electron,
Eq. (24) is still proportional to me=Ee, and so is Eq. (25). In
fact, except for the coupling-constant factors (CV, C0V , CS, and
C0S), Eqs. (24) and (25) are the same,27 after summing over
the two electron helicity states. The sum of Eqs. (24) and (25)
accounts for the interference effect between vector and scalar
components, called the Fierz interference,28 with a value pro-
portional to

CV CS þ C0VC0S
� 	me

Ee
: (27)

The m/E factor is typical of situations like the present
one, where there is a “helicity mismatch.” A similar situation
occurs for the highly sought-after neutrinoless double b
decay:29 if the neutrino is a Majorana particle,30 it can anni-
hilate itself and the rate depends on a factor m�=E� . Another
important example is the suppression of the decay of the neg-
atively charged pion into an electron and its antineutrino
compared to the decay into a muon and its antineutrino. The
pion has zero spin so the spin of the lepton and antilepton
have to be in opposite directions and momentum conserva-
tion requires them to come in opposite directions as well, so
both leptons are forced into the same helicity state. The left-
handedness of the weak interaction only allows positive hel-
icity massless antineutrinos, but hinders the positive helicity
massive negative-charged leptons, so the decay is suppressed
by the m/E factor, where m is the mass of the negative-
charged lepton. This factor is very small for the electron
while for the muon it is of order unity and the decay pro-
ceeds mainly by p� ! l���l. The decay of the positively
charged pion is similar.

For GT transitions, the arguments above lead to a Fierz
interference term

CA CT þ C0AC0T
� 	me

Ee
: (28)

Because of the 1/Ee dependence, these interference effects
can be identified by measuring the electron energy distribu-
tions. In the 1950s, measurements had already determined
that these contributions had to be small so that Fermi transi-
tions were known to be driven by either S or V currents, but
not by both, while GT transitions had to be driven by either
A or T currents, but not by both. Of course, given that anti-
neutrinos are not really massless, there are, strictly speaking,
similar terms proportional to m�� =E�� , but in practice they are
negligible.

V. e-m CORRELATION

Consider the directional correlation between the electron
and the antineutrino in b decays from non-oriented nuclei.
Again, we classify transitions into non-spin-flip transitions
(no nucleon spin flipping, DM ¼ 0) and spin-flip transitions
(some nucleon will have its spin flipped, DM ¼ 61). We
start by considering non-spin-flip transitions. Because the
nucleus is not oriented, we are free to choose the þz direc-
tion along the momentum of the antineutrino. We first con-
sider left-handed antineutrinos. In the m� ¼ 0 limit, left-
handed antineutrinos have well defined positive helicity,31

and thus they are in the jþi spin state along the z-axis. In
non-spin-flip transitions, the two spin projections of the two
leptons are opposite to each other, so the electron is in the
j�i state. If the weak current is vector or axial-vector,
according to Eq. (22) the emitted electron is also left-
handed. We can repeat the chirality arguments of Sec. II
and determine the angular distribution of the emitted electron
to be

dW

dX
¼ 1þ pe=Eeð Þcos h

4p
¼ 1

4p
1þ pe

Ee
� p��

E��

� �
; (29)

where h is the angle between pe and p�� . If the weak current
is scalar or tensor, according to Eq. (23) the left-handed anti-
neutrino is coupled to the right-handed electron. Therefore,
the angular distribution of the emitted electron is

dW

dX
¼ 1� pe=Eeð Þcos h

4p
¼ 1

4p
1� pe

Ee
� p��

E��

� �
: (30)

The term pe

Ee
� p��

E��
is called the e-� correlation, and by conven-

tion dW=dX is written as

dW

dX
¼ 1

4p
1þ a

pe

Ee
� p��

E��

� �
; (31)

where a is called the e-� correlation coefficient. In summary,
for non-spin-flip transitions with left-handed antineutrinos,
a¼þ1 for vector and axial-vector currents, and a¼ –1 for
scalar and tensor currents. Following the arguments described
above, students can work on their own to calculate the values
of a for right-handed antineutrinos and spin-flip transitions. In
short, for right-handed antineutrinos the values of a are the
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same as those for left-handed antineutrinos, but for spin-flip
transitions the signs of a are opposite.

For pure Fermi transitions, where there is no angular
momentum difference between the parent and daughter
nucleus, the expected correlation is the same as that for non-
spin-flip transitions. Therefore, for vector currents32 a¼þ1,
and for scalar currents a¼ –1. However, for pure GT transi-
tions, we have to consider the non-spin-flip as well as spin-
flip transitions. To fix ideas we consider the case of the decay
of 6He, whose decay scheme is shown in Fig. 3.

The daughter nucleus can have J¼ 1 and M¼�1, 0, þ1 so
there are two spin-flip transitions and one non-spin-flip one. It
can be checked that the Clebsch-Gordan coefficients corre-
sponding to these three transitions yield the same probability
for all three transitions. Thus, the value of a for this decay is
the arithmetic average of the values of a for M¼�1, 0, þ1.
Consequently, for axial-vector currents a¼�1/3, and for ten-
sor currents a¼þ1/3. Although we focused on the decay of
6He, it can be shown that the same result holds for any pure
GT transition. Students that can maneuver comfortably with
Clebsch-Gordan coefficients can figure out the way for the
general proof. For students who are beginners, we recommend
trying to work out at least one other example. A summary of
the values of a for different cases is given in Table I.

A series of experiments were carried out in the 1950s to
determine the e-� correlation in nuclear b decays. Because
antineutrinos were difficult to detect, experimentalists mea-
sured the momentum of the recoiling-nucleus in coincidence
with the momentum of the emitted electron and then calculated
the momentum of the antineutrino. These kinds of experiments
are quite challenging, because one needs to detect the rather
low energy recoiling-nucleus, so lighter nuclei and larger
energy release are preferred. The decay of 6He is an advanta-
geous candidate, since 6He is one of the lightest b-decaying
nuclei and the decay has a relatively large energy release
(about 3.5 MeV). This decay is a pure GT transition and thus
exclusively sensitive to axial-vector and tensor currents. One
measurement published33 in 1953 and confirmed34 in 1955
seemed to have clearly pinned down the weak interaction in a
pure GT transition to be of tensor type. In addition, measure-
ments on 19Ne confirmed35 that the interaction was of the sca-
lar and tensor type. Later experiments used a slightly different
technique of precisely measuring the energy distribution of the
recoiling-nucleus without detecting the electron. If the electron
and antineutrino are preferentially emitted in the same direc-
tion (i.e., a> 0), the energy of the recoiling-nucleus will tend
to be larger than if the leptons are preferentially emitted
in opposite directions (i.e., a< 0). As such, the shape of the

recoil-nucleus energy spectrum can be used to determine a. A
few years after the 19Ne experiment was published, contradic-
tory evidence from other experiments began to build a compel-
ling case for the weak interaction being dominated by vector
and axial-vector currents, not the scalar and tensor currents
suggested by early experiments. Feynman gave an interesting
and amusing account of these times in an article called “The
7 percent solution.”36

Eventually, there was a determination of the helicity of
neutrinos using a very ingenious idea.37 The result showed
that neutrinos are predominantly left handed. Soon after,
two different groups38,39 published new determinations of
the electron-neutrino correlation with more careful measure-
ments of the recoil-ion energy spectra from various b emit-
ters, definitively revealing the vector and axial-vector nature
of the weak interaction. Therefore, the SM weak interaction
Hamiltonian for b decay (the V – A theory) is

HSM
int ¼ 2CVð�wpc

lwnÞð�w
L
eclw

L
�Þ

�2CAð�wpc
lc5wnÞð�w

L
eclc

5wL
�Þ þ h:c:; (32)

where CV ¼ C0V and CA ¼ C0A due to the maximum parity
violation. In retrospect, it is not hard to see the difficulties in
the first experiments and guess that more should have been
demanded, but for a few years the world of physics believed
weak interactions were mediated by scalar and tensor
currents.

VI. b-DECAY CORRELATIONS

IN CONTEMPORARY EXPERIMENTS

It is clear that the weak currents are primarily of vector
and axial-vector type. Nevertheless, scalar and tensor cur-
rents should not be considered as completely strange objects.
In order to explain facts the SM cannot explain, such as the
origin of the left-handedness of the weak interaction or the
matter-antimatter asymmetry and dark matter, many theories
beyond the SM have been developed. Some of these theories,
for example, the lepto-quark model40 and super-symmetry
models,41 do predict the existence of scalar and tensor type
weak currents. To this day, the most stringent limits on the
coupling constants of scalar and tensor currents (CS, C0S, CT,
and C0T) relative to the coupling constants of vector and
axial-vector currents are around a few percent.42 Higher pre-
cision future experiments may find small but non-zero scalar
or tensor currents and thus lead to a deeper understanding of
the new physics beyond the SM. A review of high precision
b-decay correlation experiments was given by Severijns
et al. in Ref. 24.

Higher precision experiments of the b-asymmetry and other
correlations in nuclear and neutron decays have recently been
published. Mund et al.43 and Mendenhall et al.44 measured the
b-asymmetry from neutron decay using cold and ultracold neu-
tron sources. Taking advantage of technological developments
that allow for faster counting and better control of systematic
uncertainties, a new generation of precision determination of
correlations in beta-decay experiments is presently taking
place or being developed for running in the near future.
Examples are experiments with neutrons making ingenious use
of magnetic fields45–48 and experiments with radioactive nuclei
in either ion traps49,50 or neutral atom laser traps.51–54

On the other hand, experiments at the Large Hadron
Collider (LHC) are also searching for scalar and tensor type

Fig. 3. Decay scheme for 6He.

Table I. Summary of a for pure Fermi and pure GT transitions for V, A cur-

rents and S, T currents.

Vector or axial-vector Scalar or tensor

Pure Fermi þ 1 �1

Pure GT �1/3 þ1/3
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interactions. A comparison of the sensitivities of low energy
b-decay experiments and high-energy experiments is pre-
sented by Cirigliano et al. in Refs. 55 and 56.

VII. CONCLUSIONS

We have presented simple derivations of nuclear b-decay
correlations that originate in the selected sensitivity of the
charged weak interactions for left-handed particles. In the pro-
cess, we described some of the history of the discoveries that
led to understanding the weak interaction. In our experience,
students develop intuition about the properties of chirality and
helicity by working through these arguments. Alternative
interesting questions to consider are, for example, how the
answers given here vary if one considers positron emission
instead of electron emission, or how the calculations can be
generalized to a mixed transition, such as neutron b decay.
The arguments used can also be applied to predict the angular
distribution expected for Mott scattering, neutrino-nucleus
scattering, and to neutrino-electron conversion in a nuclear
target among many others.
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APPENDIX A: THE DIRAC EQUATION

In order to reconcile quantum mechanics with special rela-
tivity, Dirac wrote down a Hamiltonian that is linear in $ for
free fermions

H ¼ �ia � r þ bm; (A1)

where ai ¼ c0ci ði ¼ 1; 2; 3Þ and b ¼ c0 are 4� 4 matrices,
and the c matrices are

c0 ¼
0 I

I 0

 !
; ci ¼

0 ri

�ri 0

 !
and

c5 ¼
I 0

0 �I

 !
: (A2)

Here, I stands for the 2� 2 identity matrix and ri for the
Pauli matrices. The matrices are such that squaring Eq. (A1)
yields a relation between momentum and energy consistent
with relativity, E2 ¼ p2 þ m2. We choose the Weyl represen-
tation to make the discussion on helicity and chirality easier.
This Hamiltonian leads to the Dirac Equation

ðicl@l � mÞw ¼ 0; (A3)

which describes the motion of a free fermion with a 4-
component Dirac spinor w.

The Dirac equation has two particle solutions, u"#ðE; pÞ
e�iEtþip�x, and two antiparticle solutions, v"#ðE; pÞeiEt�ip�x,
where

u"# ¼
ffiffiffiffiffiffiffiffiffiffi
E7p
p

v"#ffiffiffiffiffiffiffiffiffiffi
E6p
p

v"#

" #
and v#" ¼

�
ffiffiffiffiffiffiffiffiffiffi
E7p
p

v"#ffiffiffiffiffiffiffiffiffiffi
E6p
p

v"#

" #
; (A4)

with

v" ¼ 1

0

" #
and v# ¼ 0

1

" #
(A5)

corresponding to the two directions of spin. Here, we sup-
pose that z is the quantization axis and momentum is also in
the þz direction. For antiparticle states, one can interpret
v#ðE; pÞeiEt�ip�x as the absence of a particle with energy –E,
momentum �p, spin along the þz direction and thus nega-
tive helicity, or the presence of an antiparticle with energy
E, momentum p and spin along the –z direction and thus also
negative helicity. The projectors PL=R in Eq. (21) project out
the upper/lower two components of the spinor. Therefore,
the upper/lower components have left-handed/right-handed
chiralities and the amplitudes in Eq. (6) can be calculated.
One should note that the chiralities are the eigenvalues of c5:
þ1 for left-handed chirality and �1 for right-handed chiral-
ity according to the convention used in this paper. For mas-
sive particles, the chirality eigenstates are not solutions to
the Dirac equation, so free massive particles cannot have a
well-defined chirality. For massless particles, the lower two
components of the spinor of a negative-helicity state u# are
zero, so a state with negative helicity is equivalent to that
with left-handed chirality. For massless antiparticles, the
upper two components of v# are zero, and thus negative hel-
icity corresponds to right-handed chirality. The complete
relationships between chirality and helicity for massless par-
ticles and antiparticles are listed in Table II.

APPENDIX B: ISOSPIN

In 1932, Heisenberg noted that the nuclear force between
nucleons seemed to be independent on whether the nucleons
were neutrons or protons. Although we now know that the
strong force does have a component that depends on charge
(see, for example, Ref. 57), this component is very small.
Thus, one can approximately treat the nucleons as identical
particles, except that protons and neutrons are fermions and
the Pauli exclusion principle has to be satisfied within each
species. Heisenberg realized that the problem is similar to
that of having identical fermions with two possible spin ori-
entations. Just like an electron with spin up is allowed in the
same quantum orbits as an electron with spin down, a proton
is allowed in the same quantum orbits as a neutron. As an
analogy to the spin-up and spin-down states of a spin-1/2 fer-
mion, the neutron and proton can be considered as two states
of the nucleon corresponding to different isospin projections

jni �




t ¼ 1

2
; tz ¼ �

1

2

�
(B1)

and

Table II. Relationships between chirality and helicity for massless particles

and antiparticles.

Chirality Helicity

Particle Left-handed �
Particle Right-handed þ
Antiparticle Left-handed þ
Antiparticle Right-handed �
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jpi �




t ¼ 1

2
; tz ¼

1

2

�
; (B2)

which are eigenstates of the isospin operator t̂ and isospin-
projection operator t̂z with eigenvalues t and tz, respectively.
Similar to angular momentum, one can define isospin raising
and lowering operators t̂

6
and they relate the jni and jpi

states as

t̂
þjni ¼ jpi; t̂

þjpi ¼ 0 (B3)

and

t̂
�jpi ¼ jni; t̂

�jni ¼ 0: (B4)

The t̂
þð�Þ

operator annihilates a neutron (proton) and creates a
proton (neutron) with the same quantum numbers except the
isospin projection. Therefore, the operators corresponding to
the charged weak interactions are also represented using the
t̂
6

operators summed over the nucleons in the nucleus.
For a given nucleus, the isospin projection Tz can easily be

obtained as Tz ¼ ðZ � NÞ=2. The quantum number for the total
isospin number T is restricted to T 	 jTzj. However, for nuclei
close to stability, like 60Co and 6He, a general useful rule is
that the lowest energy states are dominated by the lowest iso-
spin values. Thus, for example: Tð60

CoÞ ¼ 3 and Tð6HeÞ ¼ 1.

APPENDIX C: HADRONIC CURRENTS AND

SELECTION RULES

The chiral properties of the lepton currents in Eqs. (17),
(22), and (23) are discussed in Sec. III, and the following
text describes a simplification of the hadronic currents
�wpOiwn in these equations. In nuclear matter, the average
kinetic energy of a nucleon is less than tens of MeV, which
is small compared to its rest mass (�1 GeV). In such case,
the hadronic currents (after acting on initial and final states)
hf j�wpOiwnjii can be simplified as

�uf t̂
þ

ui ! v†
f t̂
þvi

�uf t̂
þclui ! v†

f ð1;Oðv=cÞÞt̂þvi

�uf t̂
þclc

5ui ! v†
f ðOðv=cÞ; rÞt̂þvi

�uf t̂
þrl�ui !

Oðv=cÞ for l ¼ 0; � ¼ 1; 2; 3

��l�qv†
f rq t̂

þvi for l; �; q ¼ 1; 2; 3;

(

�uf t̂
þc5ui ! Oðv=cÞ; (C1)

where on the left-hand side the spinor u’s are Dirac spinors
for low-energy nucleons, while on the right-hand side the
spinor v’s are the corresponding Pauli spinors and the r
matrices are Pauli matrices, and t̂

þ
is the isospin raising

operator which represents annihilating a neutron and creating
a proton with the same wave function, including the spin
state. For the hadronic current, the leading order of the vec-
tor and scalar currents are identical and is called the Fermi
current. Similarly, the leading order of the axial-vector and
tensor currents are identical and called the Gamow-Teller
current. There is no zeroth order term in the pseudo-scalar
current so it is usually very small compared to other currents
and has been ignored in Eqs. (22) and (23). When calculating
the decay matrix elements for an N-nucleon nucleus, one
should use

PN
j t̂
þ
j , which is the total isospin raising operator

T̂
þ

, as the effective operator for the Fermi current, and

PN
j rj t̂

þ
j , which is a generic rank-1 tensor in both spin and

isospin space, as the effective operator for the Gamow-Teller
current. Knowing these properties of the Fermi and Gamow-
Teller currents, students can use the Wigner-Eckart theorem
to derive the spin and isospin selection rules mentioned at
the end of Sec. III.
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47D. Počanić et al., “Nab: Measurement principles, apparatus and

uncertainties,” Nucl. Instrum. Methods A 611(2–3), 211–215 (2009).
48D. Dubbers, H. Abele, S. Baeßler et al., “A clean, bright, and versatile

source of neutron decay products,” Nucl. Instrum. Methods A 596(2),

238–247 (2008).
49X. Fl�echard, P. Velten, E. Li�enard et al., “Measurement of the b-� correla-

tion coefficient ab� in the b decay of trapped 6Heþ ions,” J. Phys. G 38(5),

055101 (2011).
50M. G. Sternberg, R. Segel, N. D. Scielzo et al., “Limit on tensor currents

from 8Li b decay,” Phys. Rev. Lett. 115, 182501 (2015).
51A. Gorelov et al., “Scalar interaction limits from the b� � correlation of

trapped radioactive atoms,” Phys. Rev. Lett. 94, 142501 (2005).
52P. A. Vetter, J. R. Abo-Shaeer, S. J. Freedman et al., “Measurement of the

b-� correlation of 21Na using shakeoff electrons,” Phys. Rev. C 77,

035502 (2008).
53J. A. Behr and G. Gwinner, “Standard model tests with trapped radioactive

atoms,” J. Phys. G 36(3), 033101 (2009).
54A. Leredde, Y. Bagdasarova, K. Bailey et al., “Laser trapped 6He as a

probe of the weak interaction and a test of the sudden approximation,”

J. Phys.: Conf. Ser. 635(5), 052066 (2015).
55V. Cirigliano, S. Gardner, and B. R. Holstein, “Beta decays and non-

standard interactions in the LHC era,” Prog. Part. Nucl. Phys. 71, 93–118

(2013).
56K. K. Vos, H. W. Wilschut, and R. G. E. Timmermans, “Symmetry viola-

tions in nuclear and neutron b decay,” Rev. Mod. Phys. 87, 1483–1516

(2015).
57E. Henley and A. Garc�ıa, 100 Years of Subatomic Physics (World

Scientific, Singapore, 2013), chap. 2, p. 11.
58J. D. Jackson, S. B. Treiman, and H. W. Wyld, “Possible tests of time

reversal invariance in beta decay,” Phys. Rev. 106, 517–521 (1957).

53 Am. J. Phys., Vol. 85, No. 1, January 2017 Hong, Sternberg, and Garcia 53

http://dx.doi.org/10.1103/PhysRev.49.895
http://dx.doi.org/10.1103/PhysRev.49.895
http://dx.doi.org/10.1007/BF01330070
http://dx.doi.org/10.1119/1.3549729
http://dx.doi.org/10.1103/PhysRev.89.880
http://dx.doi.org/10.1103/PhysRev.97.991
http://dx.doi.org/10.1103/PhysRev.97.109
http://dx.doi.org/10.1103/PhysRev.109.1015
http://dx.doi.org/10.1103/PhysRev.116.134
http://dx.doi.org/10.1103/PhysRev.132.1149
http://dx.doi.org/10.1016/0370-2693(87)90637-X
http://dx.doi.org/10.1103/PhysRevD.75.075017
http://dx.doi.org/10.1103/PhysRevC.89.025501
http://dx.doi.org/10.1103/PhysRevLett.110.172502
http://dx.doi.org/10.1103/PhysRevC.87.032501
http://dx.doi.org/10.1016/j.nima.2009.07.100
http://dx.doi.org/10.1016/j.nima.2004.08.123
http://dx.doi.org/10.1016/j.nima.2009.07.065
http://dx.doi.org/10.1016/j.nima.2008.07.157
http://dx.doi.org/10.1088/0954-3899/38/5/055101
http://dx.doi.org/10.1103/PhysRevLett.115.182501
http://dx.doi.org/10.1103/PhysRevLett.94.142501
http://dx.doi.org/10.1103/PhysRevC.77.035502
http://dx.doi.org/10.1088/0954-3899/36/3/033101
http://dx.doi.org/10.1088/1742-6596/635/5/052066
http://dx.doi.org/10.1016/j.ppnp.2013.03.005
http://dx.doi.org/10.1103/RevModPhys.87.1483
http://dx.doi.org/10.1103/PhysRev.106.517

	s1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	f1
	f2
	d8
	d9
	d10
	d11
	d12
	s3
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	d21
	d22
	d23
	s4
	d24
	d25
	d26
	d27
	d28
	s5
	d29
	d30
	d31
	d32
	s6
	f3
	t1
	s7
	app1
	dA1
	dA2
	dA3
	dA4
	dA5
	app2
	dB1
	dB2
	t2
	dB3
	dB4
	app3
	dC1
	n1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58

