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Outline

• CRES review

• Trapping field mapping

• ExB trap emptying mechanism

• Constant field proof of concept

• Single electrode tests

• Double electrode tests
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Cyclotron Radiation Emission Spectroscopy (CRES)
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Trapping field mapping

Simulated field

Accurate field shape is needed to simulate trajectories

Trap coil dimensions Average rms residual / 20G:  1.95% 4



ExB trap emptying 
Many simultaneous events makes event reconstruction difficult

Spectrogram of 83Kr events at 6He CRES experiment 

Trap emptying mechanism 
requirements

• Emptying less than 0.1ms

• Minimal signal loss less than -1dB
• Signal to Noise ratio decrease 

from 7->6

• No disturbance of ambient 
magnetic field

• Compatible with cryogenic and 
vacuum environment

5



ExB trap emptying 

B

E

Uniform fields: 𝜈𝐷 =
𝐸×𝐵

𝐵2
(SI units, B>=1Tesla)
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Trap emptying mechanism 
requirements

• Emptying less than 0.1ms

• Minimal signal loss less than -1dB
• Signal to Noise ratio decrease 

from 7->6

• No disturbance of ambient 
magnetic field

• Compatible with cryogenic and 
vacuum environment

𝐸 ≈ 2 ×
10−2𝑉

𝑚
-> 1 𝑉 to meet 0.1ms
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Linear E field simulation
Trap coil field calculation

linear axial B field (1 Tesla)

linear electric field (-200 V/cm ො𝑦 )

Simulate fields and electron trajectories using Kassiopeia

7



Single electrode ExB sweeper
Trap emptying mechanism requirements

• Emptying less than 0.1ms

• Minimal signal loss >-1dB
• Signal to Noise ratio decrease of 1

• No disturbance of ambient field
-> Electrode can be turned on and off, 
and acts as waveguide when not 
emptying trap (creates detector noise)

• Compatible with cryogenic and vacuum 
environment

-> Electrode is same material as 
waveguide, and gap is filled with 
dielectric adhesive with excellent 
adhesive and low temperature 
properties (Stycast 2850FT) 8



Single electrode ExB sweeper
Non-optimized electrode

Electrode electric field and RF reflectance and transmission calculated with Ansys Maxwell and HFSS respectively.

5mm

B

Magnetic field not to scale
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9mm electrode sweep tests

Simulation ended, these are 
trapped events
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9mm electrode swept vs trapped trajectories

Swept

Trapped
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9mm electrode swept vs trapped trajectories

Trapped
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Shifted electrode

B
5mm

Shifting electrode can improve sweeping from 6% ->1.5%

Electrons experience unequal fringe fields
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2 electrode design – mirrored electrodes
Inefficient sweeping near electrode, so we can apply voltage to each electrode separately to sweep 
complete volume

9mm

0.2 mm gap

Achievable with wire EDM
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Mirrored electrodes sweeping
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Events not swept by single electrode
Top electrode on from 0-2 μs

Bottom electrode on after 2 μs

All electrons swept within 2.05 μs



Mirrored electrode design

Trap emptying mechanism requirements

• Emptying less than 0.1ms
• O(𝜇s) trap emptying times

• Minimal signal loss >-1dB
• -0.3 dB signal loss

• No disturbance of ambient field
• acts as waveguide when not emptying trap, fast emptying 

time allows flexibility with voltage timing

• Compatible with cryogenic and vacuum environment
• Electrodes are same material as the waveguide, gaps are 

filled with dielectric adhesive with excellent adhesive and 
low temperature properties (Stycast 2850FT) 16
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Questions?
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6He CRES experiment

Top: 6He beta spectrum Bottom: effect of nonzero b
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Experimental upper limits (90%) on left-handed tensor vs. scalar currents
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