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Abstract

Many medical decisions involve the use of dynamic information collected on individual patients toward predicting
likely transitions in their future health status. If accurate predictions are developed, then a prognostic model can iden-
tify patients at greatest risk for future adverse events and may be used clinically to define populations appropriate for
targeted intervention. In practice, a prognostic model is often used to guide decisions at multiple time points over the
course of disease, and classification performance (i.e., sensitivity and specificity) for distinguishing high-risk v. low-risk
individuals may vary over time as an individual’s disease status and prognostic information change. In this tutorial,
we detail contemporary statistical methods that can characterize the time-varying accuracy of prognostic survival
models when used for dynamic decision making. Although statistical methods for evaluating prognostic models with
simple binary outcomes are well established, methods appropriate for survival outcomes are less well known and
require time-dependent extensions of sensitivity and specificity to fully characterize longitudinal biomarkers or models.
The methods we review are particularly important in that they allow for appropriate handling of censored outcomes
commonly encountered with event time data. We highlight the importance of determining whether clinical interest is
in predicting cumulative (or prevalent) cases over a fixed future time interval v. predicting incident cases over a range
of follow-up times and whether patient information is static or updated over time. We discuss implementation of time-
dependent receiver operating characteristic approaches using relevant R statistical software packages. The statistical
summaries are illustrated using a liver prognostic model to guide transplantation in primary biliary cirrhosis.
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Many medical decisions involve using updated informa-
tion on patients under surveillance to predict transitions
in future health status, such as progression of disease or
advancement to death. The goal is to use a patient’s clin-
ical characteristics to calculate the predicted risk of an
event within a specified time period and to identify
patients who are at high risk of experiencing an adverse
event in the near future. If accurate predictions can be
made, they could be used clinically to guide the choice
and timing of interventions and enable timely action,
such as starting specific preventive strategies or initiating
aggressive treatments for high-risk individuals while
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sparing low-risk patients the side effects and costs of
unnecessary intervention.

In practice, prognostic models are often used to make
decisions at multiple time points over the course of
patient follow-up. Consider disease screening settings,
where predicted risk may be used to identify high-risk
individuals as candidates for more frequent screening.
Patient follow-up with updated clinical assessment also
frequently occurs to monitor response to therapy. For
example, a cancer patient who has previously undergone
treatment and is predicted to be at substantial risk of dis-
ease recurrence may benefit from adjuvant therapy,
whereas a low-risk patient may forego aggressive treat-
ment. Finally, in an organ transplantation setting, the
predicted risk of mortality may be used to guide prioriti-
zation and timing of donor organ transplantation.1–4

Traditional statistical models such as Cox regression
focus on the prediction of disease or death times.
However, underlying these standard methods are the
concepts of a time-varying ‘‘risk set’’ of individuals, and
associated time-specific ‘‘cases’’ or subjects who experi-
ence the clinical event (e.g., death) at a given time. At any
time point, the set of individuals still alive and at risk of
an event may be partitioned into imminent cases (individ-
uals who experience the event in a defined future time
frame) and current ‘‘controls’’ (individuals who do not
yet experience the event). Ultimately, the goal of a prog-
nostic model is to accurately predict event times or
equivalently to distinguish between the time-specific cases
and the controls at all follow-up times. Furthermore, in
practice, an individual’s disease status changes over time,
and so does his or her prognostic information, such as
laboratory measures updated in routine clinic visits.
Accordingly, a model’s ability to distinguish between
cases and controls over time may also change, thus
affecting its performance as a decision-making tool. For
example, a prognostic model may accurately identify
patients at high risk of death within 90 days, but it may
have reduced accuracy for identifying later deaths.

Accuracy concepts of sensitivity and specificity are
fundamental to clinical research and decision modeling.
Only recently have statistical methods been developed
that can generalize these traditionally cross-sectional
accuracy concepts for application to the time-varying
nature of disease states, and corresponding definitions of
time-dependent sensitivity and specificity have been pro-
posed for both prevalent and incident case definitions.2,3

These new concepts and associated statistical methods
are central to the evaluation of the time-varying perfor-
mance of any potential prognostic model; they allow for
the estimation of sensitivity, specificity, and area under

the receiver operating characteristic (ROC) curve (AUC)
as functions of time, thus providing a detailed estimate
of longitudinal model performance for use in practice.
These methods are particularly important in that they
allow for appropriate handling of right-censored out-
comes commonly encountered with clinical event time
data. Unfortunately, knowledge of these methods and
the tools available to implement them remain limited,
and investigators often resort to overly simplistic
application of methods developed for binary outcomes,
which can lead to biased estimates in the presence of
censoring.5,6

Our goal in this tutorial is to demonstrate the use of
modern statistical methods that address the following
questions: how can the time-varying discrimination accu-
racy of a prognostic model be evaluated, how can the
value of updated measurements be characterized, and
how can different candidate models be directly com-
pared? We highlight the importance of determining
whether interest is in the fundamental epidemiologic con-
cept of predicting cumulative (or prevalent) cases or in
incident cases.

Case Study: Liver Prognostic Model to Guide

Transplantation in Primary Biliary Cirrhosis

As an illustrative case study, we consider liver transplan-
tation in primary biliary cirrhosis (PBC). PBC is an auto-
immune disease in which the bile ducts are slowly
destroyed, leading to liver failure in cases of advanced
disease.7 For selected patients with liver failure who are
at high risk of death without transplantation, liver trans-
plantation can be potentially life-saving. As a result, a
number of prognostic models have been developed in
PBC, with the goal of predicting survival probabilities
and guiding decisions regarding transplantation.8–14 Of
these, the Mayo model is perhaps the most widely
known,8 with the more recent Model for End-stage Liver
Disease (MELD) score3 representing a refinement, but
potentially suboptimal for use in PBC.8 A unique charac-
teristic of the Mayo model compared to other existing
models is that it does not require liver biopsy. Instead, it
is based on inexpensive, noninvasive, and readily avail-
able measurements. Additional variables from a biopsy,
such as histologic stage, that are used in other models
have been shown to not contribute substantially beyond
the variables included in the Mayo model.1

We consider a well-known data set that comes from a
randomized placebo-controlled trial for the treatment of
PBC conducted at the Mayo Clinic between 1974 and
1984.15 Dickson et al.1 used these data to develop the
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Mayo risk model that included patient age, total serum
bilirubin and serum albumin concentrations, prothrom-
bin time, and severity of edema. Murtaugh et al.2 pro-
posed a time-dependent version of this model that uses
updated values of the prognostic variables. The Mayo
model has been used for making individual-level deci-
sions regarding the selection of patients for and timing
of liver transplantation in PBC.8 Decisions about trans-
plantation are made repeatedly over time, by selecting
patients who are most likely to die in a short time inter-
val, such as 90 days, 6 months, or 1 year from the time
of prediction. We will use the 5 main predictors of sur-
vival identified by Dickson et al.1 to calculate the pre-
dicted risk of mortality within specified time periods and
evaluate the accuracy of these predictions for prioritizing
patients for transplantation.

Model Development

Model development typically takes place by splitting a
data set into training and validation data that are used
for model selection and evaluation, respectively. Using
appropriate methods to avoid overfitting in the training
data,16–18 candidate biomarkers and variables are
selected and combined, traditionally using a Cox propor-
tional hazards regression model for survival outcomes.19

One may use standard Cox regression with fixed coeffi-
cients and baseline covariates or even incorporate time-
varying covariates, as well as time-varying coefficients,
into the model.20 Alternatively, one may use more flex-
ible, modern machine-learning approaches, such as
boosting, lasso, artificial neural networks, and random
forests, especially in the presence of high-dimensional
data.21–27 Regardless of the chosen modeling approach,
the ultimate prognostic model is then fixed and used in
the validation data to provide patient predictions of the
disease outcome (i.e., a risk score).

In this article, we are agnostic to model selection. We
focus on methods for evaluating any single ‘‘biomarker,’’
which may be a novel predictive measurement, such as a
specific serum protein level measured in the laboratory
or, more commonly, may be the risk score derived from a
model that includes multiple factors (i.e., a derived bio-
marker or classifier). The approaches we discuss for eval-
uating a risk score in the validation data are independent
of those used for model selection in the training data, in
that they do not rely on the assumptions that may be nec-
essary for the development of the risk score.

Given our focus on model evaluation, it is not our
objective here to develop a new model as an alternative
to the Mayo model. We simply demonstrate how to

evaluate the time-varying performance of the existing
Mayo risk score, as well as one variation of it where we
omit a variable, to demonstrate a comparison of 2 candi-
date models.

Background: Standard Measures of

Discrimination Accuracy

The traditional classification problem is based on a sim-
ple binary outcome, typically the presence or absence of
disease. In classifying cases and controls as having
disease or not, a marker is prone to 2 types of error:
incorrectly classifying a case as not having disease, lead-
ing to delays in treatment, and, conversely, incorrectly
classifying a control as having disease, subjecting the
individual to unnecessary follow-up medical procedures.
Investigators aim to minimize false-negative and false-
positive errors by developing markers with high sensitiv-
ity (true-positive fraction [TPF]) and high specificity (1
minus false-positive fraction [FPF]), respectively.

By convention, larger marker values are assumed to
be more indicative of disease (and if the opposite is true,
the marker is transformed to fit the convention). For a
continuous marker M and a fixed threshold c, we define

sensitivity cð Þ =P M . cjcaseð Þ,
specificity cð Þ =P(M � cjcontrol):

The receiver operating characteristic (ROC) curve is a
standard tool that plots a continuous marker’s sensitivity
against 1 – specificity for all possible values of the thresh-
old c.28–31 Classification accuracy is most commonly
summarized using the area under the ROC curve (AUC),
which is the probability that a randomly chosen case has
a higher marker value than a randomly chosen control:

AUC =P Mi . Mjji=case, j=control
� �

:

Therefore, the AUC represents the marker’s ability to
rank cases above controls. An AUC of 0.5 indicates no
discrimination between cases and controls, whereas an
AUC of 1.0 indicates perfect discrimination.31

Time-Dependent Discrimination Accuracy

Implicit in the use of traditional diagnostic sensitivity
and specificity are current-status definitions of disease.
In settings of long-term follow-up, disease status
changes with time, and precise definitions are necessary
to include event (disease) timing in definitions of prog-
nostic error rates. Within the past 2 decades,
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time-dependent ROC curve methods that extend con-
cepts of sensitivity and specificity and characterize
prognostic accuracy for survival outcomes have been
proposed in the statistical literature and adopted in
practice. We review 2 such time-dependent approaches,
which draw upon alternative fundamental case defini-
tions: cumulative (or prevalent) cases and incident
cases.

Cumulative (Prevalent) Cases/Dynamic
Controls

Often interest lies in identifying individuals at risk of an
adverse event within some fixed time frame. Recall, for
example, decisions about donor liver allocation in the
PBC setting being made by selecting patients who are
most likely to die in a short time interval, such as 90 days,
6 months, or 1 year, from the time of prediction.

A natural extension of the standard cross-sectional
definitions of sensitivity and specificity to the survival
context, where disease state is time dependent, is to
dichotomize the outcome at a selected time of interest, t
(90 days, 6 months, or 1 year), and define cases as sub-
jects who experience the event before time t and con-
trols as those who remain event free beyond t.32 More
formally, we let T denote survival time and s denote the
start time of case ascertainment (often s = 0 for base-
line). Then, cumulative cases (C) may be defined as sub-
jects who experience an event prior to t, or specifically
as Ti E (s,t), and dynamic controls (D) as subjects who
are event free at time t, Ti . t (regardless of whether or
not they experience the event at a later time). Then, for
a fixed threshold c, time-dependent definitions for sen-
sitivity and specificity follow32,33:

sensitivityC cjstart= s, stop= tð Þ =P(M . cjT � s, T � t)

specificityD cjstart= s, stop= tð Þ =P M � cjT � s, T . tð Þ

Let p represent a fixed FPF. Then, for fixed
specificityD(c|s,t) = 1 –p, the time-dependent ROC value
is the corresponding value of sensitivityC(c|s,t), or
ROCs,t

C/D(p). Correspondingly, the time-specific AUC is
defined as the area under the time-specific ROC curve
across all thresholds p:

AUCC=D s, tð Þ =
Z

ROCs, t
C=D pð Þdp,

which can be shown to be equivalent to

AUCC=D s, tð Þ =P(Mj . Mk jTj � s, Tj� t, Tk � s, Tk . t):

Here, AUCC/D(s,t) is the probability that a random sub-
ject j who experiences an event before time t (case) has a
larger marker value than a random subject k who remains
event free through time t (control), assuming both subjects
are event free at the start of follow-up, time s.

In the absence of censoring, the above dichotomiza-
tion at time t is equivalent to using a simple derived bin-
ary disease outcome. However, when follow-up is
incomplete, as is often the case with longitudinal data,
censoring needs to be addressed and can be handled
using nonparametric estimation of the bivariate distribu-
tion of (M,T).32 (See online Appendix A for a descrip-
tion of estimation methods.) Estimation is based on
(Zi, di), where Zi is the observed follow-up time (i.e., the
minimum of the survival time Ti and the right-censoring
time Ci), and di denotes the event indicator.

In this tutorial, we seek to characterize time-varying
performance over a meaningful range of times. To this
end, we suggest obtaining a sequence of accuracy assess-
ments over time by defining cases as events occurring
cumulatively in successive windows of time. Specifically,
we subset data at a sequence of index times s = t1, t2,
., tK to include only subjects who are event free at time
tk (i.e., Z � tk, k = 1, . . ., K). These index times can rep-
resent any time points of interest and do not have to fall
at constant time intervals. For each subsetted data set,
we suggest conducting a separate analysis, treating tk,
k = 1, . . ., K, as the new baseline s and defining cases
cumulatively as subjects who have events over the fol-
lowing, say, 1-year span, so that Zi 2 s= tk , t = tk + 1ð Þ
and di = 1, and defining controls such that Zi . tk+ 1
(Figure 1). A series of accuracy summaries, such as
AUCC/D(0, 1), AUCC/D(2, 3), AUCC/D(4, 5), . . ., is
obtained, and time-varying accuracy is indicated by a
change in AUCs over time. The same idea can be applied
to obtain time-varying sensitivity and specificity.

If prognostic information changes over time, updated
information can be included in each subsetted analysis by
using the last measured information to obtain updated
risk predictions. Although we chose a 1-year cumulative
window for illustration, the window is flexible and may
be chosen to be more clinically meaningful depending on
the disease setting. Alternatively, the incident/dynamic
approach, discussed next, provides a finer time scale,
allowing for a smoother characterization of performance
over time without having to specify a window of time
over which cases accumulate.
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Incident Cases/Dynamic Controls

Survival analysis using Cox regression is based on the
fundamental concept of a risk set: a risk set at time t con-
sists of the cases experiencing events at time t and the
additional individuals who are under study (alive) but do
not yet experience the clinical event. Extension of binary
classification error concepts to risk sets leads naturally to
adopting an incident (I) case definition where subjects
who experience an event at time t or have survival time
Ti = t are the time-specific cases of interest. Dynamic
controls (D) can be compared to incident cases and are
subjects with Ti . t (regardless of whether or not they
experience the event or get censored at a later time). In
this scenario, time-dependent definitions for sensitivity
and specificity are as follows34:

sensitivityI cjtð Þ =P M . cjT = tð Þ
specificityD cjtð Þ =P M � cjT . tð Þ

For fixed specificityD(c|t) = 1 –p, the time-dependent
ROC value is the corresponding value of sensitivityI(c|t),
or ROCt

I/D(p). The time-dependent AUC can be defined
as the area under the time-specific ROC curve across all
thresholds p:

AUCI=D tð Þ =
Z

ROCt
I=D pð Þdp,

which can be shown to be equivalent to

AUCI=D tð Þ =P(Mj . Mk jTj = t, Tk . t):

Here, AUCI/D(t) is the probability that a random subject
j who experiences an event at time t (case) has a larger

marker value than a random subject k who remains event
free through time t (control), assuming both subjects are
event-free up to time t.

A semiparametric method based on the Cox model,34

as well as a nonparametric rank-based method,35 has
been proposed for estimating ROCt

I/D(p) and AUCI/D(t)
with censored outcomes. Both methods estimate FPFt

D

nonparametrically; the difference comes from their esti-
mation of TPFt

I, which requires smoothing since the
observed subset with Ti = t may only contain 1 observa-
tion. The semiparametric method achieves smoothing
by fitting a hazard model, whereas the nonparametric
method uses kernel-based smoothing (see online
Appendix A for additional details). The nonparametric
approach is generally preferable as it relies on fewer
assumptions than the semiparametric approach. In addi-
tion, the nonparametric method has been developed to
provide a simple summary curve that graphically charac-
terizes accuracy over time.

The performance of updated prognostic information
can also be evaluated by using the semiparametric34 or
nonparametric35 approach to accommodate time-
varying markers.36 At any time t, the last measured
information may be used to obtain updated risk predic-
tions from the prognostic model, as discussed in the
previous section.

Global summary of marker performance. In many appli-
cations, there is no specific time t of interest, and a glo-
bal accuracy summary of time-varying performance is
desired. Furthermore, it may also be of interest to com-
pare the overall performance of different markers or
models. The incident/dynamic approach lends itself eas-
ily to addressing such questions, since marker perfor-
mance can be summarized into a single-number global

Figure 1 An illustration of assessments at sequential baseline time points. Solid circles represent events and hollow circles represent
censored subjects. At each starting time point, subjects that remain event free are used for analysis. The solid red vertical line
represents this cutoff. The dashed blue vertical line represents the subsequent 1-year cutoff, which is used to define cases v. controls.
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summary called the survival concordance index (c-
index)34:

c-index=P Mj . Mk jTj \ Tk

� �
:

The c-index is interpreted as the probability that the
predictions for a random pair of subjects are concordant
with their outcomes. In other words, it is the probability
that the subject who died at an earlier time had a larger
marker value. The c-index can also be expressed as a
weighted average of time-specific AUCs34 and is there-
fore easy to estimate using the incident/dynamic methods
described above. The above definition of the basic c-
index for survival outcomes applies to a baseline marker
M. However, the definition and associated estimation
methods can easily be generalized to accommodate
updated prognostic information to estimate the general-
ized c-index for a time-varying marker, M(t), expressed
as

generalized c-index=

Z
AUCI=D tð Þw tð Þdt

using the weighted average representation, which allows
time-varying markers to be use for each AUCI/D(t) (see
online Appendix A for a definition of w(t) with further
details and ‘‘Case Study: Liver Prognostic Model to
Guide Transplantation in Primary Biliary Cirrhosis’’ for
an illustration).

Extension to Competing Risk Outcomes

Often a subject’s event time can be classified by one of
several distinct causes, and interest may lie in events of a
specific type. For example, in breast cancer studies, dis-
tant metastasis may be the event of interest; however,
other clinical events, such as death, may preclude the
researcher from observing distant metastases for particu-
lar patients.37 The definitions of time-dependent sensitiv-
ity, specificity, ROC, and AUC presented in ‘‘Cumulative
(Prevalent) Cases/Dynamic Controls’’ and ‘‘Incident
Cases/Dynamic Controls’’ have been extended to incor-
porate cause of failure for competing risk outcomes for
both the cumulative and incident case definitions, and we
direct the reader to the associated literature.38

Software

The above methods have been implemented in publicly
available R statistical software packages survivalROC
(for cumulative/dynamic methods), risksetROC

(for incident/dynamic methods with semiparametric
estimation), and meanrankROC (for incident/dynamic
methods with nonparametric estimation). The cumula-
tive/dynamic methods have also been implemented as
part of the PHREG procedure in the commercial software
SAS. These software options are summarized in Table 1.
In addition, the survivalROC and risksetROC
packages have been extended to include updated defini-
tions for competing risk outcomes.

We note that the choice of R package should depend
on the chosen method, which should depend on the sci-
entific question of interest, as discussed in ‘‘Comparison
of Cumulative v. Incident Case Approaches’’ and illu-
strated using the survivalROC and meanrankROC
packages in ‘‘Case Study: Liver Prognostic Model to
Guide Transplantation in Primary Biliary Cirrhosis’’
(with accompanying code in online Appendix B).

Comparison of Cumulative v. Incident Case
Approaches

Use of incident events naturally facilitates evaluation of
time-varying prognostic performance, whereas the use of
cumulative events in a sequential manner can also enable
such evaluation. In practice, patterns in AUCI/D(t) tend
to match AUCC/D(t,t+ 1) closely when the gap between
t and t+ 1 is small, although AUCC/D(t,t+ 1) uses a
coarser time scale and averages the performance over a
fixed time interval.

In a descriptive context, AUCI/D may be preferable
because it provides a simple graphical approach and a
global summary using the c-index, without having to spe-
cify a time interval over which cases accumulate. In
contrast, sequential use of cumulative cases based on
AUCC/D may better align with clinical settings where
prediction of short-term survival is needed at a specific
decision time (or a small collection of times). For exam-
ple, time intervals of 6 months, 1 year, and 5 years are
commonly used for defining high-risk v. low-risk patients
for targeted intervention. Methods for meaningfully
averaging time-varying performance into a global perfor-
mance summary using the cumulative case definition
have not been developed.

Computationally, AUCI/D(t) is more straightforward
to estimate and visualize for a series of time points.
AUCC/D(t) requires the generation of a new subsetted
data set for each time point of interest, and therefore if
interest lies in several time points, then a series of
AUCC/D(t) estimates may be more cumbersome to
obtain.
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Table 1 Guide to Available Software for Conducting Analyses Using the Cumulative/Dynamic and Incident/Dynamic Methods

Measures of Interest Software

Cumulative cases/dynamic
controls

R package survivalROC

� ROC function survivalROC() accepts censored survival data and returns a set of TPF and FPF values for
construction of the ROC curve, ROCs,t

C/D, where s is the ‘‘baseline’’ time of the subsetted data
set (i.e., T � s), while t (specified using the predict.time argument) defines the window
over which cases accumulate, so that T� t defines cases and T . t defines controls. The
function calculates estimates and associated 95% confidence intervals for ROCs,t

C/D(p) on
subsetted data sets based on new index (or ‘‘baseline’’) times and updated marker values.

� AUC function survivalROC() (described above) also calculates estimates and associated 95% confidence
intervals for AUCC/D(s,t).

� Example The documentation for the survivalROC package demonstrates the above functionality on
baseline markers in the Mayo PBC data set. Furthermore, see ‘‘Case Study: Liver Prognostic
Model to Guide Transplantation in Primary Biliary Cirrhosis’’ of this tutorial (and online
Appendix B for corresponding R code) for an illustration of the package applied to assessing
time-dependent discrimination accuracy of both baseline and time-varying markers.

Cumulative cases/dynamic
controls

SAS procedure PHREG

� ROC function The PHREG procedure accepts censored survival data and allows construction of the ROC
curve, ROCs,t

C/D, where s is the ‘‘baseline’’ time of a subsetted data set (i.e., T � s). One can
specify AT = t in the ROCOPTIONS in the PROC PHREG statement to define the window over
which cases accumulate, so that T� t defines cases and T . t defines controls. Specifying
PLOTS=ROC in the PROC PHREG statement displays the ROC curve at selected time points.

� AUC function Using the same options as above, but instead specifying PLOTS=AUC in the PROC PHREG
statement displays the AUC and the 95% confidence limits with respect to time.

� Example The SAS user’s guide for the PHREG procedure demonstrates the above functionality on the
Mayo PBC data set to assess time-varying performance and to compare models.

Incident cases/dynamic
controls (semiparametric
estimation)

R package risksetROC

� ROC function risksetROC()calculates estimates and associated 95% confidence intervals for ROCt
I/D(p) by

accommodating updated marker values using time-dependent data and appropriately
specifying the entry and Stime arguments. For example, consider the illustrative data set in
Table 2(a) with marker values measured only at baseline. Compare this to the time-dependent
data set in Table 2(b) that includes monthly updated marker values. When a new marker value
is available, the individual is censored with the old value and reenters the study with the new
value at the updated entry time.

� AUC function risksetROC()(described above) also calculates estimates and associated 95% confidence
intervals for AUCI/D(t).

� c-index function risksetAUC()estimates the c-index. Confidence intervals can be computed using
bootstrapping, as illustrated in the annotated code of online Appendix B.

� Example The documentation for the risksetROC package demonstrates the above functionality on a
lung cancer data set (also freely available in R, like the Mayo PBC data set).

Incident cases/dynamic
controls (nonparametric
estimation)

R package meanrankROC

� ROC function dynamicTP() accommodates updated marker values using time-dependent data as described
above and appropriately specifying start and stop times for intervals with updated marker
values. dynamicTP(), along with nne_TPR(), provides a smooth curve over time of
sensitivity (or TPF) or ROCt

I/D(p) for a fixed specificity 1 –p.
� AUC function MeanRank() accommodates updated marker values using time-dependent data as described

above and appropriately specifying start and stop times for intervals with updated marker
values. MeanRank(), along with nne.Crossvalidate(), provides a smooth curve of
AUCI/D(t) over time.

� c-index function dynamicIntegrateAUC()estimates the c-index. Confidence intervals can be computed using
bootstrapping, as illustrated in the annotated code of online Appendix B.

� Example See ‘‘Case Study: Liver Prognostic Model to Guide Transplantation in Primary Biliary
Cirrhosis’’ of this tutorial (and online Appendix B for corresponding R code) for an
illustration of the meanrankROC package applied to assessing time-dependent discrimination
accuracy of both baseline and time-varying markers.

AUC, area under the receiver operating characteristic curve; FPF, false-positive fraction; PBC, primary biliary cirrhosis; ROC, receiver

operating characteristic; TPF, true-positive fraction.
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Case Study: Liver Prognostic Model to Guide

Transplantation in Primary Biliary Cirrhosis

As an illustrative case study, we consider the problem of
liver transplantation in PBC that was introduced in
‘‘Case Study: Liver Prognostic Model to Guide
Transplantation in Primary Biliary Cirrhosis.’’

Description of Study Cohort

The study cohort consisted of 312 patients with PBC; 125
(40%) of these patients were observed to die during the
study period; 19 subjects were recipients of liver trans-
plantation during the study period. We censored these
subjects at the time of transplantation, since the prognos-
tic model is intended to predict the risk of mortality with-
out transplantation, and we use that risk to prioritize such
patients. For each patient, we had baseline demographic
and diagnosis data and longitudinal data on laboratory
measures. Counting multiple observations per patient,
we included 1945 total records.

Risk Models

We evaluated the following models: 1) a 5-covariate
model containing the same variables as those in the
Mayo model1: log(bilirubin), albumin, log(prothrombin
time), edema, and age, and 2) a 4-covariate model where
we omitted log(bilirubin) to illustrate the comparison of
different candidate models. Predictions from Cox models
were summarized into a single baseline risk score and a
separate time-varying, updated risk score to demonstrate
that the methods can incorporate time-varying measure-
ments and to show the implications of using older
measurements on accuracy. For the baseline score,
we used 10-fold cross-validation to protect against

overfitting.16–18 For the time-varying score, we used
baseline measurements as training data to develop the
Cox model and predicted the score at follow-up times
using updated values of log(bilirubin), albumin, and
log(prothrombin time).16–18

What Is the Accuracy of Baseline Measurements
and the Value of Updated Measurements?

As a first step, we use the incident/dynamic approach to
assess the prognostic accuracy of the baseline risk score
obtained from the 4-covariate model v. the 5-covariate
model. Figure 2 and Table 3 show that the 5-covariate
model has consistently better performance than the
4-covariate model over time with respect to both
AUCI/D(t) (Table 3 and Figure 2, left panel) and sensitiv-
ity for a fixed specificity of 10% (Figure 2, right panel).
The estimated c-indices are 0.72 (95% confidence inter-
val [CI], 0.66–0.76) and 0.79 (95% CI, 0.75–0.83) for the
4- and 5-covariate models, respectively, with a statisti-
cally significant difference of 0.07 (95% CI, 0.04–0.11).
Table 3 also shows the sequential cumulative/dynamic
approach that uses successive 1-year windows to
define cases. We see similar estimates for AUCI/D and
AUCC/D. Any observed differences are due to AUCI/D

reflecting performance at a given time point and
AUCC/D averaging performance over a 1-year window.

Looking at the 5-covariate model, the performance of
the baseline score declines over time with AUCI/D = 0.88
(95% CI, 80–0.90) at 1 year v. 0.66 (95% CI, 0.62–0.78)
at 6 years. In contrast, fairly consistent performance is
maintained using a risk score that is updated over time
(AUCI/D(t) = 0.92 [95% CI, 0.88–0.96] at 1 year, 0.89
[95% CI, 0.84–0.92] at 6 years) (Table 3 and Figure 3).
The 95% CIs are included in Table 3 and can also be

Table 2 Illustration of Data Sets with Marker Values Measured Only at Baseline and Updated Approximately Every Montha

Subject Marker Start Time (Days) Stop Time (Days) Death Observed

Marker measured at baseline only
1 m0 0 65 1
2 m0 0 40 0

Marker measured approximately monthly
1 m0 0 25 0
1 m25 25 58 0
1 m58 58 65 1
2 m0 0 30 0
2 m30 30 40 0

aSubjects are censored when a new marker value is available, and they reenter the study with the new marker value and an updated start time.
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included in plots, as shown in Figure 4 for baseline and
updated risk scores from the 5-covariate model.

Similar patterns are observed for the 4-covariate
model, with the baseline score’s performance declining
over time and the updated risk score’s performance stay-
ing fairly steady. Interestingly, the updated 4-covariate
risk score performs almost as well as the updated
5-covariate risk score, indicating that some of the loss of
accuracy due to the omission of log(bilirubin) can be
recovered by using updated measurements on other
variables.

Implications for Decision Making in PBC

This Mayo risk score has been used for individual-level
decision making about transplantation over time, by
selecting patients who are most likely to die in a short
time interval from the time of prediction. We used the 5
main predictors of survival identified by Dickson et al.1

to calculate the predicted risk of mortality and evaluate
the accuracy of these predictions toward prioritizing
patients for transplantation. It is clear from the results
that patient information should be updated regularly in
practice to maintain prognostic accuracy. The updated 5-
covariate Mayo model maintains an AUCI/D of around
0.90 over time, with a high generalized c-index of 0.89
(95% CI, 0.84–0.92), indicating that it is a strong prog-
nostic model for use in practice. In addition, we used
AUCC/D sequentially with 1-year windows to evaluate
the use of the Mayo model as a decision-making tool in
practice. We found that AUCC/D is consistently above
0.80 at all chosen time points, indicating that the model
identifies high-risk patients for transplantation with high
accuracy.

Discussion

The American Heart Association’s 2009 criteria for eval-
uating a risk prediction model categorize performance
measures into those of calibration, association, discrimi-
nation, and risk reclassification.39 Similarly, Steyerberg
et al.40 differentiated the roles of various performance
measures for assessing prediction models, defining them
as measures of overall performance, discrimination, cali-
bration, reclassification, and clinical usefulness. They
explained that these measures serve different purposes
and suggested that ‘‘reporting discrimination and calibra-
tion will always be important for a prediction model.’’
Although their focus was on binary outcomes, the same
ideas hold for survival outcomes.T
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In this tutorial, we focused on discrimination accuracy
(other work has demonstrated calibration for prognostic
models for survival outcomes41). We presented methods
that extend standard diagnostic definitions of sensitivity
and specificity and develop key summaries for evaluating
the time-varying prognostic performance of a marker or
model measured at baseline only or updated in routine
clinical care. A basic epidemiologic concept that distin-
guishes alternative summaries is the idea of cumulative
v. incident events to define cases. AUCI/D(t) is a conveni-
ent descriptive and graphical summary that characterizes
time-varying performance without having to select a

particular timeframe over which cases accrue, whereas
sequential use of AUCC/D(t) may be useful in clinical set-
tings where predictions of short-term survival are needed
at select times to identify high-risk patients for targeted
intervention.

In addition to allowing for evaluation of time-varying
discrimination accuracy of prognostic models, there are
other implications for how these methods could be
applied in practice. First, these methods may guide prac-
tice and policy with regard to the frequency of updating
patient information, by comparing the performance
of risk scores updated using different measurement

Figure 2 Time-varying prognostic accuracy of baseline risk scores obtained from the 4-covariate model v. the 5-covariate model
over time using the incident/dynamic approach, with respect to AUCI/D(t) (left) and ROCt

I/D (right) for a fixed false-positive
fraction (FPF) of 10% (or sensitivity for a fixed specificity of 90%).

Figure 3 Time-varying prognostic accuracy of updated risk scores obtained from the 4-covariate model v. the 5-covariate model
over time using the incident/dynamic approach, with respect to AUCI/D(t) (left) and ROCt

I/D (right) for a fixed false-positive
fraction (FPF) of 10% (or sensitivity for a fixed specificity of 90%).
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schedules to assess how often patient information should
be updated before it becomes outdated and affects accu-
racy. Second, although we compared the 5-covariate
Mayo model to a simple 4-covariate variation of the
model for illustration, in practice, one may choose more
clinically relevant variables, such as more expensive mea-
sures, to omit or replace and assess the impact on prog-
nostic accuracy. Finally, one may choose to explore the
performance of a risk model in subsets of patients, say
older v. younger patients, to assess whether the model is
a better decision-making tool for particular subgroups.

One limitation of this tutorial is that we do not dis-
cuss model selection in detail, focusing on the evaluation
of a given model. However, the methods for model eva-
luation that we discuss could also be used at the stage of
model selection to guide identification of a model with
optimal performance. For example, with variable selec-
tion in high-dimensional settings, one may use the c-
index, which is a global summary of time-varying perfor-
mance, as a way of initially screening the strongest mar-
kers as candidates for combining into a multivariate risk
score. One may also use the c-index as the optimization
criterion in model selection, instead of the typically used
likelihood-based criteria.42–44 For example, approaches
that optimize the c-index have been developed using
boosting.45,46

A potential limitation of the case study is that in the
absence of an independent data set on PBC, our evalua-
tion uses the same data set that was used by Dickson et
al.1 to develop the Mayo model. As discussed in ‘‘Model
Development,’’ the standard approach is to use separate
training and validation data sets to fairly assess model

performance. We used cross-validation to mitigate the
potential issue of an optimistic assessment. In practice, an
independent validation data set is important if the results
may have clinical implications. However, this case study
was meant to illustrate methods, rather than inform clini-
cal practice. In addition, the case study uses data from a
trial conducted between 1974 and 1984. Again, a newer
data set would not add substantially to our primary goal
of illustrating methods. Furthermore, the Mayo model,
which is widely used in practice today, was developed
using the same data set.

Finally, there is growing interest in evaluating the
incremental value gained from adding a new marker(s)
to an existing baseline marker or model. Difference in
AUC is a popular metric for evaluating incremental
value. As we illustrated using the case study, the time-
varying incremental value of a marker can be evaluated
by comparing the time-varying AUCs of 2 models. In
addition, a number of alternative measures have been
proposed in recent literature for binary outcomes—
namely, the net reclassification index47 and integrated
discrimination improvement.48 Extensions of these mea-
sures for time-dependent outcomes have been devel-
oped49,50 and can provide alternative summaries of the
time-varying incremental value of a marker.

Supplementary Material

Supplementary material for this article is available on the
Medical Decision Making Web site at http://journals.sagepub
.com/home/mdm. Supplementary R code available at http://
faculty.washington.edu/abansal/software.html.

Figure 4 Time-varying prognostic accuracy with 95% confidence intervals of baseline (left) and updated (right) risk scores
obtained from the 5-covariate model using the incident/dynamic approach.
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