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This is an addendum to the paper of Ref.2 addressing neutron beta decay.

I. NEUTRON β DECAY

The decay of the neutron (n → p + e− + ν̄) presents
some additional calculation challenges, but there is also
much to be learned for students interested in deeper un-
derstanding. The complete expressions for the correla-
tions are available1 and can be used as a ‘solutions man-
ual’ to check that the simple arguments presented here
lead to the correct expressions for the correlation coeffi-
cients. For brevity we work within the standard model:
no scalar or tensor currents (CS = C ′S = CT = C ′T = 0)
and no right-handed currents (CV = C ′V and CA = C ′A).

Because both the neutron and proton are spin-1/2 par-
ticles both kinds of transitions, Fermi and GT, are al-
lowed. Moreover, the GT part of the transition has a
non-spin-flip component that interferes with the Fermi
part and affects the lepton correlations. We start by
considering the matrix elements of the nuclear current of
the transition. The operator for the Fermi part is just
unity with a coupling constant CV , while the operator
for the GT part is the Pauli matrices, σ, with a coupling
constant CA. Thus, the total decay rate is simply propor-
tional to (we show in the Appendix that the interferences
cancel when integrating over the leptons directions):

C2
V

(
1 + 3|λ|2

)
(1)

where we use the property of the Pauli matrices σ2 =
3I (with I the 2 × 2 identity matrix) and we define the
quantity λ = CA/CV for the ratio of the axial to vector
coupling constants.

To calculate the β asymmetry we consider a neutron
with spin aligned in the +z direction (P = ẑ). The GT
operator can be considered separately for the non-spin-
flip component, σz, and for the spin-flip component σ−
with ratio

〈p ↓ |σ−t+|n ↑〉
〈p ↑ |σzt+|n ↑〉

=
√

2, (2)

where t+ is the isospin raising operator that turns a neu-
tron into a proton. If we ignore the interference between
the GT and Fermi operators, the decay rate is propor-
tional to a non-spin-flip component with probability pro-
portional to 1 + |λ|2 and a spin-flip component propor-
tional to 2|λ|2. Following the arguments of Sect. II of
Ref.2 and integrating over all antineutrino directions, the
differential decay rate is proportional to:(

1 + |λ|2
)

+ 2|λ|2
(

1− P · pe
Ee

)
. (3)

However, the non-spin-flip component of the axial cur-
rent can interfere with the vector current because they
both connect identical initial and final states. One may
naively think that this interference does not depend on
the neutron polarization or on the direction of the spin
of the leptons, just as happened for the non-flip con-
tributions considered above. However, the nuclear ma-
trix element for the axial current depends on the spin of
the neutron while the matrix element for the vector does
not depend on it. As a consequence this interference de-
pends linearly on the polarization and the z-projection
of the spin of the electron, leading to an additional term
−2λP · (pe/Ee), and Eq. 3 becomes(

1 + |λ|2
)
− 2λP · pe

Ee
+ 2|λ|2

(
1− P · pe

Ee

)
. (4)

More details, including the reason for the sign, are shown
in Appendix 2.

In summary, the decay rate from polarized neutron β
decay after integrating over antineutrino momentum is(

1 + 3|λ|2
)(

1 +AP · pe
Ee

)
, (5)

where the β asymmetry correlation coefficient A is

A = −2
λ+ |λ|2

1 + 3|λ|2
. (6)

Similarly, if the integration is performed over all elec-
tron directions, the differential decay rate is proportional
to: (

1 + 3|λ|2
)(

1 +BP · pν̄
Eν̄

)
, (7)

where the antineutrino asymmetry correlation coefficient
B is:

B = −2
λ− |λ|2

1 + 3|λ|2
. (8)

Note that the sign of the non-interfering parts of A and
B are opposite, while those of the interfering parts are
identical.

The expression for the e−ν̄ correlation can be obtained
by adding the non-spin-flip and spin-flip expressions of
Eqs 26 and 27 multiplied by the respective probabilities:
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In summary, the differential decay rate for polarized neu-
trons is proportional to

1 + a
pe
Ee
· pν
Eν

+ P ·
(
A
pe
Ee

+B
pν̄
Eν̄

)
(10)

with A and B given by Eq. 6 and Eq. 8 and

a =
1− |λ|2

1 + 3|λ|2
. (11)

Because the ratio of the axial to vector coupling constants
has the value λ ∼ −1.27 the β asymmetry and e − ν̄
correlation coefficients end up being negative and small,
while the antineutrino asymmetry is positive and large.

The careful reader may note that while the e− ν̄ corre-
lation coefficient was derived assuming non-oriented neu-
trons we ended up quoting it for the decay from polarized
neutrons. Arguably, if both the electron and antineutrino
momenta are measured from β decay of nuclei oriented
along the +z direction, the differential decay rate should

include a term proportional to
pze
Ee

pzν̄
Eν̄

:

1 + C1
pze
Ee

+ C2
pzν̄
Eν̄

+ C3
pe
Ee
· pν̄
Eν̄

+ C4
pze
Ee

pzν̄
Eν̄

(12)

Both terms with pze and pzν̄ flip signs under the inversion
of the polarization direction, but the pzep

z
ν̄ term does not.

If we average the rates with two opposite polarizations,
the term with C4 does not vanish. However, for spin-1/2
particles like neutrons, this average should be the same
as the rate for non-polarized neutron decay, so it should
not depend on any specific direction. Therefore C4 must
be zero for neutron decay. However, in other cases, such
as the decay of 60Co this term has to be included.

APPENDIX

The interference term in the neutron decay is the prod-
uct of the non-spin-flip component of the axial current

and the vector current, which yields

4C2
V λ (i)2ψ̄Le γ

3γ5ψLν ψ̄
L
ν γ

0ψLe ×
〈p ↑ |σzt+|n ↑〉〈n ↑ |t−|p ↑〉+ h.c., (13)

where the product of the nuclear matrix elements 〈p ↑
|σzt+|n ↑〉〈n ↑ |t−|p ↑〉 yields 1. Using the explicit ex-
pressions in Appendix 1 one gets

(i)2ψ̄Le γ
3γ5ψLν ψ̄

L
ν γ

0ψLe = ψL†e

(
σz 0
0 σz

)
ψLν ψ

L†
ν ψLe .

(14)

This indicates that this interference term has a linear
dependence on the z component of the electron and an-
tineutrino spins. One can obtain the dependence on lep-
ton spins by working with the eigenstates of the σz op-
erator. Because every spinor in Eq. 14 is left-handed,
we can just work with the upper 2 components of the
Dirac spinors, where χ↑(↓) indicates spin-up(down) elec-
trons, or spin-down(up) anti-neutrinos. The definition
of χ↑(↓) and the reason for the opposite signs for parti-
cle and antiparticle is explained in Appendix 1 of Ref.2.
If the electron spin and antineutrino spin are identical,
Eq. 14 is zero because χ↑ is normal to χ↓. This is consis-
tent with the fact that the electron and antineutrino are
emitted with total angular momentum zero along the z
axis in non-spin-flip transitions and they should be op-
posite to each other. For spin-up electron and spin-down
anti-neutrino, the value of Eq. 14 is positive (and nega-
tive for the opposite case). Therefore, the right-hand side
of Eq. 14 should be proportional to Sez − Sν̄z , where Sez
and Sν̄z are the values of the z component of electron and
antineutrino spins. We have seen before that the spin of
the electron has a negative correlation with its direction,
while the spin of the antineutrino has a positive corre-
lation with its direction. Thus the interference term is
4C2

V (−2λP · (pe/Ee)− 2λP · (pν̄/Eν̄)), where the fac-
tor 2 comes from adding the hermitian conjugate term.
After integrating over all electron directions and all anti-
neutrino directions, the interference term disappears so
it does not show up in the total decay rate.
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