Potential of rainwater in city groundwater recharge

Ya Tang
Sichuan University
Chengdu, China
Contents

1. Urbanization in China and major environmental challenges
2. Rainwater and groundwater recharge
3. Challenges and opportunities
1. Urbanization in China and major environmental challenges

- China is a big construction site in the past thirty years
- Urbanization at present: 56.1%
- By 2030, another 390 million rural population living in urban areas
- Probably another 20 years fast urbanization
Environmental challenges in urbanization

• Replacement of vegetation with impermeable lands/buildings
• Effects on surface water quality and runoff
 • Increasing magnitude of peak flood runoff
 • Causing deterioration in water quality
• Changes in groundwater recharge regime
 • Reduced surface runoff infiltration period
 • Reduced recharge quantity
Urbanization changes underlying surface

- Natural land surface with vegetation enhance infiltration and reduce runoff. Hardened (indurative) ground increases runoff
 - Vegetation slow down runoff, hardened surface increases runoff (both rate and amount)
 - Increased runoff for the same rain
 - Completely change conventional groundwater recharge regime
 - Increased city flooding risks

- A complete change in land surface
 - Increased impermeable area
 - Reduced permeable area
Urbanization changes water cycle in urban areas

- Surface runoff
 - Increased by 65%
- Evapotranspiration
 - Reduced by 25%
- Groundwater
 - Reduced by 40%
Urbanization changes hydrology

- Increased surface runoff
- Increasing flooding events
- Higher flood peak
A slightly higher than average rainfall event may cause flooding in cities. *Come to see “sea”* in many inland cities.
Continuously declining groundwater “sources” in cities

• Rainfall is important source for groundwater recharge but urbanization has changed this.
 • Increased impermeable land area causes large amount of surface runoff to drain out of cities, leading to highly insufficient groundwater recharge

• Changes in city underlying surface is the main factor contributing to increasing flooding in cities
Increased groundwater exploitation

• Increasing exploitation of groundwater resources to meet increasing need of increasing urban population
• Overuse of groundwater causes declining groundwater resources
• Construction of flood control channels and massive sewage system can also cause drawdown of groundwater table

• Therefore, a result of continued reducing recharge and continued over-exploitation of groundwater is great drawdown of groundwater table.
• Continued over-exploitation of groundwater causes similar groundwater drawdown in nearby areas

• Largely due to over-exploitation of groundwater, land subsidence is common in many cities
2. Rainwater and groundwater recharge

• **Strange resource exploitation**: highly prioritizing on resources exploitation but little focusing on resources saving. Compared with many other countries:
 • Agricultural irrigation ratio: 0.4 VS 0.7-0.8
 • Industrial water use: 222 m³/RMB 10 000 yuan GDP
 • Industrial wastewater recycle: 40% VS 75-85%
• Use of rainfall in groundwater recharge is rare in China
Is this feasible for Chengdu?

• Urbanization has been fast in Chengdu

• Groundwater status (2010) (Chengdu Bureau of Water Resources)
 • Whole Chengdu: reduced by 17.6%
 • Metropolitan area: reduced by 18.4%

• Quantity?
• Quality?

Chen et al., 2011, Plos One 6(9): e25008
Quantity

• Urban land area 529 km² (2014)

• Impermeable rate 45%, runoff coefficient 0.85, annual rainfall 1000 mm
 • Annual available: 3.3×10^8 m³

• In addition, rainwater drain directly from roof, road and residential compound is about 2.5×10^8 m³

• Total: 5.8×10^8 m³

• Total water consumption in 2015: 1.23 billion.
Ways to increase rainwater harvesting and storage

• Increasing permeability
 • Natural: green areas
 • Artificial: permeable ground, parking area, etc

• Use green areas to recharge groundwater
 • Increase groundwater recharge by rain water
 • Save water for irrigating vegetation
 • Reduce runoff peak
Role of vegetation in rainwater harvesting

- Vegetation can increase infiltration
 - 25 years natural forest: 150 mm/h
 - Grassland: 10 mm/h
 - Bare land: < 5 mm/h

- Forest
 - 25% canopy interception
 - 35% groundwater

- Grassland
 - Infiltration 15-20% higher than bare land

- On bare land
 - 55% runoff
 - 5% groundwater

- Rainfall infiltration: 7 time in forested land as much as in bare land
Use of green areas to harvest and store rainwater

• Some preliminary results (% of infiltration to rainfall)
 • High grassland (0.3 m above ground): 6%
 • Level grassland (same level as ground): 19%
 • Lowered grassland (0.1-0.2 m lower than ground): 30%
Use of rivers to harvest and recharge groundwater

- Rivers play an important role in groundwater recharge. But in Chengdu and other cities, most channels/canals are cemented.
- Promote ecological riparian ecosystem to restore recharging function of groundwater recharge.
Use of roads and green belts

- Impermeable land is efficient in rainwater harvesting
- All harvested rainwater drains out of city
- Almost all green belts are higher than ground
Potential ways

• Lower playground, green land, parks, green belts, 0.1-0.5 m lower than ground, enhancing rainfall infiltration

• Construct permeable ground in parking lot, public ground

• Leave slits along roadside to increase infiltration

• Restore river ecosystem
Some preliminary results on infiltration (infiltration/rainfall)

- Green areas 0.3 m higher than land surface: 6%
- Green areas on land surface: 19%
- Green areas 0.1-0.2 m lower than land surface: 30%
Quality

Groundwater pollution by hydrocarbon fuels, industrial chemical spillages

• Soil and vegetation help

• Rainwater goes through 3-4 layers: plant, land surface, plant roots and microorganism, soil

• Rainwater going through green areas
 • NH_4 -N: reduced from 2.1 to 0.8 mg/L
 • Sulphate and nitrate reduced greatly
3. Opportunities and Challenges

• Changes from no to poor and then to better planning in urban development
Opportunities and Challenges

Urbanization and urban development involves a number of government agencies. Each agency works on its own, poor inter-agency collaboration. In terms of groundwater recharge, at least the following are involved:

• Bureau of Water Resources
• Urban-Rural Development Commission
• Bureau of Environmental Protection
• Bureau of Forestry and Horticulture
• Bureau of Planning
• Bureau for City Management and Administrative law-Enforcement
Plant species test

- 10 species, flooded 15 cm for 2, 4, 6 days
- No effects are observed 14 days after flooding
 - 2 days: 9 species
 - 4 days: 7 species
 - 6 days: 4 species
- Hydrological data indicate very rare flooding in Chengdu, if so, mostly 1 day
• Most constructed wetlands are lined to prevent leaking
• Many artificial lakes are lined to prevent leaking
• Many lakes in public parks
Conclusion

• Urban ecosystem is controlled, managed by people.

• Management philosophy and idea change is crucial to make fully use of ecological ways to recharge groundwater.

• In China, the program promoted by the top leader will go quickly. As President Xi Jinping has specific instructions on sponge city development, it will go quickly.

• More research opportunities available
Thanks for your intention!