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Abstract. Classification accuracy is the ability of a marker or diagnostic test to
discriminate between two groups of individuals, cases and controls, and is com-
monly summarized by using the receiver operating characteristic (ROC) curve. In
studies of classification accuracy, there are often covariates that should be incor-
porated into the ROC analysis. We describe three ways of using covariate infor-
mation. For factors that affect marker observations among controls, we present
a method for covariate adjustment. For factors that affect discrimination (i.e.,
the ROC curve), we describe methods for modeling the ROC curve as a function
of covariates. Finally, for factors that contribute to discrimination, we propose
combining the marker and covariate information, and we ask how much discrimi-
natory accuracy improves (in incremental value) with the addition of the marker to
the covariates. These methods follow naturally when representing the ROC curve
as a summary of the distribution of case marker observations, standardized with
respect to the control distribution.
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1 Introduction

The classification accuracy of a marker, Y, is most commonly described by the receiver
operating characteristic (ROC) curve, which is a plot of the true positive rate (TPR) ver-
sus the false positive rate (FPR) for the set of rules that classify an individual as “test-
positive” if Y > ¢, where the threshold, ¢, is varied over all possible values (Pepe et al.
2001; Baker 2003). Equivalently, the ROC curve can be represented as the cumula-
tive distribution function (c.d.f.) of the case marker observations, standardized with
respect to the control distribution (Pepe and Cai 2004; Pepe and Longton 2005). The
standardized marker observations, or percentile values, are written as PVp = F(Yp),
where F' is the left-continuous c.d.f. of Y among controls, and Yp denotes a case marker
observation. The ROC curve at an FPR of f is

ROC(f) = P(1—pPVp < f)
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In many settings, covariates should be incorporated into the ROC analysis. There are
covariates that impact the marker distribution among controls. For example, “center
effects” in multicenter studies may affect marker observations. In section 2, we describe
methods for adjusting the ROC curve for such covariates. The associated Stata com-
mands are roccurve and comproc (Pepe, Longton, and Janes 2009). Other covariates
may affect the inherent discriminatory accuracy of the marker (i.e., the ROC curve). For
example, disease severity often impacts marker accuracy, with less severe cases being
more difficult to distinguish from controls. In section 3, we describe an ROC regres-
sion method that allows the ROC curve to depend on covariates. The associated Stata
command is rocreg, which we introduce in section 3.3. Finally, there are covariates
that contribute to discrimination. For example, baseline risk factors for disease provide
some ability to discriminate between cases and controls. A common question is how
much discriminatory accuracy (i.e., incremental value) the marker adds to the known
classifiers. In section 4, we describe methods for evaluating incremental value.

This article is a companion to another article in this issue (Pepe, Longton, and Janes
2009); the companion article describes the use of roccurve and comproc for estimating
and comparing ROC curves without incorporating covariate information.

2 The covariate-adjusted ROC curve

2.1 Motivation and concept

Consider a covariate, Z, that affects the distribution of the marker among controls. Fig-
ure 1 shows hypothetical data for a continuous marker, Y’; a binary outcome, D; and
a binary covariate, Z. The data can be downloaded from the Diagnostic and Biomark-
ers Statistical (DABS) Center web site (http://labs.fhere.org/pepe/dabs/). Suppose for
concreteness that Z is an indicator of study center. Marker observations among con-
trols (D = 0) tend to be higher in center 1 compared with center 0, but the inherent
accuracy of the marker (the ROC curve) is the same in the two centers. Consider the
pooled ROC curve for Y’; this curve combines all case observations together and all con-
trol observations together, regardless of study center. In figure 1, observe that when
the proportion of cases varies across centers (scenario 1), the pooled ROC curve for Y
is overly optimistic compared with the ROC curve for Y in each center. Even when Z
is independent of the outcome (i.e., even when the proportion of cases is held constant
across centers, as in scenario 2), the pooled ROC curve is biased; this time, it is atten-
uated with respect to the center-specific ROC curve. This suggests that covariates that
impact marker observations among controls should be statistically adjusted in the ROC
analysis.
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Figure 1. A simulated marker, Y, and binary covariate, Z = 0,1. Under scenario 1, Z
is associated with the outcome: P(D =1|Z =0) =0.36 and P(D=1|Z =1) = 0.83.
Under scenario 2, Z is independent of the outcome: P(D=1|Z=0)=P(D=1|Z =
1) = 0.50. (a) Shown are the densities of Y conditional on Z = 0, then conditional on
Z =1, then in the pooled data under scenario 1, and finally in the pooled data under
scenario 2. A common threshold is indicated. (b) Shown are the common covariate-
specific ROC curve, the pooled ROC curve under scenario 1, and the pooled ROC curve
under scenario 2. The performances of the common threshold rule are indicated.

We propose a covariate-adjusted measure of classification accuracy called the co-
variate-adjusted ROC curve, or the AROC (Janes and Pepe Forthcoming, 2008). Con-
ceptually, this is a stratified measure of marker performance. It is defined as

AROC(f) = P(1—PVpz < f)

where PV stands for percentile value, and PVpyz = Fz(Ypyz) represents the case ob-
servation with the covariate value Z (Ypyz) standardized with respect to the control
population with the same value of Z. When the performance of the marker is the same
across populations with different values of Z, as in figure 1, the AROC is the common
covariate-specific ROC curve. More generally, it is a weighted average of covariate-
specific ROC curves (Janes and Pepe Forthcoming). Equivalently, the AROC is the ROC
curve for Y when Z-specific thresholds are used for classification. The thresholds, ¢z,
are chosen to ensure that the covariate-specific FPR, FPRz(cz), is common across levels
of Z.

2.2 Estimating the AROC

Estimation of the AROC proceeds in two steps:
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1. Estimate Fz, the distribution of the marker in controls as a function of Z. For
each case subject, i, calculate the PV: PVpy, = Fz,(Ypgz,).

2. Estimate the c.d.f. of the case PVs.

Estimating Fz begins with specifying how Z acts on the distribution of ¥ among
controls. For example, a linear model could be specified:

Y=00+057Z+¢€

The random error, €, could be assumed to be normally distributed, ¢ ~ N (0, 02), which
would lead to the case PVs

PVpy = ®{(Y — Bo — %1 2)/5}

where ® is the standard normal c.d.f., and BO, 317 and ¢ are estimates from the linear
model. Alternatively, the error distribution could be estimated empirically by using the
residuals from the linear model as in Heagerty and Pepe (1999). This would lead to the
PVs R N N

PVpz = F{(Y — By — 51 2)/5}

In addition to allowing Z to act linearly on marker observations among controls,
the roccurve command allows for stratifying on Z. Here again the distribution of Y
among controls conditional on Z can be estimated empirically or by assuming a normal
distribution.

Once the PVs have been calculated, their c.d.f. must be estimated. This estimation
step is described in more detail in the companion article (Pepe, Longton, and Janes
2009). Briefly, the c.d.f. can be estimated empirically, or a parametric distribution can
be assumed. The roccurve command allows the parametric forms

ROC(f) = P(1 = PVpz < f) = g{ao + 19 (f)}

where g = @ is the standard normal c.d.f., or g(-) = exp(-)/{1 + exp(-)} is the logistic
function. These forms give rise to binormal (Dorfman and Alf 1969) and bilogistic
(Ogilvie and Creelman 1968) ROC curves.

To fit the ROC model, a discrete set of FPR points, f1,. .., fs,, is chosen. These points
can span the interval (0,1) or a subinterval of interest, (a,b). For each case observation,
a set of n, records is created. The kth record for the ith subject includes the binary

outcome Uy; = I(l_ﬁ/Dzika) and the covariate g~1(f;). A binary regression model

with the link function g, the outcome U, and the covariate g~!(f) provides estimates
of (avp, 1) (Alonzo and Pepe 2002).

We bootstrap the data to obtain standard errors for the estimated AROC. The data
should be resampled according to the design of the study; for a case—control study, this
means resampling separately within case and control strata. If the data are clustered,
the clusters should be the resampling units.
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Consider as an example data from a neonatal audiology study designed to evaluate
the accuracy with which three audiology tests identify hearing impairment in newborns
(Norton, Wang, and Ai 2004). The data can be downloaded from the DABS Center web
site, or it can be loaded directly into Stata by typing

. use http://labs.fhcrc.org/pepe/book/data/nnhs2

Test results for hearing-unimpaired ears may depend on the age and gender of the child.
Figure 2 (on page 23) shows the estimated age- and gender-adjusted ROC curves for the
marker DPOAE. Several estimation options are shown. The first estimator assumes a
linear model for marker measurements among controls,

Y = ﬁo + BIZage + ﬂ2dender + €
where the error distribution is estimated empirically. The c.d.f. of the estimated PVs,
PVpz, = F{(Y — B0 — 1 Zage, — 62denderi)/a}

is estimated empirically. The second estimator adds the assumption that e is normally
distributed, and the third estimator additionally assumes that the ROC curve is binor-
mal. Clustered bootstrapping is used for inference to account for correlation among
observations (ears) for the same individual. The ROC curve is somewhat sensitive to
the normality assumption at the high end of the marker distribution. Next we describe
how to estimate these curves by using the roccurve command.

2.3 The roccurve command
Syntax

The syntax for the roccurve command is

roccurve disease_var test_varlist [zf} [m] [, options]

where disease_var is the name of the binary outcome (D = 1 for a case and D = 0 for
a control), and test_varlist is the list of markers.

Options

See the companion paper (Pepe, Longton, and Janes 2009) in this issue for details of the
options for roccurve. Here we focus on the options that relate to covariate adjustment.

Marker standardization. The covariates to be used for adjustment are specified by using
the adjcov(wvarlist) option. The adjmodel (model) option specifies how the covariates
are to be used for adjustment; the default is stratified, where the control marker
distribution is stratified on the covariates. model can also be 1inear; here the covariates
are assumed to act linearly on the control marker distribution.
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Standardized marker values are calculated according to the specification in the
pvcmeth (method) option. method can be empirical (the default), where the control
marker distribution is estimated empirically conditional on the covariates, or normal,
where the control marker is assumed to have a normal distribution conditional on the
covariates.

ROC calculation. rocmeth (method) specifies whether nonparametric (empirical ROC,
the default) or parametric ROCs are to be calculated. The link(function) option
is required for a parametric ROC model; a binormal model is fit with 1ink(probit),
and a bilogistic model is fit with link(logistic). For a parametric ROC model, the
interval(a b n,) option can be used to specify that the model is to be fit at n, points
over the restricted FPR interval (a,b).

Sampling variability. Bootstrapping is used for inference. By default, the data are
resampled conditional on the binary outcome. The noccsamp option specifies that
data be resampled without regard to the outcome. The nostsamp option specifies that
sampling be done without regard to covariate strata; by default, when covariates are
used for stratification, bootstrap samples are drawn from within covariate strata. The
cluster (varlist) option can be used to bootstrap clustered data.

Example

The following code produces the estimators shown in figure 2 (your graphs will look
slightly different because we do not show all the options here):

. use http://labs.fhcrc.org/pepe/book/data/nnhs2
. roccurve d yl, adjcov(currage gender) adjmodel(linear) cluster(id) noccsamp
. roccurve d yl, adjcov(currage gender) adjmodel(linear) pvcmeth(normal)
> cluster(id) noccsamp
roccurve d y1, adjcov(currage gender) adjmodel(linear) pvcmeth(normal)
> rocmeth(parametrlc) cluster(id) noccsamp
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Figure 2. Three different estimates of the age- and gender-adjusted ROC curve for the
marker DPOAE based on the Norton, Wang, and Ai (2004) audiology data

ROC summary indices

Summary measures of the ROC curve serve as metrics for comparing markers. The area
under the AROC (AAUC), AAUC = fol AROC(f)df, can be interpreted as the probability
that, for a random case and control marker observation with the same covariate value,
the case observation is higher than the control. This is not a clinically relevant summary
of marker performance because the task is not to determine which of a pair of subjects
is the case. Moreover, the AAUC summarizes the entire ROC curve when, frequently,
only a portion (e.g., only low FPRs) is of interest.

A more clinically meaningful summary measure of the AROC is the AROC (TPR) at
a fixed FPR = f of interest. This can be interpreted as the percentage of cases detected
when the covariate-specific FPRs are held at f. Alternatively, the FPR corresponding to
a specific TPR = AROC™!(#) could be reported. This is the common covariate-specific
FPR associated with a proportion, ¢, of cases detected.

The partial area under the AROC (pAAUC), pAAUC(fy) = fo ® AROC(f) df, can be
viewed as a compromise between the AAUC and the AROC at a specified point. The
pAAUC has the advantage of focusing on a portion of the AROC, but it lacks a clinically
relevant interpretation.
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The AROC summary measures are estimated in the same way as their counterparts
for the traditional ROC curve. The AAUC estimate is the sample average of the case
standardized marker values,

np
AAUCZZF/)\\/DZi/nD (1)
i=1

where the sum is over the np case observations. When the case PVs are estimated
nonparametrically (i.e., with stratification on Z), this is a weighted average of the
empirical areas under the ROC curves (AUCs) in each covariate stratum. The estimated
pPAAUC is also an average of standardized marker values (Dodd and Pepe 2003),

np

pAAUC(fo) = > max{PVpz, — (1 - fo),0}/np (2)

=1

When the control marker distribution is estimated empirically, corrections are made for
ties between case and control marker observations, as discussed in the companion article
(Pepe, Longton, and Janes 2009).

Estimates of AAUC and pAAUC values for parametric ROC models generally require
numerical integration and are not produced by our programs. Instead, the parameters
are estimated by using empirical averages of PVs, as in (1) and (2). Similarly, we
estimate the AROC at a fixed FPR = f by calculating the proportion of PVs that are
greater than 1 — f rather than the value estimated by a parametric ROC model.

2.4 Comparing covariate-adjusted ROC curves

Comparisons between AROCs can be made by using any of the summary indices dis-
cussed above. A confidence interval for the difference in summary measures is calculated
by using the bootstrap method. A Wald statistic obtained by dividing the observed dif-
ference by its standard error is compared to the standard normal distribution to obtain
a p-value. Standard errors are obtained by bootstrapping. The comproc command is
used to compare AROCS.
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2.5 The comproc command
Syntax

The syntax of the comproc command is

comproc disease_var test_varl [test,var,?} [zf] [m] [, options]

where disease_varis the binary outcome, and test_var! and test_var2 are the two markers
to be compared. If only one marker is specified, the requested summary statistics are
returned but no comparisons are made.

Options

Marker standardization and bootstrap options are the same as with roccurve. The
choices of summary measures are auc, the AAUC; pauc(f), the pAAUC; roc(f), the
TPR corresponding to an FPR of f; and rocinv(?), the FPR corresponding to a TPR of
t. The tiecorr option can be used to correct for ties between case and control marker
observations; it is used by default if pauc (f) is among the summary measures requested.

Example

Consider again the audiology data. Figure 3 shows the ROC curves for the markers
DPOAE and TEOAE, both adjusted for age and gender. The covariates are assumed to
act linearly on control marker observations, and the marker distributions and ROC curves
are estimated empirically. The comproc command yields estimates of the associated ROC
curves at an FPR of f = 0.20, as well as the pAAUC(0.20) and the AAUC, as shown in the
output below. We conclude that there is no evidence of a difference in the percentage
of cases detected when the FPR is 20%. Comparisons based on the pAAUC(0.20) and
the AAUC similarly suggest that there is no difference in performance between the two
markers.

(Continued on next page)
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Figure 3. Age- and gender-adjusted ROC curves for the markers DPOAE and TEOAE
based on the Norton, Wang, and Ai (2004) audiology data

The comproc command applied to the audiology data yields the following results:

. use http://labs.fhcrc.org/pepe/book/data/nnhs2, clear
(Norton - neonatal audiology data)

set seed 49049

comproc d yl1 y2, roc(0.2) pauc(0.2) auc adjcov(currage gender) adjmodel(linear)
> cluster(id) noccsamp

Comparison of test measures
test 1: DPOAE 65 at 2kHz
test 2: TEOAE 80 at 2kHz
percentile value calculation method: empirical
percentile value tie correction: yes
Covariate adjustment
method: linear model
covariates: currage
Gender

>k 3k %k 3k %k 5k %k % %k %k 5k %

covariate adjustment - linear model, controls only
model results for marker: DPOAE 65 at 2kHz

Source SsS df MS Number of obs = 4907
F( 2, 4904) = 20.13

Model 2418.56541 2 1209.2827 Prob > F = 0.0000
Residual 294662.363 4904 60.0861263 R-squared = 0.0081
Adj R-squared = 0.0077

Total 297080.929 4906 60.5546125 Root MSE = 7.7515

yi Coef . Std. Err. t P>t [95% Conf. Intervall]
currage -.2032456 .0323905 -6.27  0.000 -.2667455  -.1397458
gender .2471744 .2229119 1.11  0.268 -.1898327 .6841815
_cons -1.486659 1.288611 -1.15 0.249 -4.012913 1.039596
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>k 3k >k >k %k >k %k %k %k %k 5k %

covariate adjustment - linear model, controls only
model results for marker: TEOAE 80 at 2kHz

Source SS df MS Number of obs = 4907
F( 2, 4904) = 22.38
Model 2186.03352 2 1093.01676 Prob > F = 0.0000
Residual 239493.534 4904  48.836365 R-squared = 0.0090
Adj R-squared = 0.0086
Total 241679.567 4906 49.2620398 Root MSE = 6.9883
y2 Coef.  Std. Err. t P>t [95% Conf. Intervall
currage -.1694143 .0292013 -5.80 0.000 -.2266619 -.1121667
gender .7014169 .2009638 3.49 0.000 .3074379 1.095396
_cons -6.348757 1.161733 -5.46  0.000 -8.626274 -4.07124
sk okok ok ok ok ok ok ok ok
bootstrap samples drawn
w/o respect to case/control status
# bootstrap samples: 1000
skokok sk ok sk ok ok ok ok sk ok ok ok ok
AUC estimates and difference,
test 2 - test 1 (aucdelta)
Bootstrap results Number of obs = 5056
Replications = 1000
Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Intervall]
aucl .62941998 .0001283 .0258707 .5787143 .6801256 (€))

.5794999 .6800154 (P)
.5791458 .6799226 (BC)
auc2 .60102814 .0004614 .02607367 .5499247 .6521316 (€))
.5511089 .6488042 P)
.5509614 .6485289 (BC)
aucdelta -.02839184 .0003331 .02080347  -.0691659 .0123822 (€))
-.0676753 .0110209 (P)
-.067653 .0111732  (BC)

() normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

test of Ho: aucl = auc2
z = -1.4 p= .17

(Continued on next page)
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Fok KKK KKK KKK
pAUC estimates and difference,
test 2 - test 1 (paucdelta)

partial AUC for f < .2

Bootstrap results Number of obs = 5056
Replications = 1000
Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Intervall
paucl .04624855 .0003327 .00622013 .0340573 .0584398 ()

.0345031  .0584833  (P)
.0343457  .0581308 (BC)
pauc2 .04657379  .0003689  .00671733 .0334081  .0597395  (N)
.0344294  .0602263  (P)
.0340786  .0600065 (BC)
paucdelta .00032524  .0000361  .00458657 -.0086643  .0093148  (N)
-.0085509  .0096089  (P)
-.0084957  .0096477 (BC)

(N) normal confidence interval
P) percentile confidence interval
(BC) bias-corrected confidence interval
test of Ho: paucl = pauc2
z = .071 p= .94
KKK oK oK oK ok o K K KoK oK oK ok K
ROC estimates and difference,
test 2 - test 1 (rocdelta)

ROC(f) @ £ = .2

Bootstrap results Number of obs = 5056
Replications = 1000
Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Interval]
rocl .3489933 -.0026902 .04117657 .2682887 .4296979 (N)

.2658619  .4260527  (P)
.2681159  .4266667 (BC)

roc2 .32885906 .004282  .04411025 .2424046  .4153136 ()
.2507862 .418124  (P)

.245283  .4113475 (BC)

rocdelta -.02013424  .0069722  .03972608 -.0979959  .0577274 (N)
-.0931783 .06618  (P)

-.1048951 .0522388 (BC)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval
test of Ho: rocl = roc2

z = -.51 P = .61

>k 3k >k 3k 3k >k %k >k 3k %k %k %k 5k %k 5k k
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3 ROC regression

3.1 Motivation and concept

Covariates such as disease severity and specimen storage time can do more than impact
marker observations among controls. They often also impact the inherent discriminatory
accuracy of the marker (i.e., the ROC curve). That is, they affect the separation between
the case and the control marker distributions. A hypothetical example is shown in
figure 4. The data used can be downloaded from the DABS Center web site. The
separation between the case and the control marker distributions is much greater when
Z = 0 than when Z = 1. The covariate also affects the distribution of the marker
among controls, necessitating covariate adjustment.

====- controls
cases 14

TPR, , FPR,

0 5 TPR

density

covariate-specific
ROC curves

Figure 4. A simulated marker, Y, and binary covariate, Z = 0,1. The marker is more
accurate when Z = 0 than when Z = 1, and marker observations among controls also
depend on Z. The performances of a common threshold are indicated.

ROC regression is a methodology that models the marker’s ROC curve as a function of
covariates (Pepe 2000; Alonzo and Pepe 2002). Implementation proceeds in two steps:

1. Model the distribution of the marker among controls as a function of covariates,
and calculate the case PVs.

2. Model their c.d.f. (i.e., the ROC curve) as a function of covariates.

The result is an estimate of the ROC curve for the marker as a function of covariates,
or a covariate-specific ROC curve. We emphasize that the covariates used in step 1 for
adjustment are those that affect the marker distribution in the control population; these
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may or may not differ from the covariates used in step 2 that impact the separation
between cases and controls.

3.2 Estimation

Estimation of the control marker distribution as a function of covariates and calculation
of the case PVs proceeds in exactly the same manner as with the covariate-adjustment
method. The standardization options allowed by rocreg, introduced in the next section,
are the same as with roccurve and comproc. The covariates can be assumed to act
linearly on marker observations, or stratification can be employed if they are discrete.
The PVs can be calculated by empirically estimating the control marker distribution
conditional on covariates or by assuming a normal model.

Next a parametric model is specified for the ROC curve (i.e., the c.d.f. of the case
PVs) as a function of covariates. The forms allowed by the rocreg command are

ROCz(f) = P(1 —PVpy < f) = glag + 19 ' (f) + a2 Z + a3Z x g~ (f)}

where g(-) is the standard normal c.d.f. or the logistic function. The parameter as
allows the covariates to impact the “intercept” of the ROC curve, while ag allows Z to
impact the “slope” of the ROC curve. If ag # 0, the covariates have a different impact
on the ROC curve at different FPRs. This ROC model gives rise to binormal (Dorfman
and Alf 1969) or bilogistic (Ogilvie and Creelman 1968) ROC curves at each fixed value
of Z.

To fit the ROC regression model, a discrete set of FPR points, fi,..., fy,, is chosen.
These points can span (0, 1) or a subinterval of interest, (a, b). For each case observation,
a set of n, records is created. The kth record for the ith subject includes the binary
outcome Uy; = I(lfﬁ/Dzika) and the covariates ¢~ (fy), Z, and Z; x ¢~ (f). A
binary regression model with the link function g; the outcome U; and the covariates
g (), Z, and Zx g~1(f) provides estimates of (ag, a1, a2, a3) (Alonzo and Pepe 2002).
Bootstrapping is used for inference, where the data are resampled according to the
design.

For illustration, an ROC regression model was fit for the marker DPOAE by using the
audiology data. DPOAE observations among controls are assumed to depend linearly on
age and gender, and their distribution is estimated empirically. Age-specific ROC curves
are modeled parametrically by using

ROCz(f) = CD{OCO + Oél(bil(f) + OQZagC} (3)

Estimates of the age-specific ROC curves are calculated by using the parameter estimates
(Qo, 1, Q2). Figure 5 shows estimated binormal ROC curves for children at 30, 40, and
50 months of age. This figure suggests that the marker is more accurate among older
children, but the effect is not statistically significant, as we will see.
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Figure 5. Age-specific ROC curves for the marker DPOAE based on the Norton, Wang,
and Ai (2004) audiology data. The ROC curves are adjusted for age and gender.

3.3 The rocreg command
Syntax

The syntax of the rocreg command is

rocreg disease_var test_varlist [zf] [m] [, regcov (varlist) sregcov(varlist)

link(function) interval(a b n,) pvcmeth(method) tiecorr adjcov(varlist)

adjmodel (model) nsamp(#) nobstrap noccsamp nostsamp cluster (varlist)

resfile(filename) replace level (#) }

where disease_var is the binary outcome, and test_varlist is the list of markers.

Options

ROC regression

regcov (varlist) specifies the variables to be included in the ROC regression model that
affect the intercept of the ROC curve.

sregcov (varlist) specifies the variables to be included in the ROC regression model that
affect the slope of the ROC curve.
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link (function) specifies the ROC generalized linear model (ROC-GLM) link function.
function can be one of the following:

probit, the default, corresponds to the binormal ROC model. That is,
®~1{ROC(f)} = intercept+slope x ®~1(f), where ® is the standard normal c.d.f.

logit corresponds to the bilogistic ROC model. That is, logit{ROC(f)} = intercept+
slope x logit(f).

interval(a b n,) specifies the FPR interval (a,b) and number of points (n,) in the
interval over which the ROC-GLM is to be fit. The default is interval(0 1 10).

Standardization method

pvcmeth (method) specifies how the PVs are to be calculated. method can be one of the
following:

empirical, the default, uses the empirical distribution of the test measure among
controls (D = 0) as the reference distribution for the calculation of case PVs.
The PV for the case measure y; is the proportion of control measures Y5 < y;.

normal models the test measure among controls with a normal distribution. The PV
for the case measure y; is the standard normal c.d.f. of (y; — mean)/sd, where
the mean and the standard deviation are calculated by using the control sample.

tiecorr indicates that a correction for ties between case and control values is included
in the empirical PV calculation. The correction is important only in calculating
summary indices, such as the AUC. The tie-corrected PV for a case with the marker
value y; is the proportion of control values Y77 < y; plus one half the proportion of
control values Y5 = y;, where Y5 denotes controls. By default, the PV calculation
includes only the first term, i.e., the proportion of control values Y5 < y;. This
option applies only to the empirical PV calculation method.

Covariate adjustment
adjcov(varlist) specifies the variables to be included in the adjustment.

adjmodel (model) specifies how the covariate adjustment is to be done. model can be
one of the following:

stratified PVs are calculated separately for each stratum defined by warlist in
adjcov(). This is the default if adjmodel () is not specified and adjcov() is.
Each case-containing stratum must include at least two controls. Strata that do
not include cases are excluded from calculations.

linear fits a linear regression of the marker distribution on the adjustment covariates
among controls. Standardized residuals based on this fitted linear model are used
in place of the marker values for cases and controls.
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Sampling variability

nsamp (#) specifies the number of bootstrap samples to be drawn for estimating sam-
pling variability of parameter estimates. The default is nsamp (1000).

nobstrap omits bootstrap sampling and estimation of standard errors and Cis. If
nsamp () is specified, nobstrap will override it.

noccsamp specifies that bootstrap samples be drawn from the combined sample rather
than sampling separately from cases and controls; case—control sampling is the de-
fault.

nostsamp draws bootstrap samples without respect to covariate strata. By default,
samples are drawn from within covariate strata when stratified covariate adjustment
is requested via the adjcov() and adjmodel () options.

cluster (varlist) specifies variables identifying bootstrap resampling clusters. See the
cluster () option of the bootstrap command ([R] bootstrap).

resfile(filename) creates a Stata file (a .dta file) with the bootstrap results for the
ROC-GLM. The Stata file is called filename.dta if a single marker is specified or
filename# .dta for the #th marker if more than 1 marker is included in test_varlist.
bstat can be run on this file to view bootstrap results again.

replace specifies that if the specified file already exists, then the existing file should be
overwritten.

level (#) specifies the confidence level for Cls as a percentage. The default is 1evel (95)
or as set by set level.

3.4 Saved results

Parameter estimates from the ROC-GLM curve fit and the corresponding bootstrap co-
variance matrix are available as bootstrap postestimation results. See also help
postest and help estat bootstrap. If more than one variable is included in test_varlist,
estimation results for the #th marker are stored under the name rocreg_m#. Returned
estimation result matrices include the following:

Matrices
e(b) 1 x k matrix of ROC-GLM parameter estimates; k = 2 + number of covariates
included in the intercept and slope terms. Columns correspond to ag
and o« parameters plus coefficients for any specified covariates.
e(V) k x k bootstrap covariance matrix for the ¥ ROC-GLM parameters.
e (GLMparm) n x k matrix of ROC-GLM parameter estimates. Rows correspond to the

marker variables included in test_varlist, and columns are as for e(b).
Returned whether bootstrap sampling is specified or not (nobstrap).

(Continued on next page)
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3.5 Example
The rocreg command applied to the audiology data produces the following results:

. use http://labs.fhcrc.org/pepe/book/data/nnhs2, clear
(Norton - neonatal audiology data)

set seed 56930
. rocreg d yl1, adjcov(currage gender) adjmodel(linear) regcov(currage)
> cluster(id) noccsamp

ROC regression for markers: DPOAE 65 at 2kHz
model intercept term covariates: currage

percentile value calculation
method: empirical
tie correction: no

Covariate adjustment for p.v. calculation:
method: linear model
covariates: currage
Gender
GLM fit of binormal curve
number of points: 10
on FPR interval: (0,1)
link function: probit
model coefficient bootstrap se’s and CI”s based on sampling
w/o respect to case/control status
number of bootstrap samples: 1000

stk ok ok o ok ok ok ok ok ok ok ok ok ok ok K K K K K K K Kk k ko o ok
model results for marker: DPOAE 65 at 2kHz

covariate adjustment - linear model, controls only

Source SS df MS Number of obs = 4907
F( 2, 4904) = 20.13

Model 2418.56541 2 1209.2827 Prob > F = 0.0000
Residual 294662.363 4904 60.0861263 R-squared = 0.0081
Adj R-squared = 0.0077

Total 297080.929 4906 60.5546125 Root MSE = 7.7515

yi Coef . Std. Err. t P>t [95% Conf. Intervall
currage -.2032456 .0323905 -6.27 0.000 -.2667455  -.1397458
gender .2471744 .2229119 1.11 0.268 -.1898327 .6841815
_cons -1.486659  1.288611 -1.15  0.249 -4.012913 1.039596

>k %k >k 5k % >k % >k %k %k k %
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ROC-GLM model

Bootstrap results Number of obs = 5056
Number of clusters = 2741
Replications = 1000
Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Interval]
alpha_0 -1.2725062 -.0571745  1.0770327 -3.38345 .8384401 (N)

-3.509356 .7178385 P)
-3.487457 .7813575 (BC)
alpha_1 .93723935 .0127611 .07467309 .7908828 1.083596 (N)
.8079086 1.101941 (P)
.7928988 1.083512 (BC)

currage .04482277 .0016014 .02804926  -.0101528 .0997983 (€))
-.007932 .1033131 (P)
-.0102905 .101021  (BC)
(N normal confidence interval
(P) percentile confidence interval

(BC) bias-corrected confidence interval

4 Evaluating incremental value

4.1 Motivation and concept

Another way of incorporating covariate information is by evaluating incremental value.
When Z is a set of known risk factors or other baseline predictors, an obvious question
concerns the improvement in classification accuracy associated with adding Y to Z.
Within this framework, Z is allowed to help in discriminating between cases and controls.
This is in contrast to covariate adjustment methods, which characterize the classification
accuracy of Y conditional on Z.

Incremental value is quantified by comparing the ROC curve for (Y, Z) to the ROC
curve for Z alone. The optimal combination of Y and Z for classification is the risk
score, P(D = 1|Y,Z) (McIntosh and Pepe 2002). The risk score can be estimated
with a wide variety of binary regression techniques, including logistic regression, logic
regression, classification trees, neural networks, and support vector machines.

(Continued on next page)
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4.2 Estimation

We propose the following approach to estimating incremental value. First, we fit logistic
regression models with and without the marker, Y:

P(D=1|Y,2)=g(Bo+ 1Y + 2Z + 3Z xY)

and
P(D=1|Z)=g(vw+mZ)

where g(-) = exp(-)/{1 + exp(-)} is the logistic function. Forms other than linear
can be employed for the predictors (e.g., splines), and interactions may or may not be
included. The primary advantage of using logistic regression is that the linear predictors,
g HP(D = 1]Y,2Z)} and g~*{P(D = 1|Z)}, which have the same ROC curves as
the risk scores, are consistently estimated (up to constants) with case—control data
(Prentice and Pyke 1979).

Having fit the two regression models, we next calculate the associated predicted
values for all the subjects in the dataset. We analyze the predicted values on the linear
predictor scale, where distributional assumptions are more easily verified, noting again
that the ROC curves for g7'{P(D = 1)} and P(D = 1) are the same.

The final step is to plot and compare the ROC curves for the linear predictions
from the two models. This can be accomplished by using roccurve and comproc
(Pepe, Longton, and Janes 2009).

This procedure is simplistic in at least two respects. First, fitting and evaluating
models on the same data is known to produce overly optimistic estimates of model
performance. Cross-validation could be used to correct for this overoptimism. Sec-
ond, the bootstrapping implemented in roccurve and comproc conditions on the fitted
regression models. This bootstrapping accounts for uncertainty in the ROC estimates
but not in the predicted values. Bootstrapping the entire process, from sampling to
risk-score estimation to ROC estimation, would be desirable. For simplicity, we ignore
these issues here but plan to implement a Stata program in the future that incorporates
cross-validation and bootstrapping of the model-fitting process.

4.3 Example

We again use the audiology data to illustrate the estimation of incremental value. We
evaluate the incremental value of the marker DPOAE over and above age and gender.
Figure 6 shows ROC curves for two fitted logistic regression models, one including age
and gender, and the other including age, gender, and DPOAE. All the covariates are
modeled linearly. The ROC curves are estimated empirically (without adjustment for
any covariates). We see that the inclusion of DPOAE substantially improves the ability
of the model to discriminate between hearing-impaired and -unimpaired ears. The
commands used to generate the estimators shown are
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. logit d currage gender

. predict pl

. logit d currage gender yi

. predict p2

. roccurve d pl p2, roc(0.2) cluster(id) noccsamp

marker
TPR

(age, gender, DPOAE)
——=—(age, gender)

FPR

Figure 6. The incremental value of the marker DPOAE over and above age and gender,
estimated with the Norton, Wang, and Ai (2004) audiology data. ROC curves are esti-
mated for disease risk-prediction models with and without DPOAE; both models include
age and gender.

5 Remarks

The methods and Stata programs presented here facilitate incorporating covariates into
ROC analysis in three distinct ways: by characterizing the performance of the marker
conditional on covariates (i.e., by using covariate adjustment), by allowing the accu-
racy of the marker to depend on the covariates (i.e., by using ROC regression), and
by examining the improvement in classification accuracy associated with adding the
marker to the covariates (i.e., by using the incremental value approach). The represen-
tation of the ROC curve as the c.d.f. of standardized case marker observations provides
a natural means of incorporating covariate information and gives rise to parametric,
semiparametric, and nonparametric estimates of the quantities of interest.

We have focused on continuous markers, but these methods can also be applied to
ordinal markers.

(Continued on next page)




38 Accommodating covariates in ROC analysis

6 References

Alonzo, T. A., and M. S. Pepe. 2002. Distribution-free ROC analysis using binary
regression techniques. Biostatistics 3: 421-432.

Baker, S. G. 2003. The central role of receiver operating characteristic (ROC) curves
in evaluating tests for the early detection of cancer. Journal of the National Cancer
Institute 95: 511-515.

Dodd, L. E., and M. S. Pepe. 2003. Partial AUC estimation and regression. Biometrics
59: 614-623.

Dorfman, D. D., and E. Alf Jr. 1969. Maximum-likelihood estimation of parameters
of signal-detection theory and determination of confidence intervals—Rating-method
data. Journal of Mathematical Psychology 6: 487—496.

Heagerty, P. J., and M. S. Pepe. 1999. Semiparametric estimation of regression quantiles
with application to standardizing weight for height and age in U.S. children. Applied
Statistics 48: 533-551.

Janes, H., and M. S. Pepe. 2008. Adjusting for covariates in studies of diagnostic,
screening, or prognostic markers: An old concept in a new setting. American Journal
of Epidemiology 168: 89-97.

. Forthcoming. Adjusting for covariate effects on classification accuracy using
the covariate-adjusted ROC curve. Biometrika.

McIntosh, M. W., and M. S. Pepe. 2002. Combining several screening tests: Optimality
of the risk score. Biometrics 58: 657-664.

Norton, E. C., H. Wang, and C. Ai. 2004. Computing interaction effects and standard
errors in logit and probit models. Stata Journal 4: 154-167.

Ogilvie, J. C., and C. D. Creelman. 1968. Maximum-likelihood estimation of receiver
operating characteristic curve parameters. Journal of Mathematical Psychology b5:
377-391.

Pepe, M. S. 2000. An interpretation for the ROC curve and inference using GLM proce-
dures. Biometrics 56: 352-359.

Pepe, M. S., and T. Cai. 2004. The analysis of placement values for evaluating discrim-
inatory measures. Biometrics 60: 528-535.

Pepe, M. S., R. Etzioni, Z. Feng, J. D. Potter, M. L. Thompson, M. Thornquist,
M. Winget, and Y. Yasui. 2001. Phases of biomarker development for early detection
of cancer. Journal of the National Cancer Institute 93: 1054-1061.

Pepe, M. S., and G. Longton. 2005. Standardizing diagnostic markers to evaluate and
compare their performances. Epidemiology 16: 598-603.




H. Janes and G. Longton and M. S. Pepe 39

Pepe, M. S., G. Longton, and H. Janes. 2009. Estimation and comparison of receiver
operating characteristic curves. Stata Journal 9: 1-16.

Prentice, R., and R. Pyke. 1979. Logistic disease incidence models and case—control
studies. Biometrika 66: 403-411.

About the authors

Margaret Pepe is a full member, Gary Longton is a statistical research associate, and Holly
Janes is an assistant member in the Public Health Sciences Division of the Fred Hutchinson
Cancer Research Center in Seattle. A focus of their research is on the development of new
methodology for diagnostic tests and biomarkers, with support provided by the National Cancer
Institute (CA 129934 and CA 086368) and the National Institute for General Medical Studies
(GM 054438). Pepe, Longton, and Janes also teach courses on statistical methods for evaluating
tests and biomarkers.




