ExB trap emptying design and simulations for the ⁶He CRES experiment

R.J. Taylor, Alexander Allen, Dustin Combs

Advisors: Daniel Stancil, A. R. Young

Outline

- CRES review
- Trapping field mapping
- ExB trap emptying mechanism
- Constant field proof of concept
- Single electrode tests
- Double electrode tests

Cyclotron Radiation Emission Spectroscopy (CRES)

Trapping field mapping

Accurate field shape is needed to simulate trajectories

rap coils Teflon Plug

Polycarbonate Tube Axial Gauss Probe

4

Optic mount Linear Stage

ExB trap emptying

Frequency (Hz)

Many simultaneous events makes event reconstruction difficult

Spectrogram

Trap emptying mechanism requirements

Power (Arbitrary Units)

- Emptying less than 0.1ms
- Minimal signal loss less than -1dB
 - Signal to Noise ratio decrease from 7->6
- No disturbance of ambient magnetic field
- Compatible with cryogenic and vacuum environment

ExB trap emptying

Trap emptying mechanism requirements

- Emptying less than 0.1ms
- Minimal signal loss less than -1dB
 - Signal to Noise ratio decrease from 7->6
- No disturbance of ambient magnetic field
- Compatible with cryogenic and vacuum environment

Linear E field simulation

Trap coil field calculation

linear axial B field (1 Tesla)

linear electric field (-200 V/cm \hat{y})

Simulate fields and electron trajectories using Kassiopeia

Single electrode ExB sweeper

Trap emptying mechanism requirements

- Emptying less than 0.1ms
- Minimal signal loss >-1dB
 - Signal to Noise ratio decrease of 1
- No disturbance of ambient field

-> Electrode can be turned on and off, and acts as waveguide when not emptying trap (creates detector noise)

• Compatible with cryogenic and vacuum environment

-> Electrode is same material as waveguide, and gap is filled with dielectric adhesive with excellent adhesive and low temperature properties (Stycast 2850FT)

Single electrode ExB sweeper

Non-optimized electrode

_ Electrode electric field and RF reflectance and transmission calculated with Ansys Maxwell and HFSS respectively.

9mm electrode sweep tests

9mm electrode swept vs trapped trajectories

11

9mm electrode swept vs trapped trajectories

Shifted electrode

Shifting electrode can improve sweeping from 6% ->1.5%

Electrons experience unequal fringe fields

2 electrode design – mirrored electrodes

Inefficient sweeping near electrode, so we can apply voltage to each electrode separately to sweep complete volume

Mirrored electrodes sweeping

Mirrored electrode design

Trap emptying mechanism requirements

- Emptying less than 0.1ms
 - $O(\mu s)$ trap emptying times
- Minimal signal loss >-1dB
 - -0.3 dB signal loss
- No disturbance of ambient field
 - acts as waveguide when not emptying trap, fast emptyi time allows flexibility with voltage timing
- Compatible with cryogenic and vacuum environment
 - Electrodes are same material as the waveguide, gaps are filled with dielectric adhesive with excellent adhesive and low temperature properties (Stycast 2850FT)

⁶He-CRES collaboration

W. Byron¹, W. DeGraw¹, B. Dodson², M. Fertl², A. Garcia¹, G. Garvey¹, B. Graner¹, H. Harrington¹, L. Hayen³, K. Knutsen¹, D. Melconian⁴, D. McLain⁴, P. Mueller⁵, N. Oblath⁶, R.G.H. Robertson¹, G. Rybka¹, G. Savard⁵, E. Smith¹, D. Stancil³, D. Storm¹, H.E. Swanson¹, R.J. Taylor³, B.A. Vandeevender⁶, F. Wietfeldt⁷, A. Young³

Questions?

Experimental upper limits (90%) on left-handed tensor vs. scalar currents