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QUANTUM LIFE: INTERACTION, ENTANGLEMENT, AND 
SEPARATION* 

Individual objects are not fixed but fluctuating, constantly responding to 
their surroundings, bundles of relationships, rather than settled points.' 

W hen distinct quantum systems interact, they appear to lose 
their individuality. In almost all cases, once systems are inter- 

acting, they no longer have a proper (or "pure") quantum 
state at all. Moreover, the quantum state of the merged or "composite" 
system involves statistical correlations among the components that 
seem to go beyond anything obtainable from the systems that entered 
into the interaction, even when those systems become spatially distant 
from one another. Erwin Schrbdinger' coined the term entanglement 
(Verschrdnkung) to describe this situation. Revising the old-fashioned 

marriage vow ("What God has joined together let no man put asun- 

der"), entanglement seems to imply that not even God can separate 
quanta once merged. We ask here whether this is really so. Specifically, 
we ask whether entangled quantum systems are nevertheless separa- 
ble, in the sense that the statistical correlations of the composite 
system can be obtained from statistics of the components. 

We approach this question in the way that John BelPl and others 
have approached the issue of locality. We look for a clean mathemati- 
cal demonstration to settle the issue one way or another. The mysteries 
and puzzles over quantum locality emerge from demonstrating that 
when the correlations of entangled systems violate the Bell inequali- 
ties, which is almost always, they cannot be explained by introducing 
suitable statistical states for the components. These are states that 

satisfy a precise condition of local action or "locality" and a condition 

*We are indebted to Jon Jarrett, Don Howard, Nick Huggett, and other members 
of the Chicago Area Philosophy of Physics group, for sparking our interest in this 
topic, and for exchanging ideas and criticism. We thank Mathias Frisch, especially, 
for catching an error in an earlier 'proof'. 

1T. M. Luhrmann, Persuasions of the Witch's Craft: Ritual Magic in Contemporary 
England (Cambridge: Harvard, 1989), p. 239. 

2 "Die gegenwirtige Situation in der Quantenmechanik," Die Natunwissenschaften, 
xxIII (1935): 844-49, and also "Discussion of Probability Relations between Separated 
Systems," Proceedings of the Cambridge Philosophical Society, xxxi (1935): 555-63. 

3 See, for example, Speakable and Unspeakable in Quantum Mechanics (New York: 
Cambridge, 1987). 

0022-362X/03/OO0001/80-97 ? 2003 The Journal of Philosophy, Inc. 
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of statistical independence called "factorizability."4 Here we ask the 
comparable question for separability. Can we introduce suitable statis- 
tical states for the components that allow the correlations of the 
composite system to be explained on the basis of statistics of the 
components? If the answer is "yes" then we regard the components 
of an entangled system as separable; otherwise not. Surprisingly, we 
show that even when the Bell inequalities are violated, which is where 
entanglement really shows up, the components are separable.5 In 
carrying out this demonstration, we actually show something more. 
For the states we introduce are local (although not factorizable) and 
hence we can conclude that entanglement is compatible with both 
separability and locality. Thus during marriage, as well as before, 
quanta may lead a healthy life of their own. 

This robust conception of quantum life has been contested. Indeed 
violations of the Bell inequalities have prompted a literature on the 
metaphysics of microscopic systems that flirts with some sort of meta- 
physical holism regarding spatially separated, entangled systems. The 
rationale for this behavior comes in two parts. The first part relies 
on a proof, due to Jon Jarrett," that the experimentally observed 
breakdown of the Bell inequalities entails a breakdown of the conjunc- 
tion of the constraints just mentioned. Jarrett called these two con- 
straints locality and completeness. We prefer the terminology used above 
of locality and factorizability.7 The first part of the rationale for meta- 
physical holism urges that only Jarrett's locality allows for "peaceful 
coexistence" between quantum mechanics and special relativity. Fac- 
torizability, it is suggested, must be jettisoned. 

The second part of the rationale introduces separability, as above, 
which is regarded as the opposite, in essence, of holism. The argument 

4 See, for example, N. David Mermin, "Quantum Mysteries for Anyone," this JOUR- 
NAL, LXXVIII, 7 (July 1981): 297-308; and Arthur Fine, "Antinomies of Entanglement: 
The Puzzling Case of the Tangled Statistics," this JOURNAL, LXXIX, 12 (December 
1982): 733-47. 

5 In the sequel, we concentrate on correlation experiments whose outcomes violate 
the Bell inequalities. For the type of experiments considered here, satisfaction of 
those inequalities is sufficient for there being a local, factorizable model-see Fine, 
"Hidden Variables,Joint Probability, and the Bell Inequalities," Physical Review Letters, 
XLVIII (1982): 291-95. Every such model is separable. Hence, satisfaction of those 
inequalities implies separability. 

6 "On the Physical Significance of the Locality Conditions in the Bell Argument," 
Nowis, xvilIi (1984): 569-89. 

Fine, "Correlations and Physical Locality," in P. Asquith and R. Giere, eds., 
PSA 1980, Volume 2 (E. Lansing, MI: Philosophy of Science Association, 1981), 
pp. 535-56. 
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here draws crucially on the lemma that separability implies factoriza- 
bility. It would follow from this lemma, the Jarrett result, and the 
failure of the Bell inequalities that if we want to preserve locality, we 
must jettison separability, and embrace its opposite-metaphysical 
holism. Thus blame for the failure of factorizability is shifted to the 
failure of separability. In this way the correlations observed in entan- 
gled systems are seen as the sign of a deep (and perhaps mysterious) 
holism in nature. 

By establishing that merged quanta may lead a life of their own, 
we reject here the second part of the rationale, in particular, the 
lemma on which it relies. Properly conceived, there is no relation of 
logical entailment that flows from separability to factorizability. Our 
discussion here complements that of Tim Maudlin,8 who also doubts 
that separability implies factorizability. Maudlin conjures up an imagi- 
native separating scheme involving tachyons and he shows how super- 
luminal signaling may accommodate the statistics for a special experi- 
mental configuration where factorizability fails. (Without the picture 
of superluminal signaling, one of us suggested a similar scheme with 
the idea of "randomness in harmony."'9) In the tradition of the litera- 
ture on Bell's theorem, we ask here directly whether certain kinds of 
structures can in principle support the quantum correlations, regard- 
less of how they may be implemented. Thus we concentrate on investi- 
gating whether the statistical relations posited by schemes like Maud- 
lin's can be represented in mathematical models of the experimental 
situation, without relying on intuitions associated with tachyons, or 
other physical mechanisms. 

In showing how to construct local and separable models of correla- 
tion experiments whose outcomes violate the Bell inequalities, we 
show that holism, however deep or mysterious, is not a price that we 
have to pay for keeping locality. But what of nonlocal theories; for 
example, the Bohm theory? If separability is compatible with locality, 
is it also compatible with nonlocality? We do not address this issue 
directly since our concern here has been to assess the price of locality 
given the failure of the Bell inequalities. If our suggestion in section 
Iv for understanding the quantum states is correct, however, then 
the Bohm theory, like quantum theory itself, is separable. Hence if 

8 Quantum Nonlocality and Relativity (Cambridge: Blackwell, 1994), see p. 98. 
9See Fine, "Correlations and Physical Locality," and "Antinomies of Entan- 

glement." 
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the Bohm theory is actually nonlocal, then violations of the Bell 
inequalities turn out to be compatible with nonlocal as well as with 
local models, each of which respects separability.'0 

I. BACKGROUND: THE EXPERIMENTAL SETUP 

In the simple EPR-Bohm type experiments we consider here (2X2 
experiments), a source emits pairs of particles (call them that for 
simplicity) in the singlet state f. After emission, the particles in each 
pair move off in opposite directions to spatially separate wings, the 
A- and B-wings. Each wing contains a detector assembly with two 
settings (1 and 2), corresponding to the measurement of spin orienta- 
tion (in the plane perpendicular to the "path" of the particles). When 
the particles arrive in their respective wings, the detectors register 
either +1 or -1 (corresponding to spin up or spin down in the 
relevant direction). In the singlet state the probability is one-half at 
either wing for either +1 or for -1 to occur, regardless of the setting 
there. The probability for pairs of outcomes, the joint probability, is 
a simple function of the angles of orientation measured in each wing. 

We want to model such a correlation experiment, by introducing 
a space A of basic "states" distributed according to some fixed proba- 
bility measure on the space. (The states in A are often referred to as 
"hidden variables" but we agree with Bell that this is a misleading and 
silly terminology; so we avoid it here.) Each state XEA determines a 
set of joint probabilities of the form: 

px"A(x,yl i,j) 

where A is the assembly in the A-wing, B is the other wing assembly, 
x and y are the measurement outcomes at A and B (+1 or a -1) and 
i and j are the settings (either 1 or 2) on A and B respectively. We 
require that the model recover the probabilities PQM(A; = x, B1 = yji) 
assigned by the quantum theory in the singlet state ' as averages over 
the space A of basic states; that is, we require that 

<pxAB'(x,yij)>A = PM- (Ai = x, B1 = ylN) 
Since the 

pxAB(X,yli,j) 
completely determine the probabilities of all 

possible outcomes of all possible measurements, it is entirely natural 
to regard the entire set of these functions as the state of the composite 

"o See J.T. Cushing et al., Bohmian Mechanics and Quantum Theory: An Appraisal 
(Boston: Kluwer, 1996) for interpretive essays on the Bohm theory. The essay by M. 
Dickson, "Is the Bohm Theory Local?" pp. 321-30, challenges the nonlocality usually 
associated with Bohm. 
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system. This way of treating the state accords nicely with the quantum 
mechanical rule according to which the state function of a system is 
completely determined by the family of probability distributions for 
all observables of the system. 

We can then introduce what one would naturally call the marginal 
probabilities at X of individual outcomes at individual measure- 
ment stations. 

pxa(xlij) = pxaB(x,y i,j) and pxj(yli,j) = 
,px^ 

(x,yli,j) 
y x 

These marginals constitute the states in each wing. 
Locality and factorizability. We are now in a position to define the 

two probabilistic constraints mentioned in the introduction. Locality 
is the constraint that at each state X the marginal probabilities at A 
(respectively, B) do not in any way depend on the switch settings at 
B (respectively, A)." That is: 

pxA(xlij)= px4(xli,1)= pxA(xli,2) 

and 

phB(yli,j) = px'(y llj) =px( (yj2,j) 

Assuming locality we can simplify the notation and write 

pxa(xij) = p(A, = xiX) 

pxB(yiij) = p(B = ylX) 

for the local states. 
The second constraint is factorizability (Jarrett's "completeness" and 

Abner Shimony's "outcome independence"). It is the constraint that 
at each N the joint probabilities be the arithmetic product of their 
respective marginals. That is: 

pA"(x?yli,j) = pxA(xii,j).pxB(yli,j) 

For experiments of the type considered here, the Bell inequalities 
constrain the difference Dbetween the sum of any threejoint probabil- 

" Abner Shimony calls this "parameter independence"-see "Search for a 
Worldview Which Can Accommodate Our Knowledge of Microphysics," inJ. Cushing 
and E. McMullin, eds., Philosophical Consequences of Quantum Theory: Reflections on Bell's 
Theorem (Notre Dame: University Press, 1989), pp. 25-37. 
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ities (that is, the ensemble averages) and the fourth. The constraint 
is just that 0 ? D ? 1. The experimental evidence is that, for certain 

settings of detectors in these experiments, the measured values for 
the joint probabilities violate the Bell inequality. Jarrett showed that 
if the inequalities were violated, then at most one of the above con- 

straints, either locality or factorizability, could hold. At least one of 
them has to go. In these circumstances many think that the right 
strategy is to keep locality and to jettison factorizability. While that 
conclusion has important critics,"' for the purposes of this article we 
will take it at face value. Our concern is how philosophers have come 
to interpret what they have perceived as the failure of factorizability. 
Below are some typical examples. 

II. SEPARABILITY 

The fact that there exist quantum states of two-body systems which 

cannot be factorized into products of one-body quantum states means 
there is objective entanglement of the two bodies, and hence a kind of 

holism.13 

In terms of the Bell-type experimental setup, for example, we are barred 

from representing what we would ordinarily call the "two particles" in 

a given "pair" as two distinct entities; although detectable in spacelike 
measurement events, "they" form a single object, connected in some 

fundamental way that defies analysis in terms of distinct, separately 
existing parts.'" 

[The source of the Bell result is] a kind of ontological holism or nonsepa- 

rability..., in which spatio-temporally separated but previously inter- 

acting physical systems lack separate physical states and perhaps also 

physical identities.'5 

If we want to get clear on the relationship between factorizability and 

holism, we really need to understand holism's opposite, separability. 

12 See, for example, M. Jones and R. Clifton, "Against Experimental Metaphysics," 
in Peter A. French et al., eds., Midwest Studies in Philosophy, Volume 18 (Notre Dame: 
University Press, 1993), pp. 295-316; Maudlin, p. 93ff.; and J. Cushing, Quantum 
Mechanics: Historical Contingency and the Copenhagen Hegemony (Chicago: University 
Press, 1994), pp. 57-59. 

'~ Shimony, p. 27. 
14Jarrett, "Bell's Theorem: A Guide to the Implications," in Cushing and McMullin, 

pp. 60-79, here p. 79. 
1'5 Don Howard, "Holism, Separability, and the Metaphysical Implications of the 

Bell Experiments," in Cushing and McMullin, pp. 224-53, here p. 225. 
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Don Howard's analysis (ibid.)6 is an excellent place to start. In these 
works, Howard argues that the experimental violations of the Bell 

inequalities force us to abandon the fundamental metaphysical princi- 
ple of separability and to embrace, instead, a kind of holism. 

In trying to formulate a precise notion of separability, Howard 
draws inspiration from a passage of Albert Einstein's: 

It is characteristic of these physical things that they are conceived of as 
being arranged in a space-time continuum. Further, it appears to be 
essential for this arrangement of the things introduced in physics that, 
at a specific time, these things claim an existence independent of one 
another, insofar as these things "lie in different parts of space.""' 

Howard takes this "requirement" offered by Einstein as a fundamental 

metaphysical constraint on physical systems; the principle of separabil- 
ity.'8 He then offers a more precise formulation: the contents of any 
two spatiotemporally separated regions can be considered to consti- 
tute separate physical systems.'1 

Here separate physical systems means: 

(1) Each system possesses its own distinct physical state. 
(2) The joint state of the two systems is wholly determined by these sepa- 

rate states. 

We find this articulation of the principle of separability to be very 
compelling.2" It is, however, rather abstract. In particular, in order to 

16 See also his "Einstein on Locality and Separability," Studies in History and Philoso- 
phy of Science, xvI (1985): 171-201; and "Locality, Separability, and the Physical 
Implications of the Bell Experiments," in A. van der Merwe, F. Selleri, and G. Tarozzi, 
eds., Bell's Theorem and the Foundations of Modern Physics (Singapore: World Scientific, 
1992), pp. 306-14. 

17 "Quantum Mechanics and Reality," Dialectica, nI (1948): 320-24. This translation 
from the original German is by Howard, "Holism, Separability, and the Metaphysical 
Implications of the Bell Experiments," p. 223. 

18 Maudlin (op. cit., p. 97) notes that Bell makes a similar assumption when he 
supposes that each region of space-time has an intrinsic state. 

19 Howard, "Holism, Separability, and the Metaphysical Implications of the Bell 
Experiments," p. 226. 

20 It does seem to us that there is a third condition that needs to be brought in, 
namely, that the states of separate parts are relatively independent of one another. 
(We say 'relatively' because there may be some conserved quantities shared by both 
systems whose values will be linked.) So minimally one would want that you cannot 
get all the information about one system part from the state of the other. Without 
something like this, separability would not necessarily run counter to holism (since 
the whole, then, might be fully reflected in both parts, in which case we would not 
need their 'sum'), which surely we want it to do. Most likely Howard's notion of 
'distinct' partial states is intended to do this job--if worked out. None of the rest of 
our argument will hinge on this small quibble. 
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apply this principle to a quantum system, one would need to articulate 
both what is meant by the state of the system, and what counts as a 
state being wholly determined by two other states. Howard does just this 
in a footnote, where he specifies how his principle is to be applied 
to quantum systems: 

How the joint state is determined by the separate states depends upon 
the details of a theory's mathematical formulation. At a minimum, the 
idea is that no information is contained in the joint state that is not 
already contained in the separate states, or alternatively, that no measure- 
ment result could be predicted on the basis of the joint state that could 
not be predicted on the basis of the separate states.... I define a state, 
X, formally, as a conditional probability measure, px(xlm), assigning 
probabilities to measured results, x, conditional upon the presence of 
measurement contexts, m. With states thus defined, to say that the joint state 
is wholly determined by the separate states is to say that the joint probability 
measure is the product of two separate measures (ibid., p. 226n, our emphasis). 

As already suggested, we regard Howard's treatment of states as 
families of probability measures to be a perfectly sensible way to think 
about quantum states. As above, in a Bell-type experimental setup, 
the entire state of the two-particle system can be thought of as being 
given by a set of functions onto probability measures. We like, more- 

over, the way Howard lays out the basic intuition of separability-that 
no information is contained in the joint state that is not already 
contained in the separate states. The last sentence of the passage, 
however, the one to which we have added emphasis, stands out to us 
as a non sequitur. Why, after all, should we equate determination 
with multiplication, that is, with just the product function? 

Surely the joint state is wholly determined by the separate states just 
in case there is some function that maps the marginals on each subsys- 
tem tojoints on the composite system. If it works, the product function 
would do (so factorizability implies separability). But to restrict our 
attention to this function as the only possible candidate for separating 
the two states strikes us as provincial. Any function, plausibly, that 

maps pairs of separate states onto joint states would make the whole 
determinable by the parts. That, after all, is what a function does-a 

binary function determines an output given any pair of inputs. 
Howard's treatment simply equates separability with factorizability. 

That equation, moreover, is not confined to Howard. Nor is it even 
confined to discussions of the Bell inequalities. In a recent article on 
the relation between Leibniz's principle of the identity of indiscern- 
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ibles and the Pauli exclusion principle, Michela Massimi2' offers the 

following definition of separation. Given any composite system, the 
states of the two component systems are "ontologically separate" just 
in case: 

(1) Each subsystem has definite (though possibly unknown) values of 
a complete set of compatible observables pertaining to that subsys- 
tem alone. 

(2) The afore-defined ontologically separate states of the subsystems 
determine wholly their joint state (ibid., p. 321). 

So far so good. She then goes on to say: 

Condition 2 is known asfactorizability: the joint probability of the expecta- 
tion values relative to the two subsystems is the product of the probabili- 
ties bearing respectively on each subsystem alone (p. 321, our emphasis). 

Factorizability is uncontroversially taken as a separability condition to 
the extent that all non-factorizable theories involve some kind of non- 

separability (p. 321n). 

We beg to differ. Multiplication is not the only binary function and 
the failure of factorizability is perfectly compatible with a complete 
determination of the whole from the separate parts. As we will show, 
there are local models of experiments in which the Bell inequalities 
are violated (hence nonfactorizable models) that are indeed sep- 
arable. 

Of course, we understand why someone might think that quantum 
entanglement rules out separability, which requires that the partial 
states (the marginals) determine the whole state (the joints). For in 
an EPR-Bohm experiment, the singlet state of the total system yields 
a uniform distribution (50:50) as the marginal on the outcome space 
{1, -1} regardless of the angle being measured in either wing. So, 
for example, the marginals are the same in runs of the experiment 
with separations of zero degrees between the spin angles measured 
in the wings (that is, measurements in the same direction) and in 
runs where the difference between the measured angles is one hun- 
dred twenty degrees. But the joint probability functions are different. 
In the one case, they yield probability 0 for getting identical outcomes 
in each wing (strict anticorrelation). In the other case, that probability 
is 3/8. Hence no function maps the marginals of the singlet state to 

21 "Exclusion Principle and the Identity of Indiscernibles: A Response to 
Margenau's Argument," BritishJournal for the Philosophy of Science, LII (2001): 303-30. 
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the joints. (Recall that a function determines its result, and so does 
not map one to many.) Looking at quantum theory this way, it seems 
that the crucial condition for separability fails; the joint state is not 
wholly determined by the separate states. 

Before we conclude that, after all, quantum mechanics is not a 
separable theory, we need to look a little deeper. We need to ask 
whether the apparent nonseparability of the quantum probabilities 
is compatible with an underlying separability. Can we, for example, 
regard the quantum statistics as averages over more basic states, which 
are themselves separable? This is exactly the sort of issue that the Bell 
theorem addresses, answering "no." But there the question is whether 
the conjunction of locality and factorizability can hold at the basic 
level. Here our concern is with maintaining the conjunction of locality 
and separability-especially in cases where the Bell inequalities, and 
hence factorizability, fail. 

III. SEPARABILITY WITH LOCALITY: SOME PROOFS 

Recall that we are considering correlation experiments violating the 
Bell inequalities that involve two measurements in each wing (2x2 
experiments): call them A1, 

A, 
in the A-wing and B1, B2 in the B-wing. 

In what follows, all models preserve locality. That means, for instance, 
that at each state X the marginal distribution for A1 in A1 X B1 runs 
of the experiment is the same as the marginal distribution for A1 in 
A1 X B2 runs; similarly for the other three pairs. On this assumption, 
to build a model in which the composite statistics are separable is to 
define a probabilistic model involing basic states X that reproduces 
the quantum statistics as averages over the X. That model will identify 
for each state K, the marginal distributions p(Ai = xiX), p(B = ylk) 
which we understand as the local states in each wing. Then we need 
to show that there is a single two-place function F(..) such that 

F[p(A, = xJk), p(B1 = ylX)] = px^"(x,ylij) 

for all i, j, x, y, and K. Thus a single F maps the pairs of marginals at 
K to the joints at K, so that, at every K, the joint state is wholly deter- 
mined by the local state. Finally we need to verify that the prescription 
for local states and joints does yield the quantum probabilities as 
averages over X. 

Below we take the basic states to be a and P and to begin with we 
assume these to be equiprobable. Let a,; = p(Ai = 11 oa). So that 1- 
aa; = p(A, = -l|a). Similarly let bQ1 - p(B, = 1la). If the statistics are 
separable, the A- and B-wing distributions at a0 are fixed by an, , aal 

and bal , b02 respectively. In the same way we can let ai = p(Ai = 113) 
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and br, = p(Bj =1113). Then the A- and B-wing distributions at P3 are 
fixed by a%1 , ap22 and b1l, b32. 

If 
a/ 

+ api =1, then 

1/2[p(A, =lc )+ p(A, =1j3)] = <p(A,=liX)> = 1/2 

which is the quantum probability that a measurement of A, yields the 
result 1. Similarly, if bi, + b= 1, then averaging over the two basic 
states yields the 50:50 quantum probabilities for each B-wing measure- 
ment to have 1 as a result. 

Given quantum joint probabilities that violate the Bell inequalities, 
in order to build a separable model we will assign joint distributions 
at at and at 3 that have marginals as above (satisfying locality), and 
that average to the quantum joints. We will then show that there is 
a function F mapping the marginals at each of e and 3 to the joints 
assigned there, as required for separability. Here is an algorithm for 
how to do just that for almost all quantum statistics. That is, given 
"ensemble" joint probabilities, it is an algorithm for finding an o and 

p3 and an F that will do the job. 
In a 2x2 experiment, quantum theory assigns joint distributions 

to the four pairs: Ai, B1 for i,j =1, 2. The marginals are all probabilities 
of 0.5. So if we are given PQM(Ai=1, B= 1), call it P(AiBj), then we 
have an inversion symmetric distribution where 

pQM" 
(Ai= 

-1, B1 =1) = 1/2 - P(A,B1) = PQM 
(A•= 

1, B? = -1) 

and 

P (AiBj) = ptM (Ai= -1, B1 = -1) 

Thus P(AB1) is sufficient to determine the whole PQM (..). 
Then, where X can be either a or 3, assign at X thejoint distribution 

p(.. |X) defined as follows: 

p(A= 1, B1 = lix) = P(AB1) (that is, the quantum theory joint above) 

p(A,=- 1, B1 = IX) = - P(AB1) 

p(A;=l, B =-1IX) = 
a, 

- P(A;B,) 

p(Ai=-1, 
B, =-1X) = 1+ P(AB,) - axi,- b 

One can check that these return the desired 50:50 marginals, respect- 
ing locality, and that averaging over p(. . a) and p(. . i3), so defined, 
produces exactly the quantum joints provided ap; = 1- ai and bri = 
1- bo. 

Given that each quantum joint satisfies 0 
- 

P(AiBJ) - 
0.5, and 
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assuming that the marginals assigned at o and P take values between 
0 and 1, the joint distribution p(. .JX) defined above requires 

(1 ) P( AB) 
<- 

a x , bhJ 
and 

(2k) ax, + 
bxi - 

1+ P(AB,) 

Finally, then, let us choose the marginals. Here is how. 
If among the numbers P(AiBJ) there is a 0 or 1/2, call it P(A1B1) 

and rename the other three accordingly. We are going to assign 
marginal distributions in the A- and B-wings using the following 
scheme (in which it is useful to keep track of the four runs so that 
we can see that locality is satisfied): 

For run A1 X Brat 
" 
: set p(A1=Ila) = 0.5 = p(B==l ox); that is, set aal 

= 0.5 = bal. 
For run A1 X B2 at a: set aQI = 0.5 (locality!) and set 

be2 

= x, for some 

0- 
x 

- 
1 to be chosen below. 

For run A2, X B1 at c: set aa2= x and b,1= 0.5 (locality). 
For run A2 X B2 at a: set a,2= x (locality) and 

b,2= 
x (locality). 

The conditions (lcr) and (2a) impose a set of inequalities that x must 

satisfy. Because of (13) and (23) these constraints are multiplied by 
the requirement that api = 1- as, and b1 = 1- b . We can summarize 
all of these inequalities as follows. Call P(A1B2) = t, P(A2B1)= u and 
P(A2B2)= v. Then let 

S= max[max(t, u ,v), 0.5-min(t, u, v/2)] 

and let 

T= min[0.5-min(t, u, v/2), 1-max(t, u, v/2] 

Since each joint (t, u, v) is between zero and 0.5, it is easy to check 
that S 

- 
T. Then the number x must satisfy the condition that 

S? x T 

To be specific we can choose x= S. Notice that if one (or more) of t, 
u, v is either 0 or 0.5 then S = T = 0.5 and in that case x=0.5. 

Excluding that case, we now conclude by defining the separating 
function F. Recall that F maps the marginals at k to the joints at k, 
for k either oa or 3. So let F be defined by 

F[axi,bQ, ] = 
p(Ai=1, 

B=ll k) = P(AiB,) 

We need to check that this leads to no conflicts; that is, that F does 



92 THE JOURNAL OF PHILOSOPHY 

not take the same input to different outputs. But the input pairs are 
just <1/2,1/2>, <1/2,x>, <x, 1/2>, <x, x> for e and <1/2,1/2>, 
<1/2,1-x>, <1-x, 1/2>, <l-x,l-x> for P3. Provided x # 1/2 
these are eight distinct pairs, so we can define Fon them as indicated 
without fear of conflict. Obviously when we average over ct and P3 we 
get back the original quantum joints. Thus, respecting locality, Fmaps 
the marginals in the A- and B-wings at X, which define the states there, 
to joints at X on the composite system. Averaged over a and 3, these 
marginals, and the joints they determine via F, yield the single and 
joint probabilities that quantum theory assigns in the given ex- 
periment. 

Consider a commonly used illustration for the violation of the Bell 
inequalities. Itis the 2X2 experimentwhere P(A1B1) = O and P(A1B2) = 
P(A2B1) = P(A2B2) = 3/8. Here the angular separation is 0 between 
the A1 setting and the B1 setting, and all other separations are 120 
degrees. Adding the three nonzero joints and subtracting the fourth 
produces 9/8, whereas the Bell inequality requires a result less than 
1. An easy calculation yields that S = 0.375, which we choose as our 
"x" for the separating model. (Here T= 0.625.) So the Bell inequality 
fails but locality and separability both hold in our model. More signifi- 
cantly, consider the experiments at angular separations where the 
Bell inequality achieves its maximum violation, which is the type of 
experiment most frequently run and most thoroughly studied. We 
can take the angles to be 45 degrees between the A1 setting and the 
B1 setting, and 135 degrees for the other three. Then the quantum 
joint probabilities are P(A1B1) = 0.073 and P(A1B2) = P(A2B1) = 

P(A2B2) = 0.427. Adding the three big joints and subtracting the 
fourth little one produces 1.208, which exceeds the Bell limit of 1 by 
the maximum amount possible for experiments of this type. We can 
readily model the experiment in a local and separable way, however. 
S is simply 0.427, which we can take for our "x." (Here T = 0.573.) 

Our demonstration of separability so far covers all 2 X 2 experiments 
where no more than one joint is either 0 or 1/2. That covers a lot 
of experiments but it does not include the tantalizing Hardy cases 
that also violate the Bell inequalities and which arise in virtually every 
interaction between spin-1/2 systems.22 In the Hardy configuration 
we have P(A1B1) = O, P(AIB2) = 0.5 = 

P(A2B1) 
and P(AB2) = 0.09. 

Our model breaks down here, for S = T = x = 0.5 which makes F 
many-one, and so not a function that determines the joints from the 

22 L. Hardy, "Nonlocality for Two Particles without Inequalities for Almost All 
Entangled States," Physical Review Letters, LxxI (1993): 1665-68. 



QUANTUM LIFE 93 

marginals. Indeed, calculations show that no model like ours, where 
the distributions of the X states is uniform, can separate the Hardy 
probabilities. But they can be separated nevertheless. Indeed, we will 
show how to separate any experiment where P(A1B1) = O, P(AB2) = 
0.5 = 

P(AzB1), 
and P(A2B2) = Hfor any number Hsatisfying 0 < H< 

0.5. (For H = 0, the Bell inequalities hold, hence there is a local 
and factorizable model. At the other extreme, H = 0.5 describes an 

impossible configuration of angles; that is, no quantum experiment 
produces those numbers.) 

Our Hardy model is similar to the one just described except that 
a now gets weight 0.25 and P3 gets weight 0.75. Moreover the 0 and 
0.5 joint probabilities, working together, force a different configura- 
tion for the marginals. Again we separate the presentation into disjoint 
runs to show how locality is respected and also to make it easy to find 
the pairs of marginals on which F is defined. 

For run A1 X B1, at a set a,1 = Hand set ba, = 1-H. 
For run A1 x B2, at a set a,1 = H (locality) and set b,= H. 
For run A2 X B,, at a set a~9= 1-H and b~1= 1-H (locality). 
For run A2 x B2, at a set aa2= 1-H (locality) and bQ2= H (locality). 

Then at P3 we define api and bl; to satisfy 

0.25a,; + 0.75api = 0.5 

0.25b~, + 0.75b,; = 0.5 

for i = 1, 2-so that the marginals averaged over a and P3 yield the 

quantum probabilities of 0.5. One can verify that for 0 < H < 0.5, 
the marginal probabilities are between 0 and 1 and that the eight 
pairs of marginals (four at a and four at 3) are all distinct. Finally, 
we assign the joints at a and p3 as follows: 

F[axi,bx] = p(Ai= 1, B= 1 iX) = P(A,BJ), for K = a or P3 and i = j 

F[axi,bx] = p(Ai=l, BJ=1I) = ax; for K = a or p and i # j 

For the case where i # j the A and B marginals are the same for each 

X, so if we pick one side (above we chose the A side) for the joints 
there and average over a and 3, we get 0.5, since that is precisely 
how the a and p3 marginals were made to relate. One needs to check 
that all the inequalities required by (1K) and (2K) hold for these 
choices of marginals andjoints, which they do. So, even the ubiquitous 
Hardy violations of the Bell inequalities can be modeled in such a 

way that the local states determine the joints. 
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IV. DISCUSSION 

It is important to keep the quantifiers straight with respect to what 
we have shown. For each Bell-violating experiment considered above, 
there exists a function that can be used to determine the joint state 
from the separate states. This is sufficient to establish that each of 
those experiments can be given a local, separable model. Nevertheless, 
we have not proven the following: there exists a single function that 
can serve as a separations function for all those Bell-type experiments. 
Such a function would, so to speak, wholly replace the product func- 
tion as a means of determining joint states from separate states in 
every single case. 

It might be objected that a great deal hinges on this order of 
quantifiers. After all, one might argue, only if there were a single 
function could one use the separate states to predict what can be 
predicted on the basis of the whole state. Is that not, after all, what 
it means for the separate states wholly to determine the joint state? 

We note, first of all, that what we have shown so far is already 
sufficient to refute the lemma according to which, in models of the 
sort considered above, factorizability was supposed to be a necessary 
condition for separability. Second, it is important to distinguish the 
issue of access or predictability from the metaphysical question of 
separability. Even if there were a universal separating function, we 
could still be stuck unless that function was computable, or otherwise 
suitable for making predictions. Looking back to Howard's discussion, 
we find that he says two inequivalent things about separability: 

The idea is that no information is contained in the joint state that is 
not already contained in the separate states, or alternatively, that no 
measurement result could be predicted on the basis of the joint state 
that could not be predicted on the basis of the separate states.2" 

The present context makes it clear, however, that it is one thing 
to say that the information is contained in the separate states, and 
quite another to say that one can extract the information and use it 
to make a prediction, or even that we could know in advance what 
the separating function will be. 

Richard Healy24 distinguishes these cases, defining what he calls 
spatiotemporal separability as follows: 

2",Holism, Separability, and the Metaphysical Implications of the Bell Experi- 
ments," p. 226n, our emphasis. 

24"Holism and Nonseparability," this JOURNAL, LXXXVIII, 8 (August 1991): 
393-421. 
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The qualitative, intrinsic physical properties of a compound system are 
supervenient on the qualitative, intrinsic physical properties of its spatially 
separated component systems together with the spatial relations among 
these component systems (ibid., p. 410). 

The language of supervenience marks a criterion other than that 
of predictability. In fact, Healy contrasts the relevant principle with 
what he calls explanatory principles of holism--principles, which depend 
on predictability for their application. 

Since the original inspiration for the concept of separability came 
from Einstein, perhaps it would be helpful to go back and look at 
what Einstein himself had in mind. He wrote: 

[Without a principle of separation] physical thought in the sense familiar 
to us would not be possible. Nor does one see how physical laws could be 
formulated and tested without such a clean separation.25 

If Einstein's concern is for the testability of laws, then the concern 
would likely be along the following lines. We make measurements in 

spatially local contexts. If we are going to have a theory that we can 
test, then we had better be able to use the information that we gather 
locally to build up what we need to know in order to tell what a given 
theory predicts about the world. In other words, it had better be the 
case that everything that is predictively relevant about a system can 
be humanly put together from locally separate states of affairs. For if 
there are theoretically/predictively important aspects of a system that 
we cannot come to know by making local measurements, then we will 
not be able to know what outcome a theory predicts for a given state 
of affairs in important cases. Hence, we would not be able to test such 
a theory. 

If the above reconstruction of Einstein's thoughts is roughly correct, 
then it should be clear that Einstein had in mind, after all, something 
over and above metaphysical separability. The concern that Einstein 
evinces for the testability of physical laws forces this conclusion. By 
itself, separability does not address Einstein's concern about how 

quantum mechanics could possibly work in practice. For that one 
needs a (metaphysical) separability that is also operational. That is, 
to satisfy Einstein, one needs more than a separating function for 

every experiment, or even a universal function. What one needs are 

humanly identifiable, computable functions. 
But if Einstein advocated a metaphysical separability that was also 

25 Quoted in Howard, "Holism, Separability, and the Metaphysical Implications of 
the Bell Experiments," p. 233. 
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operational, because he believed that this was a necessary condition 
for the testability of a theory, and if he was right, then we are left 
with a strange conundrum. For quantum mechanics does not appear 
to be even metaphysically separable; forget about the operational 
criterion. So the conundrum is this: If, according to Einstein, separa- 
bility is the sine qua non of a testable theory, then how does quantum 
mechanics work? That is to say, if quantum mechanics is a theory in 
which the principle of separation actually fails, how does it come not 
only to have been tested, but to have passed with flying colors? How 
does quantum mechanics do what Einstein denies can be done by 
any theory that violates the principle of separability? 

Of course, we could conclude that Einstein was just wrong here. 
But assuming he was on the right track, a good way to approach this 
question is to re-examine the notion of "state" in the quantum theory. 
Thus far, we have taken a state to be a family of probability distribu- 
tions. But there is an ambiguity here familiar to all students of mathe- 
matics: the ambiguity between the values of a function (what Gottlob 
Frege called "the course of values") and the function itself. In our 
models, and in discussing the quantum probabilities as states, we took 
the local states to be the bare distributions, which is to say the values 
of the mapping-from detector settings (or angles) to probability distri- 
butions on {1, -1}. But if we say that the local state is not the value 
of this mapping but the mapping itself, then we have a fresh way of 
regarding the quantum theory. Perhaps the best way to bring this out 
is to display the local states as a set of pairs <z, P4(.)>, where z is an 
angle corresponding to one of the detector settings in a given wing 
and Pz(.) is the marginal distribution on {1, -1} at z. Then separability 
asks whether there is a function F[. .] such that for all states <a, 
Pa(.)> in the A-wing and <b, Pb(.)> in the B-wing F[<a, P,(.)>, <b, 

Pb(.)>] is the joint state of the composite system. Put in this more 
perspicuous way, the answer is clear. There is such a universal separat- 
ing function; namely, 

F[<a, Pa(.)>, <b, P,(.)>] = <<a, b>, 1/2sin'[(a-b)/2]> 

the joint probability function in the singlet state that assigns to the angle 
a in the A-wing and b in the B-wing the probability 1/2sin2[(a-b)/2] 
for spin-up in both directions. This is, moreover, a simple function, 
easy to compute and easy to use for predictions. Notice that this F 
depends only on the domain of the marginal distributions (the angles 
a and b), not on the range. It must do so since all the distributions 
Pa(.) and Pb(.) are the same. Still, on the present, more careful concep- 
tion of state, what the function F achieves is wholly to determine the state 
of the whole system from the state of the parts. Einstein's concerns are 
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addressed in the best possible way. There is a universal separating 
function and one entirely suitable for predicting and testing. It would 
be hard to ask for more by way of quantum separability, and it would 
be hard to imagine a stronger defeat for the "lemma" that separability 
implies factorizability. 
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